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88 FOURIER SERIES AND BOUNDARY VALUE PROBLEMS [sec. 40
The continuous function
2)dm . when x # 0
x%isin — x :
(6) f(x)=
0 when x =0

illustrates the distinction between one-sided derivatives and one-sided limits
of derivatives. Here fx(0) = f 1(0) = 0, while the one-sided limits f'(0+) and
f'(0—) do not exist. The verification of this is left as a problem.

40. Preliminary Theory

We begin our discussion of the convergence of Fourier series with two
preliminary theorems, or lemmas. The first is often referred to as the
Riemann-Lebesgue lemma, and we present it in somewhat greater generality
than we actually need in order that it can be used as well in Chap. 7, where
the convergence of Fourier integrals is treated, and also in Chap. 8.

N o
?KLemma \. Ifrafurciion Gu)\is piecewise continuois-o n an interval (0.¢),

then

r—>oo r—o

We shall verify only the first limit here and leave verification of the
second, which is similar, to the problems. ;

To verify - the first limit, it is sufficient to show that if G(u) is contin-
uous at each point of an interval a s u < b, then

b
@) lim | G(u) sin ru du =0.
r—o ‘a
For,in view of the discussion of integrals of piecewise continuous functions in
Sec. 24, the integral in the first of limits (1) can be expressed as the sum ofa
finite number of integrals of the type appearing in equation (2).
Assuming, then, that G(u) iMqumervd
a < u < b, we note that it must also be uniformly continuous there. That is,

for each positive number & there exists a positive number 5 such that

|G(u) — G(v)| < & whenever u and v lie in the interval and satisfy the inequal-

ity Ju = of <o Writing
€o

8==2(b—a)

+ See, for example, Taylor and Mann (1972, pp. 558-561) or Buck (1978, Sec. 2.3), listed in )

the Bibliography.

(1) lim j:@’s‘i%du = lim jcwﬁﬁgdu = ﬁ’qbbbbou/\ ,

0.
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where &, is an arbitrary positive numbe
w5 - e number, w ' A
positive number § such that T e

(3) Gl y

u) — G(v 0 _
) ()|<2(b-a) whenever {u — v| < 4.

To obtain the limit (2) :-\/d\/\‘/\ﬂ—\ g
mi , divide the intervala < u < b int ihi
b s N

of equal length (b — a)/N by means of the points a = ug, u 10 : Subm,jer'va[l)s
¥ sy Ugy ooy, Uy = D,

hCI‘ uQ < U < 2 o g g
.

N -uVl

b
“a. G(u)sin rudu= Y | G(u) sin ru du

n=1 "uy-1

N vuﬂ

e . N » Y¥n
e ngl ‘un~1[G(u) ¥ G(u")] sin ru du + Z G(un) sin ru du
— '|=1 ‘u’l— y
or 1
b
(4) ‘ G(u) sin ru du
N » Un
< i ¢ N ity
"Z«I i |G(u) — G(u,)| |sin ru| du + ; | G(u,)| I Sin o dn

In view of condition (3
s . s
& (3) and the fact that |sin ru| < 1, it is easy to see

’ |G(u) — G(u,)| |sin ru| du < PO i
Up—1 2(b 5

Also, since G(u) i i
, since G(u) is continuous on the closed interval a < u < b, it is bounded

there; that is, there i iti
: s s a positive number M such '
between a and b inclusive. Furthermore e lehess M et

-ull

. sin ru du

“up— 1

" |cos ru,| + |cos ru,_,| _2
e

r r

(n=12". 50Nk

where it is understood that r i
. ‘ ' at r > 0. With these ob i
inequality (4) yields the statement s

L

}' G(u) sin ru du

‘a

e 2N
ot
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we note that, in particular,

(G
sin x
dxiel)

(5) lim

m—x 0 X

as m passes through positive integers. That is,

Ty A
M GRE P

(6)

m—o ‘0

where the substitution x = (m + 1)u has been made for the variable of inte-
gration. Observe that equation (6) can be written

(7) unlij@anm)du==L
where slaron

(2 sin (u/&? \
®) FlAR T s

and D,,(u) is the Dirichlet kernel (Sec. 40)
sin [(m + Hul>
Dult) 175 sin (2)

The function F(u), moreover, satis :+i0ns-in Lemma 2, Sec. 40,

and F(0+) = 1 (see Problem 1, Sec. 63). So, by that lemma, limit (7) has the - i

\311;1531:12; and, by uniqueness of limits, L = n/Z.TEe proof of Lemma 1in

this section is now completg;
Our second lemma mafes direct use of the first one.

Lemma 2. Suppose that a function F(u) is piecewise continuous on every "

bounded interval of the positive u axis and that the right-hand derivative Fir(0) 8
exists. If the improper integral .

o

©) | |FG)| du

Y

converges, then

sin ru n
du =~
u 2

(10) nm[wa)

r—=x ‘0

g

Observe that the integrand appearing in equation (10) is piecewise con-
tinuous on the same intervals as F(u) and that when u > 1, i
-

N

sin ru

F(u) < |Fu)]-

u

Tﬁ
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Thus the convergence of integral

in equation (10) ) ensures the existence of the integral

We begin the :
: proof of the le ; )
range of integration is replacednl;r;a by demonstrating its validity when the

first sh . A any bo i
show that if a function F(u) i y bounded interval (0,c). That is, we

g s pi i :
interval (0,c) and Fy(0) exists, then RlEcewise continuous on a bounded

(11) N |'CF(u) sin ru

n
du=§F(0+)_

To prove this, we writé

"CF(u) sin ru

‘0 u du:l-(-’;)+{£r)

where

0
. ( +)Jsin ru du ,_? 0

and

)= Fo+) T

S Tl

Since the function

; G(u) = [F(u) — .

interval (0,c), where Gl“ ~~w‘_._£ (0+)]/u is Bisceme
k4 ] 0 — ’ T —— B]; QMSM.QHIII]

S_CC. 40 to see that ( +) FR(O), we need only re?éf‘ﬁt‘otmé;n‘%:nlthe

in

(12)

lim I(r) = 0.

On the other hand, if we substi

and a ! u int i

Pply Lemma 1 of the present section w?: tfli]r?c;ntf tr al represe senting J(r)
’ a

(13)

lim J(r) = F(0 . SIS %
r— o ( +)llm ‘ X (1x=F(O+)_27E

r=x 0

Limit (11) is evidently now a consedueﬁce f
o

To actually obtain limit (10), we note thazimifs (12) and (13).

sin ru

| Fu)

I du
¢ r

<[ 1FG)] d

v

Whele wWe a . 1€

(14)

‘0 u

F(u R |
' (u) du EF((H')

sin ru

= w3 ) s e e
.‘O (u) L du EF(0+),+JC | F(u)| du,
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