an arbitrary sequence

 $\{S_n(x)\}.$ We introduce the

illustrate two ways in w especially interested in this is shown for n = 1than $S_1(x)$ for all x in $S_2(x)$ is closer to f(x) t closer still for some (t decreasing, and with t case (b), the maximum see that as n increases narrower and narrow Uniform convergence

We can define such that the maxin

This definition is ad $S_n(x)$ are continuous situations, the defi independent of x si functions is co on a closed innerva

series contract and in

Problems (Section 2-14)=

1. Determine the set of values of x for which the sequence converges and find the limit for

a)
$$\{e^{-nx}\}$$
 b) $\{\ln nx\}$ c) $\{\frac{1}{x^n}\}$ d) $\{\frac{x^n+1}{x^n+2}\}$
e) $\{1+\frac{x}{2}+\cdots+(\frac{x}{2})^n\}$ f) $\{1+e^{-x}+e^{-2x}+\cdots+e^{-nx}\}$

2. Find the set of x for which the series converges and state the radius of convergence:

2. Find the set of x for which the series converges and

a)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n x^n$$
b) $\sum_{n=0}^{\infty} \left(\frac{x}{e}\right)^n$
c) $\sum_{n=1}^{\infty} \frac{x^n}{n^3}$
d) $\sum_{n=1}^{\infty} \frac{x^n}{n \ln n}$
e) $\sum_{n=0}^{\infty} \frac{(n+1)x^n}{n!}$
f) $\sum_{n=0}^{\infty} \frac{1+(-1)^n}{n!} x^n$
g) $\sum_{n=0}^{\infty} \frac{2n-1}{n^2+1} \frac{x^n}{2^n}$
h) $\sum_{n=2}^{\infty} \frac{n+1}{n \ln n} x^n$
i) $\sum_{n=0}^{\infty} \frac{n!}{n!} x^n$
j) $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$
l) $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n^2+1}$
l) $\sum_{n=0}^{\infty} \frac{(x+1)^n}{5^n}$
l) $\sum_{n=0}^{\infty} \frac{(x+1)^n}{(n!+2)(n!+3)} (x-1)^n$
l) $\sum_{n=0}^{\infty} \frac{n!+1}{(n!+2)(n!+3)} (x-1)^n$

3. Find the set of x for which the series converges:

a)
$$\sum_{n=0}^{\infty} \frac{1}{x^n}$$
 b) $\sum_{n=0}^{\infty} \frac{3^n}{x^n}$ c) $\sum_{n=0}^{\infty} e^{-nx}$

A) d) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ test e) $\sum_{n=0}^{\infty} \left(\frac{x+1}{x+2}\right)^n$ f) $\sum_{n=0}^{\infty} n \left(\frac{x}{x-1}\right)^n$

5. Let the power series
$$\sum_{n=0}^{\infty} c_n x^n$$
 be given. Show that if the limit exists, then

a) $r^* = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$ b) $r^* = \lim_{n \to \infty} \frac{1}{|c_n|^{1/n}}$

2-15 UNIFORM CONVERGENCE

If a sequence or series of functions converges over an interval, it may converge much more rapidly at some points than at others. We here explore this question for a series $\sum_{n=1}^{\infty} u_n(x)$ with sum f(x) and corresponding partial sums $S_n(x)$. The discussion for an arbitrary sequence of functions $\{f_n(x)\}$ is the same as that for the sequence

We introduce the idea of uniform convergence by considering two figures that illustrate two ways in which $S_n(x)$ can approach f(x) (see Fig. 2–9). In each case we are especially interested in the maximum error E_n in the approximation of f(x) by $S_n(x)$; this is shown for n = 1, 2, 3 for the two cases. In case (a), $S_2(x)$ is much closer to f(x) than $S_1(x)$ for all x in the interval, and $S_3(x)$ is even closer throughout. For case (b), $S_2(x)$ is closer to f(x) than $S_1(x)$ for some (but not all) x in the interval, and $S_3(x)$ is closer still for some (but not all) x. In case (a), the maximum errors E_1 , E_2 , E_3 are decreasing, and with the process continuing as suggested, approach 0 as $n \to \infty$. In case (b), the maximum errors E_1 , E_2 , E_3 are all about the same size, however we can see that as n increases the sharp dips in the graphs move over to the left, becoming narrower and narrower, so that $S_n(x)$ does have f(x) as limit for each fixed x. Uniform convergence is illustrated by case (a), nonuniform convergence by case (b).

Fig. 2-9. (a) Uniform convergence; (b) nonuniform convergence.

We can define uniform convergence over an interval $a \le x \le b$ as convergence such that the maximum error over the interval approaches 0 as $n \to \infty$; that is,

$$\max_{a \le x \le b} |f(x) - S_n(x)| \to 0 \quad \text{as} \quad n \to \infty.$$
 (2-150)

This definition is adequate for most applications, namely those in which f(x) and $S_n(x)$ are continuous for all n on the closed interval $a \le x \le b$. For more general situations, the definition becomes as follows: for every $\varepsilon > 0$, there is an N, independent of x, such that $|f(x) - S_n(x)| < \varepsilon$ for n > N for all x on the given interval. It can be shown that the sum of a uniformly convergent series of continuous functions is continuous. Thus for a convergent series $\sum u_n(x)$ of continuous functions on a closed interval $a \le x \le b$ the two definitions of uniform convergence agree.

Uniform convergence is very important for computer calculations. When a series converges uniformly over a given interval, the sum can be computed to desired