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Abstract

An efficient algorithm called the modal reaction method for calculating the modal participation factors in support motion
problems has been proposed by Chen et al. [1]. In this paper, we extend this method to determine the number of modes
needed to satisfy 90% of the sum of the base-shear modal mass as UBC(uniform building code) suggests. The sum of
all the modes for each support in multi-support motions is found to be equal to the normalized quasi-static mass which
is defined in this paper. The normalized quasi-static mass is equivalent to the total structure mass in the case of single
supported structure. By extracting the reaction from the SPC force in data recovery using SOL 3 (linear modal analysis)
or SOL 106 (nonlinear modal analysis) in MSC/NASTRAN, the modal participation factor and the base-shear modal mass
ratio can be directly determined free from calculation of the influence vector, or the so-called quasi-static solution. To
demonstrate this new concept of the normalized quasi-static mass, several examples including rod, beam, tower structures
are given to check the validity of the proposed method using MSC/NASTRAN program. Finally, the minimum number of
modes needed to reach 90% of the normalized quasi-static mass for each support is proposed as a reference for analysis
and design engineers.

Keywords: Modal reaction method; Support motions; Base shear; MSC/NASTRAN; Mode superposition and normalized
quasi-static mass

1. Introduction

In solving dynamic problems, either direct transient analysis or modal analysis can be utilized.
For support motion problems, many approaches are available, e.g., the Laplace transform, the gener-
alized eigenfunction expansion method, Mindlin and Goodman method, Eringen and Suhubi method
and Stokes’ transformation [2]. In the above-mentioned methods, the mode superposition method
is employed except for the Laplace transform. For the case of modal analysis, the total response
is obtained by superimposing the contributions of natural modes, and each of the generalized co-
ordinates represents the weight of the contribution made by the corresponding mode. While the
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modal coordinate and the base-shear modal mass ratio are modal outputs for displacement and base
shear, respectively, the modal participation factor plays the role of modal input by distributing ex-
ternal excitations to the corresponding mode. The derivations of those factors caused by body force,
boundary force and support excitations are well known in the literature [3]. When the excitation is
body force or boundary force, the modal displacement at the application point of the body force
or the boundary force governs the magnitude of the modal participation factor. Therefore, if a con-
centrated load is applied at the node of a certain mode shape, then the modal participation factor
of the mode is zero since no work is done. For a long time, the modal participation factor for
support motion has been calculated by using the influence vector; in other words, the quasi-static
solution as Mindlin and Goodman proposed, even though the resulting calculation is very time-
consuming and has little physical meaning [3]. Recently, Chen et al. [1, 2, 16, 17] found that the
modal participation factor is proportional to modal reaction, which is the constraint force on the
support. Therefore, if support excitation is imposed at the constraint point where the modal reaction
is zero, the modal participation factor is zero. The modal reaction method not only has a clear
physical meaning, but also saves a large amount of computational time. However, this technique has
not been used in the available programs, e.g.,, ABAQUS, NASTRAN [4] and ANSYS. Geyer [5]
applied NASTRAN to solve the dynamic problem of a piping system subjected to multiple-support
motions. Schiavello and Sinkiewicz [6] have provided a DMAP Rigid Format Alter(RFA) to cal-
culate the modal participation factor and modal effective mass. Also, William [7] used a DMAP
Alter to determine the significant modes in support motion problems according to the corresponding
modal participation factor. Palmieri [8] has also shown some example problems which illustrate the
effect of multiple cross-correlated excitations on the response of linear systems to Gaussian ran-
dom excitations. However, all the above-mentioned papers utilized the Mindlin-Goodman method.
Motivated by the significance of support motion problems in earthquake engineering, we synthesize
and extend the idea to multi-supported structures and find that the sum of the base-shear modal
mass is equal to the normalized quasi-static mass defined in this paper, which is equal to the total
structure mass in the single support case. A base-shear modal mass ratio is defined by dividing the
base-shear modal mass over the normalized quasi-static mass. After employing Parseval’s equality
in the discrete system, the sum of all the base-shear modal mass ratios can be proved to be one.
Furthermore, the minimum number of modes needed to reach 90% of the modal mass ratio of the
normalized quasi-static mass is solved by using the finite element method for several typical struc-
tures, including rod, beam and tower structures subjected to axial, transverse motions and rocking
excitations.

2. Modal formulation for support motion in discrete systems
Consider the discrete system with the governing equation
MU} + [CHU} + [KH{U} = {P(1)}, ()

where [M] is the mass matrix, [C] the damping matrix, [K] stiffness matrix, and all three are
symmetric square matrices of order N (N is the total number of degrees of freedom). {U} represents
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displacement, and {P} represents force, both being column matrices of order N. We then decompose
the degrees of freedom into two sets, one supported and one unsupported, denoted by the subscripts
r(redundant/reaction) and 7(left/load), respectively. Then, Eq. (1) can be rewritten as

[M// M/,} {q/ } N [c/, c/,} { U, } . [K,f K,,] {w} _ {P/} @)
Mr/ Mrr Ur Cr/ Crr Ur Kr/ Krr (]r Pr ’
where {U,} prescribes N, support motions, {#,} prescribes N, loads, {£,} contains the resuiting N,
reaction forces, and {U;} contains the resulting N, displacements. It is obvious that N is equal to
the sum of N; and N,. For multi-support motion problems in earthquake engineering, the N, entries
of {U;} are prescribed time histories at N, supports, and it is assumed that {P;} = 0, i.e., the system
is free of external loadings. For problems with external loadings, we need to superimpose the effects
due to driving forces {F,}, a relatively easier job, onto the results obtained in this section which is
due to support motions {U;} only.

Similar to the quasi-static decomposition method for a continuous system considered by Mindlin
and Goodman [9], the solution can be decomposed into two parts, the quasi-static part with super-
script s and the inertia-dynamic part with superscript d:

wi={g === {7+ {5} ®)
By definition, the quasi-static solution satisfies

k-7 @
without considering acceleration and velocity terms. Also, for the inertia-dynamic part,

{P} = {0}, (5)

{Uf} = {0} (©)

by definition.
The eigenequation corresponding to Eq. (2) is

2 M,y M, o Ky Ko o [0 .

w"[Mr/ ML 0 Ky K| L Of T (RS P2 N (7)
where {¢;} denotes the ith mode shape with N, entries, and {R;} is the ith modal reaction forces
with N, entries. The modal matrix [®,,] is the collection of all the N, mode shape

(®1=[{d ) {d:}.. ... {éw ], (8)
with the following properties:

(8,1 [M;)[D:/] = diag(1,1,...,1), %)

(8, 17(CA1[Pr/] = diag(2E 01,2805, ..., 28y, 0, ), (10)

(@, 1K/ [ Pr/] = diag(w}, 03, ..., 0F,), (11)



132 J.T. Chen et al.|Finite Elements in Analysis and Design 26 (1997) 129-142

in which the ith modal damping ratio & and the ith modal (or natural) frequency w; in the case of
the Rayleigh damping model with coefficients o and f satisfy

28w; =20+ Pu?, i=1,2,...,N,, (12)
that is,
[C] = 2«[M] + BIK]. (13)

Denote as {Q%} the column matrix of the modal (or generalized) coordinates of the inertia-dynamic
part. Then, the inertia-dynamic displacements have mode superposition

{Uy =1e.0{0").  {U"} =[on]{Q"}, (14)
where we have defined the augmented matrix [y,] of order N x N, as

[®w/] = [QZ’}. (15)
Substituting first Eq. (3) and then (14) into (1), and premultiplying by [®y,]" yields

[2n "M Dy O (0} + [ @3, TICN @Y A0 (1)) + [Sn T IKIn1{0%(1))

= —[Dy1" M1 {U"} - [&4,17[C] {U}, (16)

where the superscript T denotes the transpose of a matrix. Note that in the present formulation, we
encounter no difficulty in retaining the [@N,]T[C]{Us} term in Eq. (16), in contrast to some papers
in which this term was always neglected [10]. Substitutions of Eqs. (9)—(11) into (16) lead to

T

0! +2600! +oi! =~ { 4 ooy - {4 ) rewory a7

for the modal coordinate of the inertia-dynamic part QY.

3. Modal reaction method for determining the modal participation factor
Since {F,} = {P’} = {0}, we obtain from Eq. (4)
{U} =~ K17 IKA (U} (18)
Given the following two systems: one is the quasi-static system of Eq. (18) and the other is the

eigensystem for the ith mode of Eq. (7). We apply Betti’s law for discrete systems [11] to prove
that the two discrete systems obey

— (6 M M (U} =~ { ) MU} = (RIT{EE). (19)
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Based on Eq. (7), we obtain the ith modal reaction as follows:

{R} = —w} M/ ){$:} + [Ki/1{:}. (20)
Then, inserting Eq. (20) into the right-hand side of Eq. (19), we obtain

(RYT{U} = (M {0} + (KA} (U}

={-0{o:}" Ml + {$:}" K]} (U7} @n

Substitution of Eq. (18) into the left-hand side of Eq. (19) yields

— o} {¢:} My, M) {U°} = o {{$:} MK ] (Kl = {i} M} {U]} (22)
After comparing Eq. (21) with (22), to derive Eq. (19) is equivalent to finding

o { ¢} MK KA (U} = {} (KA {U7)- (23)
From the eigensystem of Eq. (7), we have

— o [M i} + K ){$} = {0} (24)
Taking the transpose of Eq. (24) and postmultiplying with [K,,]7'[K,]{US}, we have

— o o} MK KAl (U7} + {0} TIKAAK AT KA U} = 0. (25)

Therefore, we have derived Eq. (23) and, hence, Eq. (19).
Now, considering Eqs. (3), (6) and (17), we can express the quasi-static part as

( Ur](t) W
UrZ(t)
()= | K Ee ) = (GHGY G} 4G {1, b (26)
I U (1)
Ui (1)

where Uy;(1) is the jth support history of the 7 set, and {G;} denotes the quasi-static influence vector
for {Us} when only the jth entry of {U;} is 1; otherwise it is zero. Eq. (26) can be rewritten as

N,
J=
Substituting Eq. (27) into (17), we have

N, Y - at -
0! + 200! +0i0!= (— {9} nageyom- {4} [C]{G,}U,,-(t))

Ne . Ny .
= =S (U 0) = 205 (11U, 1)) (28)
J= =
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by using Eqs. (4) and (13), where 1,7;’ is the ith modal participation factor for the inertia-dynamic

part Q¢ subjected to the jth support motion Urj(t), and is defined as

T
Il = {‘g"} MI{G;}, i=12,....N,, j=12,...,N,. (29)

By substituting the particular selection,

U} =G}, (30)
0 0
0 0

W= =1y (=11 31
0 0

\

into Eq. (19), we obtain the general equality

T
- w?{‘f{} MG} =R;, i=12. N, j=12..,N, (32)

where R;; is the jth entry of the ith modal reaction, i.e., the jth support reaction of the ith mode.
From Egs. (29) and (32), we have

R;;
1;;1:(_0;2), i=1,2,...,N,, j=12,...,N, (33)

which expresses that the modal participation factor for the inertia-dynamic part is the modal reaction
divided by the negative of the modal frequency squared. Note that the minus sign of —w? comes
from the square of the imaginary unit.

As a consequence, the techniques for calculating the modal participation factors can be remarkably
improved; those in accordance with Eq. (33) may be called the “modal reaction method.”

4. Normalized quasi-static mass — a new definition

In earthquake-resistant design [3], the partial sum of the ith base-shear modal mass for the first
support (single support), m;;, plays the role of determining the modes needed since

N,
>~ m; = total structural mass, (34)

i=1
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where the ith base-shear modal mass subjected to only one support motion can be calculated by the
modal reaction as follows:

Ry)? .
my = (LY = ¢ 0'4) . =12, N, (35)

In UBC code [15], the number of modes should be chosen to reach 90% of the total structural mass
in the design and analysis procedures. By extending the single support to multi-support motions, the
influence vector can be expressed as

{G} =o)L} (36)

according to Egs. (29) and (9). If one defines the normalized quasi-static mass for the jth support
as

M; = {G}'[M]{G} (no summation on j), 37)

then by substituting Eq. (36) into Eq. (37), we obtain the norm for the vector of the modal partic-
ipation factor I; as follows:

M; = {IY{I} (no summation on j, summation on i). (38)

To construct a nondimensional number, the definition of the base-shear modal mass ratio is gener-
alized as

. (Y
ratio of m; = YA (39)

7

where the subscripts i and j denote the ith mode and the jth support, respectively. According to
Eq. (38), the sum of the modal ratio in Eq. (39) for all the modes is equal to one for each support.
For the special case of a single support structure with an influence vector of rigid-body motion as

1
1

{Gr=111 (40)

1
the normalized quasi-static mass in Eq. (37) is reduced to

M; = 3" M; = total structure mass. (41)

Comparing Eq. (41) with Eq. (34), we obtain consistent results. Eq. (38) shows that the normalized
quasi-static mass for a multi-support structure is equal to the norm of the vector of the modal
participation factor, I"Jd It is interesting to see that Eq. (38) is a discrete version of Parseval’s

1
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equality, which states that
/Dp(x)fz(x) dx = Zlai, (42)

where f(x) is a function, p(x) a weighting function(density here), D the considered domain, and
the generalized Fourier coefficient a, is determined by

S ) f(XDuy(x) dx
T [ peud(x)dx

in which u,(x) is the modal shape. Eqs. (38) and (42) are the Parseval’s equation in discrete and
continuous systems, respectively. Based on the equality in Eq. (38), the criterion for determining
the minimum number of modes Ny, needed to reach more than 90% of the normalized quasi-static
mass for the modal sum of the base-shear mass can be constructed as follows:

Mo YT
my = ——
i=1 j

(43)

>90%. (44)

Ny is suggested in modal analysis and design procedures for practical engineers.

5. MSC/NASTRAN implementations

Since the modal participation factor depends on the properties of the structure and the
support point, the eigendata including the modal frequency, modal shape and modal reaction at
the support point should be determined first. Any program can be utilized to demonstrate the valid-
ity of this new concept if the modal reaction can be extracted out. In this study, MSC/NASTRAN
was adopted [12, 14]. By using the rigid format of SOL 3 or the structural solution sequence
SOL 106 in MSC/NASTRAN, we can obtain data in the output file with the extension name
F06. In the literature, the modal reaction has been often overlooked; however, it is just as im-
portant as modal frequency and modal shape for support motion problems. The modal reaction
can be directly determined at the same time once the modal frequency and modal shape are ob-
tained without matrix inversion. Therefore, the influence vector with matrix inversion as Eq. (18)
shows can be avoided. It must be noted that the modal reaction at the support is extracted out
by the SPC force on the SPC constraint point in MSC/NASTRAN even though it can be gen-
erated by the RBMG3 module with output data block DM if the support degree of freedom is
in the » set by matrix inversion. In [1], a numerical example with 640 degrees of freedoms
shows 99% of the CPU time can be saved by using the modal reaction method in compari-
son with the Mindlin-Goodman method. We will extend the modal reaction method to deter-
mine the minimum number of modes to satisfy the 90% requirement of the equivalent base-shear
mass.

In MSC/NASTRAN implementation, when the parameter of the WTMASS card is defined as a
value of a, then the modal base-shear mass ratio must be multiplied by 1/x in order to make the
sum equal to one for the consistency of units.
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6. Numerical examples

Five examples are demonstrated to show the validity of the modal reaction method. The struc-
ture types and sources of excitation (translation or rocking) are shown in Figs. 1(a) — (e). The
structure properties in Fig. 1(d) are based on data of the Tower of Golden Gate Bridge given in
[13]. The normalized quasi-static mass is shown in Table 1. The modal frequencies, modal shapes
and modal reactions were determined by using two methods, continuous system and discrete system
by FEM, respectively. In the FEM implementation, the MSC/NASTRAN program was utilized to
obtain the eigen data of the structure. Based on the modal reaction method, the modal participation
factor and modal base-shear-equivalent mass could be determined using Eqs. (33) and (35), respec-
tively. The partial sum of the modal base-shear mass ratios is summarized in Tables 2 and 3 by
continuous system and discrete system, respectively. The partial sums of the modal base-shear mass
ratio for Figs. 1(a), (b), (c), (d) and (e) by continuous system and discrete system are shown in
Figs. 2(a), (b), (c), (d) and (e), respectively. The results using the two methods agree very well. To

P
K. K, K. K.
a 2 + 2 E 2 2k
M M W a*‘v‘v‘v‘ “v‘v‘v"—g “v‘v‘v“—g
Elp, ¢t EA,p, £ El p,t Elp ¢t Elp,t
1777747t/ 77777777 7777777 77777777 17777775
— t D - -
ég tig g thg g

(a) (6) () (d) (e)

Fig. 1. (a) A cantilever beam subjected to rocking excitation; (b) A rod subjected to axial excitation; (c) A cantilever
beam subjected to support excitation; (d) A restrained cantilever with axial load subjected to support excitation. (e) A
restrained cantilever subjected to support excitation.

Table 1
Normalized quasi-static mass for the structures shown in Figs. 1(a)—(e)

Case (a) (b) (c) (d) (e)

Normalized quasi-static mass
JpUP(x)dx ipl pl pl 0.486 p! 0.487 pl
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A cantilever beam subjected to
rocking excitation
1.00

0.80

0.60 7

0.40

JEXEE} continuous system,
0.20 ] ©o0Cc0o &?C/NASTRAN i )

Partial sum of
modal mass ratios

0.00 T T T T T ™
0 1 2 3 4 & 6 7 8 9 10
Mode number included

Fig. 2(a). Partial sum of the modal mass ratio for Fig. 1
(a) by continuous system and discrete system.

A cantilever beam subjected to support

excitation
1.00 —
r > 0.90
w 0.80 ]
58
3
£ & 0607
3 @
@
o3
T € 0407
£~
3 (b £ ¢
D? = 00000 ?bg D%C'/"It’x?T v e)m)
§ 0.203
0.00 T T T T T T T T 1

0 1 2 3 4 5 6 7 8 g 10
Mode number included

Fig. 2(c). Partial sum of the modal mass ratio for Fig. 1
(c) by continuous system and discrete system.

A rod subjected to axial excitation

1.00

r > 0.90

g 0.80
S
ISR

]
£~ 060
3w

12}
o5 j
3 £ 0401
e
£ 3

rarxs (dy continuous tem,

:E B --‘-Agl C INASTRAN Fr’gaeu'n)unu3

§ 0.20 4 cooeo MSC/NASTRAN (20 elements,

0.00 T T T ——— . T
o t+ 2 3 4 5 6 _ 7 8 9 10

Mode number included

Fig. 2(b) Partial sum of the modal mass ratio for Fig. 1(b)
by continuous system and discrete system.

A restrained cantilever with axial
load subjected to support excitation

1.00
g 0.80
RS
3
g & o060
S o
o
|
[~] E 0.40
L.
& — 12% £
s 32 For S e
_ E 0.20
0.00 — T T T T T T T

o 1 2 3 4 5 6 7 8 9 10
Mode number included

Fig. 2(d). Partial sum of the modal mass ratio for Fig. 1
(d) by continuous system and discrete system.

provide a guide for the number of modes needed in the modal analysis, the requirement of more than
90% of the normalized quasi-static mass for the modal sum of the base-shear mass ratios in UBC is
also shown. It is easily found that the minimum number of modes needed to meet the requirement
of UBC code for each structure is 1,2,4,7 and 8, respectively, as shown in Table 4. Based on the
continuous system, the effect of a restrained spring on a cantilever beam is shown in Fig. 3 with
larger Ngg while the influence of axial compression on a cantilever beam is shown in Fig. 4 with
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A restrained cantilever subjected
to support excitation

1.00 g

0.80

0.60

Partial sum of
modal mass ratios

——  (by continuous system)
00000 (by MSC/NAST}{FN)

0.00 T T T T T T T T
0 1 2 3 4 5 & 7 8 9 10
Mode number included

Fig. 2(e). Partial sum of the modal mass ratio for Fig. l(e) by continuous system and discrete system.

Table 2
Partial sum of the modal mass ratios needed to meet 90% of the normalized quasi-static mass for the five structures in
Figs. 1(a)—(e) by continuous system

Case Normalized 1 2 3 4 5 6 7 8
quasi-static mass

a 1pl 97.0%

b pl 81.1% 90.1%

c pl 61.3% 80.0% 86.6% 90.0%

d 0.488 p/ 53.5% 68.4% 76.2% 82.0% 85.9% 88.6% 90.6%

e 0.487 pl 52.3% 67.0% 75.0% 81.1% 84.8% 87.6% 89.7% 91.2%

Table 3

Partial sum of the modal mass ratios needed to meet 90% of the normalized quasi-static mass for the five structures in
Figs. 1(a)—(e) by MSC/NASTRAN

Case Normalized 1 2 3 4 5 6 7 8
quasi-static mass

a ipl 96.6%

b pl 80.9% 90.0%

c pl 61.0% 79.9% 86.4% 91.7%

d 0.488 p! 52.9% 67.7% 75.2% 81.0% 84.9% 87.6% 90.5%

e 0.487 pl 52.3% 66.9% 74.5% 80.2% 84.1% 86.8% 88.7% 90.2%

smaller Nyy. Also, results can be obtained using MSC/NASTRAN which agree with results based on
the continuous system, as shown in Figs. 5 and 6. All of the results can be understood from the fact
that a spring restraint makes the structure stiffer; however, axial compression reduces the stiffness.
The greater the structure stiffness is, the larger is the Ny, needed.
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Table 4
The minimum number of modes needed to meet 90% of the normalized
quasi-static mass for the five structures in Figs. 1(a)—(e)

Case (a) (b) () (d) (e)
Ny 1 2 4 7 8

The effect of restrained condition
on a cantilever beam by continuous

stem
1.00 Y
r > 0.90 3
(g 0.80 4
.3
O
5]
£ % 0601
S o
tnh 0
- =]
3§ 0407
53 ]
8 3 3
A S 0.203[e000 (with restrained condition)
E ke (without restrained condition)
0.00 — T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10
Mode mumber included

Fig. 3. The effect of a restrained condition on a cantilever beam by continuous system.

The effect of axial load on a cantilever
beam by continuous system

1.00
r > 0.90
n 0.80
.8 ]
S 3
<] 3
g & 0.60
S o
5 0
- =]
3 & 0.40]
3 3
"E:‘ ~ 3
53 ]
AN Q .20 ][ wxxes  (without axial load condition)
E 1/ @00Qo  (with axial load condition)
000 %— —— ——

0o 1 2 3 4 5 6 7 8 9 f0
Mode number included

Fig. 4. The effect of an axial load on a cantilever beam by continuous system.
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The effect of restrained condition
on a coantilever beam by MSC/NASTRAN

1.00
r > 0.90
» 0.80 1
w2 :
oS E
3 1
g & 0607
S e E
o
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8 E 0.40 4
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S .20 [ xx22x  (without restrained condition)
E 1/ Qooao  (with restrained condition)
0.00 %——————T—T— 17—
0 1 2 9 10
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Fig. 5. The effect of a restrained condition on a cantilever beam by MSC/NASTRAN.

The effect of axial load on a
cantilever beam by MSC/NASTRAN

1.00

0.80

0.60 7

S

a

S
1ialsany

Partial sum of
modal mass ratios

0.20 1/ x2x43  (without arial load condition)
3/ @000  (with axial load condition)

0.00 4 T T T T T T T T T

06 1+ 2 3 4 5 6 7 8 9 10
Mode number included

Fig. 6. The effect of an axial load on a cantilever beam by MSC/NASTRAN.

7. Conclusions

The sum of all the base-shear modal mass ratios has been found to be equal to the normalized
quasi-static mass, which has been defined in this paper for multi-support structures. Several examples
including rod, beam and tower structures have been given to demonstrate the validity of the proposed
method. The minimum number of modes needed to reach 90% of the normalized quasi-static mass
ratio for each support has been proposed as a reference for design engineers.
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