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The acoustic eigenfrequenciés,,, in a spheroidal cavity containing a concentric penetrable sphere
are determined analytically, for both Dirichlet and Neumann conditions in the spheroidal boundary.
Two different methods are used for the evaluation. In the first, the pressure field is expressed in
terms of both spherical and spheroidal wave functions, connected with one another by well-known
expansion formulas. In the second, a shape perturbation method, this field is expressed in terms of
spherical wave functions only, while the equation of the spheroidal boundary is given in spherical
coordinates. The analytical determination of the eigenfrequencies is possible when the solution is
specialized to small values bf=d/(2R,), (h<<1), with d the interfocal distance of the spheroidal
boundary and R, the length of its rotation axis. In this case exact, closed-form expressions are
obtained for the expansion coefficierg$), and g‘%). in the resulting relatiorf ,s,(h) = f,{0)[ 1
+h?g@ +h*g® +0O(h®)]. Analogous expressions are obtained with the use of the parameter
=1—(R,/R})?, (Jv|<1), with 2R, the length of the other axis of the spheroidal boundary.
Numerical results are given for various values of the parameters19@ Acoustical Society of
America.[S0001-496629)05803-9

PACS numbers: 43.20.K{ANN]

INTRODUCTION case is R,, while that of the other axis isR,.
The acoustic eigenfrequencies in the former cavity are
Calculation of eigenfrequencies in acoustic cavities ofgetermined by two different methods. In the first of them the
various shapes is an important problem with many applicapressure field is expressed in terms of both spherical and
tions in room acousticsacoustic levitatiofi® and high ac-  gpheroidal wave functions, while use is made of the well-
curacy measurements of sound speed in gaSee shape of | qun expansion formulas connecting these functidris.

the poundaries severely limits the po;sibility for anglyticalthe second method we use shape perturbation. In this case
solution of such problems. For complicated geometries NUghe pressure field is expressed in terms of spherical wave

mderlcal technu?juesls arehused._AnaIé/tlcatI, pet::u_rbattrl]onal met:‘functions only, while the equation of the spheroidal bound-
0ds were used elsewnere, In order o obtain the acoust ry is given in spherical coordinatesand 6. In both cases,

eigenfrequencies ina spherical cavity with an eccentric NN tter the satisfaction of the boundary conditions, we obtain
sphere, for both Dirichlet and Neumann boundary condi-

tions, in the case of small eccentricity between the oD infinite determinantal equation for the evaluation of the

spheres,or for a small inner spher®’ In spheroidal cavities eigenfrequencies. In the special case of srhaild/(2R,),

calculation is more complex, due to the complexity of sphe—(h<1) we are led to an exact evaluation, up to the ofder

roidal functions. In Refs. 8 and 9 the eigenfrequencies of gor the eIer_nents_ of the i_nfinite determinant and_, finally_, for
prolate spheroidal cavity were calculated, for Dirichlet andthe deter.mmar.]t itself. It is then possible to obtain t?ezelgen—
Neumann boundary conditions, too. The same is valid also ifféquencies in the form fqg,(h)=f,(0)[1+h Nt
Refs. 10 and 11 for concentric spheroidal—spherical cavitiest N*dtent O(h®)]. The expansion coefficiengsa), andgf),
by analytical, perturbational methods. In this last case nofre independent ofi and are given by exact, closed-form
only the prolate but also the oblate spheroidal boundaries a@xpressions, whilé,{0) are the eigenfrequencies of the cor-
examined. responding spherical cavity with= 0.

In the present paper the acoustic cavity, shown in Fig. 1,  The main advantage of such an analytical solution lies in
is examined also for both Dirichlet and Neumann conditiondts general validity for each small value &f and for all
in its spheroidal boundary, which has major and minor semimodes, while numerical techniques require repetition of the
axesR, andR;, respectively, and interfocal distande It  evaluation for each differertt, with accuracy deteriorating
contains a concentric penetrable sphere with raBiusThis  quickly for higher order modes.
cavity is a perturbation of the concentric spherical one with  Analogous expansions are obtained by using the param-
radii R; and R,. Only the prolate spheroidal boundary is etervzl—(Rleé)z, (Jv]<1).
shown, but corresponding formulas for the oblate one are  Our method can be applied also in the corresponding
obtained immediately. The length of the rotation axis in eachuyterior (scattering problem.

The cases of the Dirichlet and Neumann conditions in
dElectronic mail: iroumel@cc.ece.ntua.gr the spheroidal boundary are examined in Secs. | and Il, re-
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and using the orthogonal relations for the associated
Legendré® and the trigonometric functions we obtain the
following expression foiE,,

(X1 a(Wa) = Qin(W)i5(X)

- _ — (4
Nn(X1)jn(W1) = Ajn(W1)Np(X1)
where
P1Cy
w;=KiR1, X1=K;R1, q=—+ 2Cy' 5)
and the primes denote derivatives with respect to the argu-
ment.

In order to satisfy the remaining boundary condition
p,=0 at the spheroidal boundary, denoted foy o, we
follow two different methods. In the first of them we expand
the spherical wave functions, appearing in E), into con-
centric spheroidal ones by the formtfa

29 (k,or)P™(cos6)

2 (n+my &, i7"
_2n+1(n—m)!/:m,m+1 Nm/

XA S (€, PRWAC,E),  c=kod/2. (6)

In Eq. (6) £€=coshu, n are the spheroidal coordinateg {s
FIG. 1. Geometry of the cavity. common in both systermsz(") (a’=1—4) is the spherical
Bessel function of any kmd? ) is the correspondmg radial
gspheroidal function of the same kinBl,, andd™  are the
angular spheroidal function of the first kind and its expansion
coefficients, while

spectively. Finally, Sec. lll includes numerical results an
discussion.

2
. DIRICHLET BOUNDARY CONDITIONS s 2 , (d)A(r +2m)!
Nmn 581 (2r+2m+1)r!

0
As shown in Fig. 1, the density, the sound speed and the
wave number are,, ¢4, k; andp,, c,, k, inside the pen- The prime over the summation symbols in E(®. and (7)
etrable spheréregion 1 and between it and the spheroidal indicates that when—m is even/odd these summations start
boundary(region 2, respectively. The materials of both re- with the first/second value of their summation index and con-
gions are considered as fluids or fluidlike, i.e., they do notinue only with values of the same parity with it.
support shear waves. We substitute from Eq(6) into Eqg. (2) satisfying the
Let p, andp, be the acoustic pressure fields in regions 1boundary conditiop,=0 at u= wo(é= &p) and we next use
and 2, respectively. These fields, which satisfy the scalathe orthogonal properties of the angular spherdfdand the

Helmholtz equation, have the following expressions: trigonometric functions, to obtain finally the following infi-
© n nite set of linear homogeneous equations for the expansion
= 2 E +(Kar ) P™(c0S6)[ Cpym COSMep coefficientsA,, (or Bym)
+Dpmsinme], &) L2 amnPam=0, /=mmt L, ®
oo n
where
p2= 2 2 [in(ker) ~Ennn(kor) JP7(cOS)
n=0 m=0 ~2i7"(n+m)!
X[ AnmCOSMe+ B, sinme]. 2 " 2n+1)(n—m)!
In Egs.(1), (2) r, 6, ¢ are the spherical coordinates with dm/m[R ) (c,coshug) — E R(z)(c coshug)]. (9)

respect taO, j, andn,, are the spherical Bessel functions of
the first and second kind, respectively, & is the associ-
ated Legendre function of the first kind.

By satisfying the boundary conditions it R,

In Egs.(8) and(9) ~ andn are both even or odd, starting
with that value ofm or m+ 1, which has the same parity with
them. So, Eq.8) separates into two distinct subsets, one
with //, n even and the other witl, n odd.

1 dpp 1 9p; 3 We next substitut®}) andR{Z) from Eq.(7) of Ref. 10
p1C1 d(Kir)  paCy d(Kor)’ into Eq. (9) and set each one of the two determinants

p].: p2!
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A(a,ym (one with/, n even and the other withf, nodd)  andR; is the minor semiaxis of the oblate boundary. £8)

of the coefficientsy,,, in Eq. (8) equal to 0. So, we obtain changes its sign, whilgl remains the same.

two determinantal equations of the same form for the evalu- The eigenfrequencies for the problem of two concentric
ation of the eigenfrequencies, which are treated simultaspheres with radiR; andR,, used in Egs(13), (14), are
neously under the symba\(a, ). By dividing a,,, by  given by the equatiofEq. (A1) in the Appendi DJ,=0, or
the product 2 "tanH" uo(d™ )2(n+m)/[(2n+1)(n

—m)!], as in Ref. 10, we do not change the roots of the jn(Xg) B 0 0

0 0 0
determinantal equation. We next use the symbg| for the () En(X), X;=7X3, Wi= "2c TR,
resulting coefficient, deleting the subscriptfor simplicity, (15)
and replacec=k,d/2 by its equal onec=x,h, where x,
=c coshug=k,R, andh=d/(2R;). For large values difi the By using Egs(15), (A1), (A22) from the Appendix and

determinantal equation can be solved only numerically, buthe Wronskiaf® j,(x3)n/,(x9) = j n(x3)nn(x9) = 1/(x3)?, we
for small h (h<1) an analytical solution is possible. In this obtain
last case we can set up to the ortiér

dD?.(x9) 1
=Dy + hD{R+h*D{)+O(h®), ki

dx; (x3)2n,(x3)

dE,(w?,x9)
) —" g (19

—h2n(2) 4 (4) 6
@nz2n=N"Dnzont WDz OMY), (19 Equations(16) and (A2) substituted in(13) give X(22). The
anxan=h*D4Y, ,+0(h®). expression forx$?) is much more lengthy, but is obtained
immediately from Egs.(13), (14), (16), (A1)—(A5) and
(A22)—(A24).

By setting Eq.(12) in the form x,(h)=x3[1+h?g®
+h*g®)+0(h®)] we obtain the eigenfrequencies in the cav-
ity of Fig. 1 by the expression

Exact expressions for the variolss used in our calcu-
lations are given in Eq$A1)—(A5) of the Appendix.

Relations(10) allow a closed-form evaluation of the de-
terminantA(a,,)=A(a,nm), up to the ordeh?*, in steps
exactly the same with those in Ref. 10, which will not be

repeated here. fomM=f(01+h2a? +n4g@ +0O(ht
The resonant wave numbeks=k,(h), as well asx, nont ) =Tns(O)L Gnsmt N Gnom ™ O(M) ]
=X,(h)=k,(h)R, have also expansions of the form n=0,1,2,.., s=1,2,3,.., m=0,1,2,...n, (17
_(0) 21(2) 41,(4) 6
Ko(h) =k +h%k% + h*k5Y+0(h®), (11) wheref (0)=c,(x3)ns/(27R,) are the eigenfrequencies of
. . . 0 O .
Xo(h) =X+ h2x2 + h*x? + O(h®), the concentric spherical cavity,= (X5) s are the successive
? 2 ? 2 positive roots of Egs(15) and g@*=x@@xJ[g{2,®
X<2p):k(2p)R21 p=0,2,4, (12) :(X(22)’(4))nsm/(xg)ns]-

We next apply the second method for the determination
of the eigenfrequencies. This is a shape perturbation method
with no use of spheroidal wave functions. Equatigbs-(5)
are also valid in this case. In order to satisfy the remaining

aSoundary conditiorp,=0, at the spheroidal surface, we ex-

where k{®¥=k9 and x{¥=xJ correspond to the concentric
spherical cavity with radiR; andR, (h=0).

The expressions o%$? and x§” in terms of D's are
exactly the same as in Ref. 10 and are given by the formul

@® 4003 (2)(x0 press the equation of this surface in terms of r @nds in
T T | Pted (13)  Ref. 14
2
dDd,(x9)] Y (x?)2 d?D§,(x9) , dDA(XD) R,
Q- nm 72 2 nn( X2 (2)9Pnn (X2 r=—, (18
i [ e 2 ag e v o
1
(4),,0 D2, (XD, 5(x3) wheré
+Dnn(X2)_ DO 5 Z(Xg) - ,
+2n+
" v=1-| —| =Fh2—h*+0(h%). (19)
DIz 2(X3) D2 n(X3) R,

, (14)

Dg—Z,n—Z(Xg)

whereD(@=D? . As it is evident from Eq(8), the various
subscripts in Eq(10) and so also in Eq$13), (14) should be
equal or greater tham=0. In the opposite case the corre-

The upper/lower sign in Eq19) corresponds to the pro-
late (v<0)/oblate ¢ >0) spheroidal boundary.

We expand Eq(18) into power series i, thus obtain-
ing up to the ordeh*

spondinga’s andD’s are equal to zero and so disappear. h2 h4 3

In Egs. (13 and (14) we have used the relations, r= R2[1173i¥ 6— ?Sin2 0( 1- Zsinz 9) +O(h6)}
=17X5, W1=7X,C5/Cq, Wherer=R;/R,=constant, s, is (20)
the only variable.

Formulas(13) and(14) are also valid for the oblate cav- By using Eq.(20) we get the following expansidh

ity, with the only difference thaD(®’s change their signs (x,=k,R,):
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2

: O L !
Jn(Kar) = jn(X2) ¥ 5 Xaj n(Xz) i 6

X, Sir? 6

2

i n(X2) = 3] 1(X2) +Xoj n(Xo) ISir? 6}

+0(h®), (21)

and a similar one fon,(kor).
We next substitute the former expansions into E.
satisfying the boundary condition at the spheroidal surfac

and we use the orthogonal properties of the associate

Legendré® and the trigonometric functions, concluding fi-
nally to the following infinite set of linear homogeneous
equations for the expansion coefficieits,, (or B, up to
the orderh*:

an—4,nAn—4,m+ an—2,nAn—2,m+ AnpAnm™T an+2,nAn+2,m

T ani4pAniam=0, nN=m. (22)

The third subscripm is omitted from the varioug’s in
Eq. (22), for simplicity. Their expressions are also given by
the general expansiond0), but with differentD’s, which
are given in Eqs(A6)—(A9) of the Appendix. As it is evi-
dent from Eq.(2), the first subscripts oA's (andB's) should
be always equal or greater tham=0. In the opposite case

By using the limiting valuegp;—0 (g—0), with ¢4 fi-
nite, in Eq.(4), we obtainE,=j,(x1)/n,(X;), corresponding
to a soft inner sphere. In the special case withkp, and
c1=C,, g=1,w;=x; andE,=0. Use of the small argument
formulas for the various Bessel functidisn Eq. (4) asR;
—0, gives alsoE,=0. The last two cases correspond to a
simple spheroidal cavity, i.e., in the absence of the inner
sphere. In all three cases the various results become identical

gvith the corresponding ones in Refs. 10 and 11. Eg# 0,

Fd. (16) is replaced byd Dy, (x9)/dx,=jn(X3).-

II. NEUMANN BOUNDARY CONDITIONS

Equations(1)—(5) are also valid in this case. In order to
satisfy the boundary conditiofip,/du=0 (dp,/d&=0) at
m=puo (§=§y), according to the first method, we follow
steps identical to those for the Dirichlet case. So, we use
again formulag6) and(7) and conclude finally to the infinite
set (8), with the difference that,,,, is now given by the
expression

2i "(n+m)!

A's (andB's) are equal to zero and disappear. The same i§“/”m=(2n+ 1)(n—m)!

valid also for the corresponding’s andD’s.

If m has the same/opposite parity withi.e.,n—m is
even/odd, the first subscript of thes in Eq. (22) starts from
the minimum valuem/m+1 and continues with the values
m+ 2/m+ 3, m+4/m+5, etc. So, Eq(22) separates into two
distinct subsets, one with even and the other with odd.
Setting each one of the determinants of the coefficients

R(c,coshuo) - IRZ(c, coshu)

X m/
dnfm i n i

(27)

The remarks after Eq9) are again valid in this case. We

these subsets, equal to zero, we obtain two determinantgly; substituteRY)/gu anddRZ)/au from Eq.(33) of Ref.
equations of the same form for the evaluation of the eigen1q into Eq.(27) and follow the same procedure as in the
frequencies, which are treated simultaneously. The rest step§yichlet case. So, we obtain again Eq$0)—(14) and (17)

are exactly the same as with the first method. So, Eds—

but with different expressions for the various expansion co-

(17) are also valid here with identical final results as in thatefficients, which are given in Eq§A12)—(A15) of the Ap-

method[x(zz) is obtained from Egs(13), (16) and (A7),
while x{¥ from Eqs.(13), (14), (16), (A6)—(A9) and(A22)—

pendix. In place of Eq(15) we now have

(A24)], as it is expected for the same problem. This consists

a very good check for their correctness.

The problem can be also solved, from the beginning, by

using the eccentricity parameterinstead ofh. In this case
the expansion of the general quantityvith respect ta is

y=y(0)=y*+oy +v?y,?+0(0?), (23
while its expansion with respect tois
y=y(h)=y%+h?y{#+h*P+0O(h°). (24)
By using Eq.(19) into (23), as well as the relation
v2=h*+0(h®) (25)
we finally obtairf
C=FYR v =y (26)

in(%2) _

0
na(xz)

C
0 0 0 0 0°-2
En(X3), X1=17X3, Wl:rxzc—l, (28

while, by using Eqs(28), (A12), (A22) and the Wronskian
IO (x9) — in(R)nn(x) =[(x0)*—n(n+ 1)1/ (x9)*, we
obtain in place of Eq(16)
dDR,(X9)  (x®°—n(n+1)

dx; (x2)3n)(x3)

dEq(WS,X7)

dx,

0

X3)

2

—xon;
(29

Equations(29) and (A13) substituted in(13) give x{). The
expression forx$?) is much more lengthy, but is obtained
immediately from Eqgs(13), (14), (29), (A12)—(A15) and
(A22)—(A24).

These last expressions are unique for both the prolate and the According to the second method, the boundary condition

oblate cavity ¢ includes the sign becausey(? simply
changes its sign in these two cases.
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TABLE I. Dirichlet conditions,7=R; /R,=0.2(0.5),p,/p;=0.820,c,/c,=0.787.

1

2

3

4

W NPFONRPFPOPFPFOOWNEFPONPEPOR, OO

3.177 903.559 72
4.486 104.711 36
5.761 165.865 33
6.987 587.031 11
0.344 060.428 86
0.199 710.244 14
0.399 480.488 28
0.237 780.269 14
0.285 280.322 96
0.427 920.484 45
0.244 360.261 26
0.266 570.285 01
0.333 220.356 27
0.444 290.475 02
0.287 4(0.380 06
0.172 20.222 26
0.315 190.463 98
0.008 160.164 49
0.234 090.297 28
0.330 570.453 67
0.040 080.177 55
0.110 710.217 35
0.266 720.318 24
0.340 520.424 66

6.501 607.210 62
7.745538.862 57
9.088 7010.073 77

10.414 1011.145 5)

0.360300.313 11
0.204 7%0.242 79
0.409 490.485 57
0.238 290.320 50
0.285 940.384 60
0.428 920.576 90
0.244 160.326 41
0.266 360.356 08
0.332 940.445 10
0.443 930.593 47
0.454 870.258 68
0.312110.188 53
0.422 440.315 38

0.073 86—0.986 60

0.333310.34013
0.383070.513 66
0.024 640.109 70
0.125240.211 68
0.333 720.447 47
0.370 070.606 64

9.936 1910.366 79

11.066 8812.032 23
12.345 2%13.870 28
13.694 3915.437 97

0.366 440.409 89
0.213370.189 74
0.426 6%0.379 48
0.242 980.225 86
0.291 580.271 04
0.437 370.406 56
0.244 990.288 47
0.267 260.314 70
0.334070.393 37
0.445 430.524 49
0.500 671.697 56
0.439 250.430 23
0.525 280.563 89
0.237 8%5—0.508 26
0.470290.213 73
0.465 100.192 64
0.159 16—1.073 90
0.249 1§—0.650 72
0.426 930.195 64
0.415510.195 53

13.365 5§14.325 24
14.494 6215.773 77
15.656 0517.058 48
16.949 2518.601 91

0.358 750.364 37
0.219 740.264 96
0.439 480.529 93
0.251 360.290 21
0.301 630.348 25
0.452 440.522 37
0.249 000.238 21
0.271 640.259 87
0.339 550.324 84
0.452 730.433 11
0.472 910.779 97
0.446 971.412 77
0.538 7§1.234 51
0.301 96—0.184 46
0.568 601.321 73
0.532 061.147 67
0.366 180.305 79
0.427 430.414 20
0.537 910.639 27
0.477 790.680 55

Neumann conditionsy=R; /R,=0.2(0.5),p,/p,=0.820,c,/c,=0.787.

2

3

4

0
1
(XDns 2
3
0
1
2
o'
3
0
1
2
ghen
3
TABLE II.
n
0
1
(Xns 2
3
0
1
2
9\
3
0
1
2
a'on
3

W NP ONPFPORFPOOWDMNMNPONMNMPEPOR, OO

0(0)
2.0785 12.065 35
3.341 693.329 69
4.514 0%4.506 37

()
0.027 510.023 60
0.484 290.491 39
0.182700.181 15
0.257 920.256 54
0.483 600.482 68
0.212 600.211 25
0.242 780.241 35
0.333310.331 62
0.484 210.482 08

-()

0.002 79-0.001 42

0.353 8%0.377 20
—0.045 040.008 38
0.204 570.205 67
0.354 560.361 04
0.037 140.059 73
0.104 040.118 83
0.257 610.256 91
0.356 500.356 31

4.593 685.321 42
5.935 436.584 94
7.284 937.708 81
8.582 498.834 41

0.352 660.409 13
0.189 140.254 63
0.408 480.541 61
0.231 6@0.299 20
0.282 160.363 85
0.433 840.557 81
0.239 930.289 24
0.263 220.317 19
0.333070.401 04
0.449 5@0.540 80
0.388 610.331 51
0.230 090.250 39
0.368 740.516 54
0.000 610.068 21
0.279890.377 77
0.358 280.573 67
0.007 270.251 13
0.101 130.297 72
0.300 4@0.418 80
0.358 230.558 40

8.076 788.539 48
9.276 2410.483 81

10.613 2012.050 94
11.968 1813.250 97

0.365220.314 75
0.203 830.189 61
0.420 080.388 18
0.237 170.288 05
0.286 500.347 42
0.434 470.525 50
0.242 250.329 33
0.264 970.360 02
0.333110.452 08
0.446 690.605 54
0.509 440.556 64
0.390 530.186 53
0.488 420.220 76
0.14308—1.642 10
0.401 470.228 16
0.424370.284 7%
0.066 14—0.701 53
0.169 40—0.350 43
0.378 670.377 97
0.392 470.508 95

11.5655212.299 21
12.682 4613.641 99
13.911 5815.272 4)
15.248 4017.063 92

0.364 960.439 78
0.214 250.237 87
0.435 340.482 28
0.245 220.224 55
0.295 370.270 29
0.445 820.407 53
0.245210.229 13
0.267 920.250 27
0.336 040.313 68
0.449 580.419 36
0.497 982.139 97
0.463 001.218 65
0.549 291.239 80
0.296 79—0.031 19
0.535 140.525 47
0.507 730.583 57
0.256 99—0.292 88
0.33523-0.122 20
0.484 260.210 74
0.447 0%0.168 60
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FIG. 2. Eigenfrequencies of a spherical cavity with a penetrable sphere;

p»1p,=0.820, c,/c,=0.787—Dirichlet conditions.

- h* -
u=(1——sir1220>u’,
8
(30)
~ . h? R
u’=r+?sinza(t1+h2co§0)0+O(h6).
So
0 Vp,=(i7 - Vp,= 222 h2'2 +1
u-Vp,=u'- pz—a—r+?sm o(+
1 dp,
2 —_—— =
+h?cog 9)r 20 0. (31)

We next substitute from E¢2) into (31), thus obtaining
the equation

0.55

@ 0.5
nsm
045
0.4+
0.351
0.3

0.25

0.2

0.15
o]

FIG. 3. First order expansion coefficients for eigenfrequencies in a sphero
dal cavity with a penetrable sphergj,/p;=0.820, c,/c,=0.787—
Dirichlet conditions.

1544 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999

4
Qgs)m

L L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

e

FIG. 4. Second order expansion coefficients for eigenfrequencies in a sphe-
roidal cavity with a penetrable sphere,/p,=0.820, c,/c;=0.787—
Dirichlet conditions.

© n
> {[J;<k2r>—EnnrA(kzr)]Pn'“(cose)
n=0 m=0
h? 1
+?Sln20(il+h200§ G)F[Jn(kzr)—Ennn(kzr)]
2
dP;'(cosh)

dé

By using Eq.(20) we get expansions similar to E(R1)
for j/(kor) andn;(kor), but with one more prime in each
one of their Bessel functions. We also obtain the expansion

][AnmcosmgoJr BrmSinme]=0. (32

jn(kar) ja(x2) b7 ja(xp) .
v— X, +? — +Jn(X2) SII’12 0
h*([in(x2) .
?[ x22 —jh(X) |sir? 6
1 ja(x . . ,
+ Z{ _ f( 2 +Jh(X2) +Xoj m(X2) sin’ 6']
+0(h®) (33

and a similar one fon,(kyr)/kor.
We next substitute the former expansions into B89)
and we use the orthogonal properties of the associated Leg-
endre and the trigonometric functions, thus obtaining again
the set(22), certainly with differenta’s and soD’s, which
are given in Eqs(A16)—(A19) of the Appendix.
The rest steps are identical with those in the first
method, i.e., we obtain again Eq4.0)—(14), (17) and (28),
(29) with identical as their final resulfs<t?) is obtained from
Egs. (13), (29) and (A17), while x{* from Egs.(13), (14),
(29), (A16)—(A19) and(A22)—(A24)], as is expected for the
same problem. This is a very good check for their correct-
ness.
The parametev, instead ofh, can be also used in this
ase by keeping in mind Eq6l9) and (23)—(26).
By using the limiting valugp;—« (q— =), with c; fi-
nite, in Eq.(4), we obtainE,,= j(x;)/n/(X,), corresponding

C
i-
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FIG. 5. Eigenfrequencies of a spherical cavity with a penetrable spherefIG. 7. Second order expansion coefficients for eigenfrequencies in a sphe-
p,1p1=0.820, ¢, /c,=0.787—Neumann conditions. roidal cavity with a penetrable sphere,/p;=0.820, ¢,/c;=0.787—
Neumann conditions.

to a hard inner sphere. So, the various results become iden-

tical with the corresponding ones in Refs. 10 and 11. Thenain unchangedThe same will be valid also in Figs. 3, 4, 6
same is valid also for a simple spheroidal cavity, where  ang 7, which follow)

=O(.)_I”n tE\is last case Eq29) is replaced bydDp,(x3)/dx, For the values of the parameters usedg4ll’s in both
=Xan(X3)- tables are positive. Keeping in mind Hd.7), this means that
the eigenfrequencies of the prolate/oblate cavity are greater/
II. NUMERICAL RESULTS AND DISCUSSION smaller than those of the corresponding spherical one, up to
the orderh?.
0 _ _ .
In Table | the roots X;)5s ( N=0-3,s=1-4) of Eq. From the former tables and many other available results,

(15) as well as the corresponding valuessify, andgighare it is evident that £9),. (n=0,5=1) and so alsd,(0) for
given in the Dirichlet case, for=R;/R;=0.2,0.5p2/p1  Neumann conditions are smaller than the corresponding ones
=0.820¢,/c,=0.787. In Table Il the rootsxf),s of EQ.  for Dirichlet conditions. The same is valid fdr(h), as

(28) are given, as well ag's in the Neumann case, for the can pe easily proved for the results given in these tables, in
samer’'s and the values of the parameters as before. Thehe case witth<1.

value x3)o;=0 corresponds to the smallest eigenvakie In Fig. 2 we plot the rootsx2),s (n=0-2,s=1,2) of
=k{=0 (with constant eigenfunctionof the Helmholtz gq.(15) versusr, for a concentric spherical cavity with radii
equation under Neumann conditions. A9;=0, also R, and R, and Dirichlet conditions. The various numbers
f01(0)=0 andfy;(h) =0, so the values of(zh andgihdo  designating the curves in this and the rest of the figures cor-
not matter. respond to the subscripts of the ordinate. Fer0(R;

Both tables are referred to the prolate cavity. For the_.0), E,—0 and so 3),s tend to the zeros af,(x3), cor-
oblate oneg®"s simply change their signs, whig”’s re-  responding to a simple spherical cavity with parameters

p2, Cy. For r—1(R;—Ry), x{—x3, so Eq.(15) is reduced
o7 to jo(Wd)=j,(x5c,/c;)=0 corresponding to a simple
spherical cavity with parameteys,, ¢, and (xg)nS in this
case are equal with those fer—0, multiplied by ¢, /c,.

In Figs. 3 and 4 we plog{2), and g\, respectively,
versusr, for the cavity of Fig. 1 with Dirichlet conditions.
For ~—0 the variougy's tend to the corresponding ones for
a simple spheroidal cavitywith parameterg,, c,, by tak-
ing in mind Eqs.(26). So,g®’s are independent afin this
case, as it was proved in Ref. 11 and is seen in Fig. 3. For
7—1 (for the prolate cavity is necessary that>0, as
—1) the same remarks as before are valid dt&, where

2)
Qas)m

o1} 1 now the simple spheroidal cavity has parameters c;.
o Also in this case®)’s are independent &f as is seen in Fig.

T e i 0T s e o o5 o 3, and are equal with those fer—0, multiplied by p,/p;.

T This can be proved easily by using the reSui{Z,=F [F is

FIG. 6. First order expansion coefficients for eigenfrequencies in aspheroiglven in Eq. (A10)] fOI’_ 70, a§ W?” as Egs(13), (16),
dal cavity with a penetrable sphergi,/p;=0.820, c,/c;=0.787— .(A7), ('15)-0the éNron_Sklan following it andA22) for 7—1,
Neumann conditions. i.e., with x]— x5 andj,(w?) =0.
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In Fig. 5 the roots X9)ns (N=0-2,5=1-3) of Eq.(28)
are plotted versus, for a concentric spherical cavity with
radii R; and R, and Neumann conditior{s(xg)m: 0, as in
Table II]. For 7—0, (x3) s tend to the zeros off,(x3), cor-
responding to a simple spherical cavity with parameter
p2.Cp. For 7—1, Eq. (28) is reduced to j.(w9)
=]j ;(xg c,/c4) =0 (for a simple spherical cavity with;,c;)
and (xg)ns are equal with the corresponding ones o0,
multiplied by ¢4 /c5.

In Figs. 6 and 7 we plog‘2, and g%, respectively,
versusr, for the cavity of Fig. 1 with Neumann conditions.
For 7— 0 the variougy's tend to the corresponding ones for
a simple spheroidal cavitywith parameterg,,c, [we keep
in mind Eqs.(26)]. So,g'2(s=2) are independent of in
this case, as is seen in Fig. 6. Fer 1 the same remarks are
valid for g's in a simple spheroidal cavity with parameters
p1, ¢1. Sogl?d are independent of s also in this caség.

6).

APPENDIX

The expressions for the varioud's appearing in Eq.
(100 and used in our calculations are the followirithe
upper/lower sign corresponds to the prolate/oblate cavity

1. Dirichlet boundary conditions
A. First method (use of spheroidal wave functions)

D =Unn, (A1)

@_ ., X5 [(n+ m+1)(n+m+2)
nn_—2(2n+1){ (2n+3)?

un—Zn] '

@) _ 4 (n+m+1)(n+m+2)
"2 (2n+1)(2n+3)4(2n+7)

D

un+2,n

B (n—=m—=1)(n—m)
(2n—1)?

(A2)

1—-4m?
X
(2n—1)(2n+3)?

un+2n

un+4,n1

s (Mm—m=1)(n—m)
—x4 .
(2n—=5)(2n—1)4(2n+1)

N (n+m+3)(n+m+4)
8(2n+5)2

1—4m?
U,_
(2n—1)%(2n+3) " 2"

un—zl,nl '

N ,(N+m+1)(n+m+2)
2 2(2n+3)%(2n+5)

B (n—=m—=3)(n—m—2)
8(2n—3)2

(A3)

2 _
n+2n- —

D

un+2,n,

@ _ ,(h—=m+1)(n—m+2) (A4)
n,n+2:+x2 2
2(2n+1)(2n+3)

D

un,n+2 )
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where
Uys= ]y (X2) = Egny (X2). (A5)
SB. Second method (shape perturbation)
D= Unn, (AB)
DI = FXaF up,, (A7)
D =XaG(3Upn+ XaUny) = XaF gy, (A8)
@ iy (n+m+1)(n+m+2)u
ntanT T2 2(2n+3)(2n+5) Nt
D@y (n=m+1)(n—-m+2) | (A9)
nn2T T2 2(2n+1)(2n+3) M
where
e n+m2+n—1 (AL0
(2n—1)(2n+3)’
(n+m+1)(n+m+2)(n+m+3)(n+m+4)
- 8(2n+1)(2n+3)%(2n +5)
+(n—m—1)(n—m)(n+m+1)(n+m+2)
2(2n—1)2(2n+3)?
Jr(n—m—3)(n—m—2)(n—m—1)(n—m)
8(2n—3)(2n—1)42n+1) ’
(A11)

while the number of primes over, s, in any case, denotes
the number of primes ovgr,(x,) andn,(x,) (i.e., the order
of their derivatives with respect to their argumenj in Eq.
(A5).

2. Neumann boundary conditions

A. First method (use of spheroidal wave functions)

Dpn= XUy, (A12)

!

ou

s (n+m+1)(n+m+2)
—X
2 2(2n+1)(2n+3)2

Unt2n

J

!
- X2un+2,n+ MUn 421

3 (N—=m=1)(n—m)
2 2(2n—1)2(2n+1)

!
n—

(A13)

2(n+m+1)(n+m+2)[

D(4): 2
2(2n+1)(2n+3)2 |

nn

1—4m? ,
u
(2n—1)(2n+3)2 "N

!
Un+4,nH

2x3
+ .
2n+7

N (n+m+3)(n+m+4)
8(2n+5)2
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!

Xz(n m—1)(n— m)j Yol

22(2n-1)2(2n+1)|

2,n+ mun—2,n

1—4m?
u,_
(2n—1)%(2n+3)

2x3
2n 5

(n—m-3)(n-m-2)

- 8(2n—3)2 uh’”“ , (A14)

o AL AL A

2(2n+3)%(2n+5) )
D(nzg]+zzixg<”—m+1><n—m+z> - (A15)

| 2(2n+1)(2n+3)2 "
B. Second method (shape perturbation)

Drn=otinn, (A16)
Dho' = XU ™ Mo, (A17)

L
DY =x3G[3ul,,+ XU/, ]+m[unn+x2unn]

—X5Ful' \—MuUpp, (A18)
(n+m+1)(n+m+2)
(2) _— 2, n
Dn+2,n * 2(2n+3)(2n+5) qun+2,n+2
—2(N+3)Uny2n+ 2], (A19)
(n—m+1)(h—m+2) ”
DE12,r)H—2:i 2(2n+1)(2n+3) [gunn+2nunn]v
where
V- 1 [(n+1)(n2—mz) ~ n((n+1)>—m?)
2n+1  2n-1 2n+3 ’
(A20)
_(n—m)(n+m+1)[(n+1)(n+m) n(n—m-+1)
2n+1 | 2n-1 2n+3
n+m n—-m+1
“12n—1" 2n+3
n((n+1)>-m?)(n+m+2)(n+m+3)
(2n+3)%(2n+5)
n+1)(n—m—2)(n—m—1)(n>-—m?
+( ) ) )( ). (A21)

(2n—3)(2n—1)?

3. Two useful derivatives

The following two derivatives oE,, are very useful in
Egs. (13), (14), for the evaluation ol’x(z) and x5¥ in any

— &) [i (W) 12+ G2 7j2(wy)
P2

_P2 442
! Pl)”/(le)'

x| 2= P22 nn+1)
pP1
(A22)
TE, 272{ (1 ) W) pwy) +wa j(w)]
=— X 1——=1|j"(w (W) +wyjl(w
dxg Xin 1 03 Tn(Wo)[jn(w)+wy jp(w,
Co . ., p
0% in(Wa)j(wa) - [ XE = “Pwi—n(n+1)
1 P1
P2 2:2 ( Wl)]
X[ 1-— == |+ wo)l x— —
pl) qn(wi)| Xg q
dE,( 2 Q1+Q2c2/cl>
—t , A23
dxz\ Q ( )
where
Q=n,(X1)jn(W1) —qjn(W1)N)(X1),
Q1=np(X1)jr(W1) —dja(W)N3(Xy), (A24)

Q2=nn(Xy)jn(Wy)—q jr(wy)np(Xy),

while X;=7X,, W1=7X5C,/C; and7=R;/R,.
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