;
g

v

s ———

1

94 |NFINITE SERIES

1. Determine the se
these values:

=nx) . L X“+l
2y e ™) b) {Innx} c) {x"} d) {x"+2

/ x\" /
1_y/ {1 +;+ “m +(§)} 'ﬂ{l+e"‘+e‘2"+

2. Find the set of x for which th
Y@ w26
* 3 e

n=10
d z %t {r:+1:|x
ninn
2n—1 x" n+1 -
g Zn2+1-? M{ Zninn
(x r
‘]\/Z_ \}{ n +l
(2n) Z
—2p
'5*%] &L \'9’/2 3n+l}{Jc ) . (n

n=0
(g'p n=1
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Problems (Section 2-14)
t of values of x for which the sequence COnVverges and find the limit for
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2-15 UNIEORM CONVERGENCE.

If a sequence or series of functions conver
more rapidly at some poi
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over an interval, it may converge much
nts than at others. We here explore this @ uestion for a series
ith sum f(x) and corresponding partial sums S, (x*. The discussion for
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(x)} is the same as that for the sequence

i f uniform convergence by considering two figures that
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ver the interval approaches 0 as n — oo; that is,
—S,(x)| >0 as n— .

strated by case (a), nonuniform convergence by case (b).
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This definition is adequate for most app

S,(x) are continuous for all n on

situations, the defirition becomes as

lications, namely those in which f(x) and
the closed interval a S XS or more general

follows: for every £>0, there is an_N,
= r all x on the given interval.
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r calculations. When 2
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