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1 Important Facts

1. Suppose f(x) is a periodic function of period 27 which can be represented
by a TRIGONOMETRIC FOURIER SERIES

f@)=ao+ Z Gy, COSNT + by, sinnx.

n=1

(This means that the series above converges to f(x).)

Then the Fourier Coefficients satisfy the Euler Formulae, namely:

ag = %/7 f(z)dx
1

an = = f(z)cosnzdxr forn=1,2,...
™ —T
1 [ .

b, = — f(z)sinnzdx forn=1,2,...
L

2. A function f is said to be even if
f(=z) = f(z) forallzeR

and odd if
f(—=z)=—f(z) forallz eR

Recall the product of two even functions is even, the product of two odd func-
tions is even and the product of an even and an odd function is odd. Compare



the multiplication of even and odd functions to the addition of even and
odd integers.

3. If f is an odd function then
f(z)dx =0,
while if f is an even function, then

i fl@)de =2 7Tf(:l:)dac
- 0

2 Exercises and Examples

Example 1. Let f be a periodic function of period 27 such that
flx)=n*—2* forx € (—m ).
Supposing that f has a convergent trigonometric Fourier series, show that

2_ g2 20 +§:_4( 1)" cos (2.1)
-zt = — — (- ST .
3 n?

n=1
SOLUTION: The solution can be effected in a number of separate steps:

e Check whether f is even or odd.

e If f is odd, all the Fourier coefficients a, for n =0,1,2... are zero; if f
is even, all the Fourier coefficients by, for n =1,2... are zero.

e Compute the remaining Fourier coefficients using the Euler Formulae. It
is generally a good strategy to use Integration by Parts, successively
integrating sinnz and cosnz and differentiating f(z).

e Replace the expressions for the Fourier coefficients a,,, b, in

fl@)=ao+ Z an, cos nx + b, sin nx.

n=1

STEP 1: f(—2) =72 — (—2)? = 7% — 2% = f(x) so f is even.

STEP 2: Since f(x) is even and sinnx is odd, f(z)sinnz is odd and hence

1 ™
by = — f(z) cosnxdx = 0.
™ —T
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STEP 3: Since f(x) is even and cosnx is even, f(z)cosnz is even, and so

s

f(z) cosnx dx = 2/7T f(z) cosnx dz.
0

—T

Therefore,
1 [" 1" 2 [,
an = — f(x)cosnxdr =—=2 [ f(x)cosnzder=— [ (7°—a°)cosnz
iy —r iy 0 iy 0

(2.2)
As suggested above, we calculate the integral in (2.2) by Integration by Parts.
Recall the Integration by Parts formula:

b b b
[ t@ @ de = st _ - [ r@g)ds (2.3

Let
f(x)=n*—2? and ¢'(z)=cosnz
$0

1
fl(x)=—-2x and g(z)= /cosnx dx = Esinnx.

Using (2.3) and the above, we have

/ (72 — 2?) cosnz, dx (2.4)
0 S=———~—" "

f g

2

/

oy 1 . m " 1.
= (7 —2°) —sinnz| — —21 —sinnx dx
£ 0 Jo o
f g g

1 1 2 (7
= (71'2—7r2)fsinn7r—(7r2—02)fsin0+f/ xsinnx dx
n n 0
2 [T .
= 7/ rsinnzx dz. (2.5)
0

n

Now we calculate this last integral using integration by parts: let
f(z) =2 and ¢'(z)=sinnz,

SO
— Ccosnx

ﬂ@ledmwz/mmm: >

Using (2.3), and remembering that cosnm = (—1)", sinnw = 0 for n an integer,

we have
4 . —cosnx |T g — COS T
r sinnx dr = r —— | — 1 d
0 =~ ~—=— ~—~ n 0 0~~~ n
g f p I p
g g
— cos —cosO0 1 [T
= 7 mTfO +f/ cosnx dr
n n n Jo
1 1 sinnx ™ 1
= ——7(-1)"+— =——m(=1)".
n n n lo n
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Using (2.2), (2.5) and the above, we have

2 (7 22 (7
an:f/ (WQ—QTQ)COSHLL'dl‘:**/ x cosnx dz
0 ™n Jo

s

22 1 —4
=22 - (-1t = (-

— = o= = (=)

It remains to calculate ag, which is given by

ag = / f(z /7‘(2—332d37
0

7T 1 3 3 273
= — |70 - — e
0 s 3 3

where we use the fact that f(z) = 72 — 22 is even.

Il
| =
A~
3,
H

|
w| 8,
~

STEP 4: Using the formulae obtained above for the Fourier coefficients, we
have

o0 o0
- 4 4,
™ E 72 COS nx + 0.sinnxr = — E 72 COS nx

Example 2. Show that the trigonometric Fourier series of f(x) = 3z for x €

(=m, ) is given by
oo
6
Z — " sin na.
n

n=1

SOLUTION:
STEP 1: f(—x)=3. —x = —3z = —f(x), so f is an odd function.

STEP 2: Since f(z) is odd and cosnx is even, it follows that f(z)cosnz is
odd, so

an = — f(z)cosnxdr =—.0=0.

1
T ) . ™
Moreover, since f is odd

1
2w

f( Yz = ——.0 =0,

apg =
2w

STEP 3: We need to calculate the Fourier coefficients using the Euler Formulae.
However, noting that f(z) and sinnx are odd, and therefore that f(x)sinnzx is
even we have
1 T ' 1 T ) 6 T
b, = — f(z)sinnz dx = 72/ f(z)sinnx de = f/ xcosnrdr. (2.6)
T Jo T Jo

—T

The latter integral is calculated using integration by parts.
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Ezercise 2.1. Show that

— COSnhx

T
/ rsinnrdx = x
0

g _/Tr — COSNx de — j(—l)n
0

n 0 n n

By virtue of Exercise 2.1, we have, from (2.6)

6 —m 6

by = — —(—1)" = ——(—=1)".
STy =2
STEP 4: The Fourier series of f(z) = 3z is given by
ao+§ ap cosnx + b, sinnxr = 0—|—E Ocosnx—l——g(—l)"sinnx
n
n=1 n=1
— 6
- 2 (~1)"sinnaz.
n( )" sin nx

Now

n=1

try the following

FExercise 2.2.

(i)

(iii)

(iv)

Show that x3 cosnz is an odd function and z3sinnz is an even function.
Hence give the value of
s
/ 2% cosnz dz

—T

and write down another expression equal to

v
/ 22 sin na dz.
— T

By integrating by parts, show that

iy 71 n__3 e
/ xgsinnxdx:fquﬁ/ 2% cosnzx dz.
0 n nJo

Hint: Recall for integer values of n that cosnm = (—1)™.

Given that

T 2 s
/ LL'QCOSTLLL'd.’IJ:—f/ zsinnx dx
0 nJo

T T
/ rsinnzrdr = ——(—1)",
0 n

use part (ii) to prove that

/0 23 sinnx dr = E(—l)” - — (="

and

Using parts (i) and (iii), and supposing that the Fourier series converges,
show for all z € (—m, 7) that

oo 2
z3 = Z 2(-1)" <53 - 7;) sin nz.

n=1
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