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1 Important Facts

1. Suppose f(x) is a periodic function of period 2π which can be represented
by a TRIGONOMETRIC FOURIER SERIES

f(x) = a0 +
∞∑

n=1

an cos nx + bn sinnx.

(This means that the series above converges to f(x).)

Then the Fourier Coefficients satisfy the Euler Formulae, namely:

a0 =
1
2π

∫ π

−π

f(x) dx

an =
1
π

∫ π

−π

f(x) cos nx dx for n = 1, 2, . . .

bn =
1
π

∫ π

−π

f(x) sinnx dx for n = 1, 2, . . .

2. A function f is said to be even if

f(−x) = f(x) for all x ∈ R

and odd if
f(−x) = −f(x) for all x ∈ R

Recall the product of two even functions is even, the product of two odd func-
tions is even and the product of an even and an odd function is odd. Compare
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the multiplication of even and odd functions to the addition of even and
odd integers.

3. If f is an odd function then∫ π

−π

f(x) dx = 0,

while if f is an even function, then∫ π

−π

f(x) dx = 2
∫ π

0

f(x) dx

2 Exercises and Examples

Example 1. Let f be a periodic function of period 2π such that

f(x) = π2 − x2 for x ∈ (−π, π).

Supposing that f has a convergent trigonometric Fourier series, show that

π2 − x2 =
2π2

3
+

∞∑
n=1

−4
n2

(−1)n cos nx. (2.1)

SOLUTION: The solution can be effected in a number of separate steps:

• Check whether f is even or odd.

• If f is odd, all the Fourier coefficients an for n = 0, 1, 2 . . . are zero; if f
is even, all the Fourier coefficients bn for n = 1, 2 . . . are zero.

• Compute the remaining Fourier coefficients using the Euler Formulae. It
is generally a good strategy to use Integration by Parts, successively
integrating sinnx and cos nx and differentiating f(x).

• Replace the expressions for the Fourier coefficients an, bn in

f(x) = a0 +
∞∑

n=1

an cos nx + bn sinnx.

STEP 1: f(−x) = π2 − (−x)2 = π2 − x2 = f(x) so f is even.

STEP 2: Since f(x) is even and sinnx is odd, f(x) sinnx is odd and hence

bn =
1
π

∫ π

−π

f(x) cos nx dx = 0.
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STEP 3: Since f(x) is even and cos nx is even, f(x) cos nx is even, and so∫ π

−π

f(x) cos nx dx = 2
∫ π

0

f(x) cos nx dx.

Therefore,

an =
1
π

∫ π

−π

f(x) cos nx dx =
1
π

2
∫ π

0

f(x) cos nx dx =
2
π

∫ π

0

(π2 − x2) cos nx

(2.2)
As suggested above, we calculate the integral in (2.2) by Integration by Parts.
Recall the Integration by Parts formula:∫ b

a

f(x)g′(x) dx = f(x)g(x)
∣∣∣b
x=a

−
∫ b

a

f ′(x)g(x) dx (2.3)

Let
f(x) = π2 − x2 and g′(x) = cos nx

so
f ′(x) = −2x and g(x) =

∫
cos nx dx =

1
n

sinnx.

Using (2.3) and the above, we have∫ π

0

(π2 − x2)︸ ︷︷ ︸
f

cos nx︸ ︷︷ ︸
g′

dx (2.4)

= (π2 − x2)︸ ︷︷ ︸
f

1
n

sinnx︸ ︷︷ ︸
g

∣∣∣π
0
−

∫ π

0

−2x︸︷︷︸
f ′

1
n

sinnx︸ ︷︷ ︸
g

dx

= (π2 − π2)
1
n

sinnπ − (π2 − 02)
1
n

sin 0 +
2
n

∫ π

0

x sinnx dx

=
2
n

∫ π

0

x sinnx dx. (2.5)

Now we calculate this last integral using integration by parts: let

f(x) = x and g′(x) = sin nx,

so
f ′(x) = 1 and g(x) =

∫
sinnx dx =

− cos nx

n
.

Using (2.3), and remembering that cos nπ = (−1)n, sinnπ = 0 for n an integer,
we have∫ π

0

x︸︷︷︸
f

sinnx︸ ︷︷ ︸
g′

dx = x︸︷︷︸
f

− cos nx

n︸ ︷︷ ︸
g

∣∣∣π
0
−

∫ π

0

1︸︷︷︸
f ′

− cos nx

n︸ ︷︷ ︸
g

dx

= π
− cos nπ

n
− 0

− cos 0
n

+
1
n

∫ π

0

cos nx dx

= − 1
n

π(−1)n +
1
n

sinnx

n

∣∣∣π
0

= − 1
n

π(−1)n.
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Using (2.2), (2.5) and the above, we have

an =
2
π

∫ π

0

(π2 − x2) cos nx dx =
2
π

2
n

∫ π

0

x cos nx dx

=
2
π

2
n
− 1

n
π(−1)n =

−4
n2

(−1)n.

It remains to calculate a0, which is given by

a0 =
1
2π

∫ π

−π

f(x) dx =
1
2π

2
∫ π

0

π2 − x2 dx

=
1
π

(
π2x− x3

3

) ∣∣∣π
0

=
1
π

(
π3 − π3

3

)
=

2π3

3

where we use the fact that f(x) = π2 − x2 is even.

STEP 4: Using the formulae obtained above for the Fourier coefficients, we
have

π2 − x2 =
2π3

3
+

∞∑
n=1

−4
n2

(−1)n cos nx + 0. sinnx =
2π3

3
+

∞∑
n=1

−4
n2

(−1)n cos nx

Example 2. Show that the trigonometric Fourier series of f(x) = 3x for x ∈
(−π, π) is given by

∞∑
n=1

−6
n

(−1)n sinnx.

SOLUTION:

STEP 1: f(−x) = 3.− x = −3x = −f(x), so f is an odd function.

STEP 2: Since f(x) is odd and cos nx is even, it follows that f(x) cos nx is
odd, so

an =
1
π

∫ π

−π

f(x) cos nx dx =
1
π

.0 = 0.

Moreover, since f is odd

a0 =
1
2π

∫ π

−π

f(x) dx =
1
2π

.0 = 0.

STEP 3: We need to calculate the Fourier coefficients using the Euler Formulae.
However, noting that f(x) and sinnx are odd, and therefore that f(x) sinnx is
even we have

bn =
1
π

∫ π

−π

f(x) sinnx dx =
1
π

2
∫ π

0

f(x) sinnx dx =
6
π

∫ π

0

x cos nx dx. (2.6)

The latter integral is calculated using integration by parts.
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Exercise 2.1. Show that∫ π

0

x sinnx dx = x
− cos nx

n

∣∣∣π
0
−

∫ π

0

− cos nx

n
dx =

−π

n
(−1)n.

By virtue of Exercise 2.1, we have, from (2.6)

bn =
6
π

−π

n
(−1)n = − 6

n
(−1)n.

STEP 4: The Fourier series of f(x) = 3x is given by

a0 +
∞∑

n=1

an cos nx + bn sinnx = 0 +
∞∑

n=1

0 cos nx +− 6
n

(−1)n sinnx

=
∞∑

n=1

− 6
n

(−1)n sinnx.

Now try the following
Exercise 2.2.

(i) Show that x3 cos nx is an odd function and x3 sinnx is an even function.
Hence give the value of ∫ π

−π

x3 cos nx dx

and write down another expression equal to∫ π

−π

x3 sinnx dx.

(ii) By integrating by parts, show that∫ π

0

x3 sinnx dx = − (−1)nπ3

n
+

3
n

∫ π

0

x2 cos nx dx.

Hint: Recall for integer values of n that cos nπ = (−1)n.

(iii) Given that ∫ π

0

x2 cos nx dx = − 2
n

∫ π

0

x sinnx dx

and ∫ π

0

x sinnx dx = −π

n
(−1)n,

use part (ii) to prove that∫ π

0

x3 sinnx dx =
6π

n3
(−1)n − π3

n
(−1)n.

(iv) Using parts (i) and (iii), and supposing that the Fourier series converges,
show for all x ∈ (−π, π) that

x3 =
∞∑

n=1

2(−1)n

(
6
n3

− π2

n

)
sinnx.
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