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This paper presents the application of the boundary element method io:
computing wave forces on offshore structures of constant section throug
out the depth of water. The paper compares results obtained using
constant, linear and quadratic elements and draws some original con- “
clusions regarding their numerical accuracy and convergence. Examples ki
studied include the vertical circular cylinder, the square caisson and the
elliptical cylinder for which the boundary element solutions are conmm['".i
against analytical or experimental results. The paper also shows how A
symmetry conditions can be introduced into the problem to reduce the
computer storage and time required to solve the problems.
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Introduction

The close form solution for the horizontal force on a
vertical circular cylinder subject to linear water waves was
given by MacCamy and Fuchs.! Two decades later vertical
elliptical cylinder solutions were attained by Goda and
Yoshimura.? These two special cases of wave diffraction for
structures of constant horizontal section were generalized
for arbitrary shape cylinders by Jjima, Chung and Yumura,?
who studied the case of permeable and impermeable
breakwaters. The use of isolated structures using integral
equation techniques were also given by Isaacson® and later
by Harms.® A problem mathematically similar to wave
diffraction is the study of harbour oscillations, such as
described by Hwang and Tuck® for harbours of arbitrary
shape. Recently Rahman” has extended this formulation
to calculate the response of harbours with regions of
different depths.

All the above problems are governed by the two-dimen-
sional Helmholtz equation as the governing equation.
The fundamental solution for this equation is well known
and given in terms of a Hankel function. The newly devel-
oped boundary element technique®'° has been success-
fully applied to solve many engineering problems such as
potential, elastostatics, time dependent cases and even
nonlinear material problems. The technique is extended
here to study the wave diffraction behaviour of offshore
structures of generalized cylindrical shape. The paper
compares results obtained using constant, linear and
quadratic elements and critically discusses their numerical
accuracy and convergence. Specific examples considered
include the vertical circular cylinder, the square caisson
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and the elliptical cylinder for which the boundary element
solutions are compared against analytical or experimental
results. The paper also shows how to introduce symmetry
conditions into the problem to reduce the computer
storage and time required to run the problems,

Boundary value formulation

The wave diffraction of an incident wave represented by
its potential ®7 on a general three-dimensional body can
be represented by the diffracted potential ®* governing
equation, i.e.:

3 2¢S a?.d,.t a‘lq,s
+ +—
ax?  9y* a8z’

with the boundary conditions, (®=®7) say:

=0 inQ(xpz) O

Vld).r =

o’

— 4 -—=0 onsurface of body, ',
on  9n

od

— =0 at bottom of sea, I'y, @
an

L

— —ik® =0 atinfinity, I

on

30 Wl

— ——& =0 on free surface, I';

an g

where @' is the total potential &' = ®! + . Note that the
incident wave also satisfies the Laplace equation (1),ie
Vel =0.
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The incident wave potential for a linear wave is given by:

1ga
—=0 coshx Z .expli(K,x+ K,y —wt}

| S
& w coshkh
(3)

where do 1S the wave amplitude, A is the water depth,
g the gravity constant, w the wave frequency, k the wave
qumber and a the angle of the incident wave, K, and K,

are:
K, =k cosa K, =k sina

The above formulation can be simplified when the
porizontal surface of the body is constant with depth. One
can now assume that the total potential can be written as:

& = ¢ coshkZ 4)
gubstituting this into (1) we have:

% 3%

—+—+k*=0 in(x, S

o o (- (x, ) (5)

with the boundary condition:
3 I

.o

on on

a
-9—- ikp=0 onD_(at infinity)
on
The other boundary conditions are satisfied by & as:
w?
K tanhgh = — N
¢ 4

=0 onl,
(6)

The incident wave is now:
igae

. ¢f-_—.____——

expli(K,x +K,»)} (8)
w coshkh

The above problem can be extended to the water of variable
depths by the formulation given by Berkhoff."*

Boundary element integrals

One can now apply the weighted residual formulation®
to the water system of equations represented by (5)
and (6). If ¢* is defined as the weighting function, one
can write:

f(V’w K'¢) ¢* d02 =f (;—a: + q)qb* ar
a Te
+J (i}E —ix¢) ¢* dI’ (9)
g on

where 7 = 9¢”/on.
Integrating the first term in the left-hand side of equa-
tion (9) by parts twice, one can obtain:

a *
[ g +x26m 000 =_[ go* T +f o -;—:— ar

a I, Ie+Ta

—-J' ikg*p dl’ (10)
.

Notice that ¢* can be taken as the fundamental solution
of the following equation:

v‘x¢-+n‘2¢t=_A‘ (11)

where A, is a delta function at (, ). The form of ¢* is:
i
¢‘=1Hé(xlri) (12)

with |r] = [(x —£)* + (¥ —n)?]V? and H}( ) is the Hankel
function of the first kind and of zero order.

For a point 'i” inside the £ domain equation (10) now
becomes:

oo™ dp*
o +Jl (- ¢+ ¢*q)dr +I(—— —ix¢“)¢dl"=0
on on
T's Ta
(13)

If we consider the last term in equation (13), we can
write the fundamental solution when r—> < as:

el Tl o

which gives:

a¢* d¢* _ k [2 L 'n'} %
an‘ ar_ AN mKr exp{l(xr 4) (13)

Notice that these solutions will identically satisfy the
radiation condition, i.e.:
ap*
— —ikg* =0 (16)
oan

As ¢* satisfies the boundary conditions on I_, the last
integral in equation (13) disappears and that integral
expression simplifies to:

a el
¢,+J'(ai¢+¢*z,)dr=n (17)
n
PC

Let us now consider what happens when the 'i* point is on
the boundary I, (Figure 1). The boundary integral in (17)
can be written as:

ogp*
4+ lim U (350 s*a) dr
on
IseT
a *
+J'(—¢L-¢+¢‘Q)dl‘}=0 (18)
an
rE
The limit for the first integral in (18} is:

0¢* ap*
lim g+ ¢*gldri=||=—¢+e*q)dl
e—0 an on
1T T

(19)
While the limit for the second integral can be written as:
: ™ : o™ .
lim —-npd]‘}=hm { —-dr‘}¢,- (20)
&0 an e—~0 on
|25 Ty
([ waor)-um ([ ererfe @
=0 €—+0
re re
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Figure 1 Structure with constant horizontal section

In order to calculate these limits we can use the approxi-
mate expansion of the Hankel function up to the order
{x |r|)? which is given by:

i 1 [ 3 ln(xtrl)]+ i )
2n x 2 4
where 1 is the Euler’s constant (y = 0.577216...)and
hence:
o™ 1
ar 2nlrl

Substituting (23) into (20) we find:
&

00* 1 @
Hm”——dl‘]:]im j{_—' €d3,=——
=0 on e—0 2me 2m

Fe 0
(24)

where a is the angle at the point ‘i’ under consideration
(Figure 2).

One can now use (22) and substitute it into (21) which
gives:

[ o) [ {5 ) e

=0 (25)

Hence, the boundary integral formulation for a point
on the boundary can be written:

Gl A
C“¢r-4‘ (—-¢+¢‘q dIr=0
on
Fe
where ¢; = 1—af2nand =T, (boundary on the body
surface).
The boundary T is now discretized into M boundary

elements over which the variables can be interpolated as
follows, for element ':

¢; = [N1{e]}
q;= (V)af

(26)

27
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The boundary integral equation (26) now becomes. ‘

aot 3 [ 2 wyarep
f=lr on !
i

M (28
-3 | ¢*iv1argn) i
j=1 B 8)

Applying this equation at all %i” boundary points, the
following matrix form is produced: '

[#){®) = [G]{Q}

(29)
with:
a *
an
Iy
and (30)
(2] '—“J. ¢* [(N]dT

T
Note that the potential defined here has real and com-
plex parts, that is:
{®) ={U}+i{V}
{0} = (R} + (S} Gl

Equation (29) can now be written in matrix form as:

I’g _'Hz U G[ ‘_Gg R
[ | 4 P [
H’ Hl Vv Gi Gl S
where lH] = [H1] : = 1[”2] and lG] = [G‘] =z i[Gzl.
This is the complex system of equations which has to be
solved during the analysis.
After the solution of (32), the pressure on the structure
can be obtained by the linearized Bernoulli's equation as:

P==p= (33)

ot

and by integrating the pressure in the vertical z direction,
the wave forces can be written as:

_ sinh ki [ ny
F=lipw [ ¢ dr
k v ! ﬂy

(34

Figure 2 i point on boundary
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![utesﬁﬁ"“ over elements

we will now study how the integrals over the elements
pe carried out taking into consideration the three dif-
ferent types of elements, i.e. constant, linear and quadratic.
For the constant element integrals such as:

*
J.-a?—- dI’ and J‘¢' dI (35)
an
] T

aan be integrated numerically when i+ j, usually applying
;standard four points Gauss integration rule. Wheni=j

he first of the above integrals is identically zero due to

the orthogonality between n and ['(9r/on =0) and the
«econd integral can be integrated analytically, i.e.:

p*dl'=T e I—y—In ks +—i° (36)
2n 4 4

Ty
At the same time as for a constant element, the ‘i’ point
is taken to be on the mid-point of the element, a is equal
to w and ¢; becomes:

sl
€i=12
The interpolation functions for linear elements are:
1—& 1+E
[N]= —2—: '2— (—1<t<1) (37

For the case i # j the integration can be carried out using
mumerical quadrature formulae as discussed for the con-
stant element. For i =j the first of integrals (35) also
disappear and the second after analytical integration gives
the following terms:

I‘f( Kr',') T‘;
=< l15—y—In— )+ —i
[g”] [41r 't 2 8
l‘,— Kr‘;) l",]
—|0.5—y=—ln— }+—1i 38
x4-11'( 7 2 8I @8)

with [;]= (0] + [cy].

The constant ¢; contributing the hy; terms can be calcu-
lated from the intersection angle « form by the adjoint
element at node i (Figure 3).

@
11— 0
2n
(39)

o o
W

= |
=10 o
0 1-=
PAd

The integrations over quadratic elements are more com-
plex due not only to the higher order functions involved,
but also to the possibility of transferring the coordinates
into curvilinear ones which follow better the shape of the
body. The interpolation function for quadratic elements is:

V=[E-DE (+H0—8. 10+DE 40

S ie) (i-1)

Figure 3 Angle for vaiue C;

2 3
(X, %) (X3. %)

(X'I avl)

Node £ N, Ny, N

1 =) 1 0 0
X 6o o 1 0
3 10 0 1
Figure 4 Quadratic elements
The integrals become:
1 26°
i) = j 2 miG1a
[hs] a”[ 111G dg (41)
~1
and
1
(ey) = f #* V1G] dt (42)
=t

where |G| is the Jacobian to transform the system of coor-
dinates to the curvilinear ones shown in Figure 4:

Gl = (g-f)z+(:—:-)z (43)

Since the geometry of the element needs to be trans-
formed we can define the x and y coordinates also in func-
tion of the |V] interpolation shapes, i.e.:

x=[N]{x"}

y=WN1{") @)
and hence:
ax 2 2
ﬁ-gg[N]{x }
(45)
»_2 Mim
2 atl y

Now analytical integration is impossible for the case
i =j due to the presence of |G| in equations (41) and (42).
Notice also that (] is no longer identically zero as now
arfon# 0 in general. A further approximation for ¢* can
be used, which gives 3¢*/3n of order 0((x [r1)?), ie.:

ap* { 1 [ur( nr) kr ) or
=—{—|=|05—y—In— )+ —ij — 46
74 E 2 8I on (46)

for i # j equation (46) substituted into formula (41) gives
a non-singular integral which can be integrated numerically
using an integration scheme similar to the one previously
described. The same applies for integral (42). The term
{g;1] (i = /) presents a logarithmic singularity and a special
integration formula presented in the appendix of reference
8 can be used. The ¢; value is calculated as for linear
elements.
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Figure 5 Symmetrical section

Symmetry considerations

When a structure has one or two axes of symmetry, say the
x ory axis (Figure 5), one can reduce the computation by
using symmetry conditions. Notice that if one starts with
the boundary element equation:

[H]{®} = [G]{Q}

the symmetry case shown in the figure will allow us to
partition the matrix [H] as:

hy hy
[H]= [ ]
hy hy
A transformation matrix can now be defined such that:

(47)

(48)

{d) =~; (R1T{®}

) (49)

(0} =E [R){Q}
where the transformation matrix [R] is such that:

% [RI"[R) = 1] (50)
The matrix equation (47) can now be written as:

(H){®} = [G1{Q) (51)
with

. 1

[H]= i [R)T[H] [R]

and (52)

|
(6] =E{R]T[G] [R]

Due to the properties of [R], [#] and [G] the resulting
(] and [G)] matrices will have a submatrix on the diagonal
(Figure 6 ). This allows for an economic bounded type
storage 1o be used for [H] and [G ] submatrices.

Each of the diagonal submatrices can be solved inde-
pendently. Hence the bounded form of [H]and [G] can
be written as [H*] and [G*] (Figure 6) such that:

[#*] = [R)T[H))
[G*]1=[RIT[G)]

where [H,] and |G ] are the first column submatrices of
[H) and [G ] matrices respectively and the resulting equa-

(53)
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% X b P
X F < X X (Full matrix}
X X X X IH1, 1G]
b X X X

LIPS

EIR] [H][R]

LimTic1(8)

g
x 0 (0] o} X
(0] X 0 O\ x
o o X o} /T |«
o o 0 X im716,1 X
{Diagonalized] {Bandeg)

[H], 1G] [H*], 16*)

Figura 6 Transformation from full matrix to banded matrix

Tabie 1 Cases of symmetry

\Mx 0 1 2
My

0 No symmetry

Symmetry with

vi Symmetry with
x-axis, a=0

x-axis, a #0°

1 Symmetry with Symmetry with

y-axis, o =90° x-and y-axes,
a=90°"

2 Symmetry with  Symmetry with  Symmetry with

y-axis, a #90° Xx-and y-axes, x-and y-axes,
a=0° a+0°,90°
tions can be symbolized by:
[H*){®} = [G*]{Q} (54)

We can now consider the types of symmetry that can
be used for the two-dimensional problem represented in
Figure 5. They are represented in Table 1.

The M, and M,, represents the symmetry number.

M, and M,, are the indexes assigned to the symmetry con-
ditions about the x-axis and y-axis respectively and their
definitions are given in Table /.

The matrix [R]7 computing to the symmetry cases of
Table 1 are given in Table 2.

It is necessary to apply the image method® to calculate
the [H,] and [G,] matrices and hence transform the point
under consideration according to different symmetry con-
ditions. The relative image position which is parallel to
[R]T gives one:

ist (x,»)
2nd (—x, »)
3rd (x,—y)
4th (—x, —y)

These conditions are used for [H*] and [G *]. The solution
is obtained by solving (53) and the actual values of {#}
and {Q} can then be calculated, i.e.:’

(@} = [R]{®}
{0} = [R]{0}

(59)

(56)
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Table 2 Matrix [R}Tand value §

—
\'Mx 0 1 2
My
- } =
0 ng=1 o p=2 B=2
i 1 1
4 4 = ]
1 [ 1), 8=2 ,B=4

| T TR

4 (Figures 8 and 9). Higher order (linear and quadratic)
elements were then used and convergence was studied
using constant, linear and quadratic elements. As shown in

Gonstoni Figure 10, quadratic elements gave the more accurate
ey results, It is interesting to note that the convergence of the
—_ constant elements is superior to that of linear ones. This
g surprising result was thought to be due to the difficulty
‘H—-'—‘|—~ X of representing properly the normal at the corner for linear
elements. The convergence for the phase of F, is also
given (Figure 11).
Square caisson
The example of a square caisson as shown in Figure 12
has been studied by Mogridge and Jamieson.'? They per-
Fiure 7 Vertical circular cylinder. a=10; h/a=5; N=6,12,14 formed an experiment on a 12in x 12 in square box in a
Applications
The technique will now be applied to study the wave dif- g 4 T o,
raction bel?aviour of offshore structures of generalized : < A/r T s
cylindrical shape. Results are compared using constant, § 3 (' ——— Exact solution
linear and quadratic elements and their numerical accuracy & s 6 Constart elements
and convergence is critically discussed. The specific examples % 3l o 12 Constant elements
included are: a vertical circular cylinder; 2 square caisson; E * 24 Constant elements
and an elliptical cylinder (with and without symmetry). N
[fe
1 1 1 | 1 1 1
Vertical circular cylinder 05 04 06 08 10 12 1.4 16 18 20
The horizontal wave force on the vertical circular s
cylinder shown in Figure 7 were first obtained by using Figure 8 Horizontal force on vertical cylinder {a=10)
r different boundary element discretizations. This case has
been studied by Isaacson® using sources distributed over
- the boundary (i.e. indirect boundary element method) and Exoct soution
by MacCamy and Fuchs’ who found the exact solution 95+ & & Constant elements
- for the horizontal forces, i.e.: - o 12 Constant. elements
tanhxh
Fe=H\(xR) pgaoRh — (7 s
L The magnitude and the phase were also presented and ; 80k
tompared against boundary element results. The first ﬁ
boundary element solution consisted in dividing the cylinder & sk
into a mesh of 6, 12 and 24 constant elements (Figure 8).
The magnitude of the forces F given by the 6 and 12 70+
tlement mesh were within 7 and 2% respectively of the

eXact value, Excellent agreement in the magnitude of the
Orce and its phase were obtained by using 24 elements Figure 9 Phase of horizontal force on vertical cylinder (s =0)

Appl. Math. Modelling, 1983, Vol. 7, April 11
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27
2.6+ ;
2.5¢
<
T 24
=
-
£ 231
2
£ z2-
-]
§ 2.1+
a © Constant eiements
E 20 O Lineor elements
& Quadrotic elements
e ol a=10 ,k:0.4
1.8
1.7 i 1 1 1 1 L

L 1
Q 4 8 12 18 20 24 28 32
Number of nodes

Figure 10 Convergence of horizontal force on a vertical eylinder

e Constant elements
o Linear elememns

& Quadratic elements
85— g=10 ko=04

= -

| \

a:——-———-——‘be__—_,—_T_—;:—-—-——ﬁ

Phase, (°)

1
82 1 1 | L | t

4 8 12 16 20 24 28
Number of nodes

Figure 11 Convergence of phase of horizontal force on a vertical
cylinder

Y
)
incident wave
-+t et
W - T Constont element
a a X
1 a 4 a=6
Y h/a = 1013
= t==t N =24

Figure 12 Element discretization of a square caisson (28 x 2a)

112 App!. Math. Modelling, 1983, Vol. 7, April

wave flume 12 ft wide, 4.5 ft deep and 162 ft |
mental results for horizontal wave forces with
45° were measured and using the theory of e
circular radius, i.e.:

R, =24/\/n

(where 24 is the side of the square) formula (52
a cylinder can be applied as an approximation.

The boundary element method was applied using 24
constant boundary elements and the results for Mmagnj
and phase of the horizontal forces are compared in Figure
13 and 14 against those presented by Mogridge and !
Jamieson. Good agreement was found for the case of
«=0 (Figure 13) but for a=45" (Figure 14) the phage 4
given by boundary elements differs from the resul(s pre-
sented in reference 11.

It can be concluded that the magnitude of the horizongy
force on a square section is only slightly altered by the
angle of attack of the incident wave and agree reasonably
well with the equivalent cylinder results. The phase,
however, can only be approximately reproduced by the
equivalent cylinder approach and the boundary element
method is a better analytical technique. (Note that for the
equivalent cylinder approach the angle of attack does not
change either the magnitude or the phase of the horizonta)
force.) This is an interesting conclusion as most caisson

NE. Exne.:
Q= OOXPQn.

Quivalep,;

(s8)
) valig for

—12 Constont elemnents
® Mogridge and Jamieson
ot o
24r _ :
= a Mogridge and Jamieson
2.0 expersment
g {ae«0°)
N 1.6
)
§ 12
o
S o8-
=
® 0.4
1 1 1 1 L | 1 i 1 |
0.5 10
20
(o}
.
~.-30
[
8
=
o
-60
-80

ka/T

Figure 13 Magnitude and phase of horizontal force on a square
caisson

[




12 Constont elements

e Mogridge and Jaomiesan
theory

& Mogridge and Jamieson
experiment

(@ =45°)

Fx/pgag a? torm kh

]
g 5
[
-
.60
-
.90 N GRS |, [ - = I
0 0.5 1.0
ka/m

Figure 14 Magnitude and phase of horizontal force on a square
caisson

incident wave

W

e

Flgure 15 Elliptical section (X?/a* + ¥ /b?=1).2=10;
bla=0.15; hla=1

studies are usually carried out using the equivalent cylinder
approach.

Elliptical cylinder

The third example is a cylinder of elliptical cross section
(Figure 15). This case gives much more complex results
than the previous two.

Diffraction of water waves using BEM: M. C. Au and C. A. Brebbia

1.0+ -——=16 Quadrotic elements
32 Constont elements
¢ Goda and Yoshimura's
theory

0.8~ a = 30°
£
x
-
5| o.6f-
-
<
4
< >
A
(=
a
~
[y Y

/
0.2
Wy 1 1 1 1
2 4 6 8 10
(ka)

Figure 16 F forces on elliptical cylinder

= === {6 Quadratic elements
32 Constont elements
1.0+ e Goda and Yashimure's
theory
a= 60"
0.8t §
S {
<
g =
= 0.6-1
£
Qo
e
o
o
2 04l
o 04
> !
0.211
1 L 1 N 1
2 4 6 B 10

(ka)
Figure 17 F, torce on lliptical cylinder

An analytical solution has been presented by Goda and
Yoshimi.? They solved the Helmholtz equation by using
separation of variables and obtained a close form solution.
The boundary element solution was obtained using 32
constant elements with smaller elements near the major
axis of the ellipse (Figure 15) to take into consideration
the more rapid change of the slope at that position. The
horizontal forces were obtained for two a angles for the
incident wave, i.e. « = 30° and «=60°. Results aze plotted
in Figures 16 and 17 and good agreement was found with
the results presented in reference 2.

It was then decided to apply symmetry in order to
obtain a smaller system of equations and try to find out if
symmetry would introduce any numerical approximations.
One quarter of the structure (Figure 5) was discretized
using eight constant elements. Results were found to be
exactly the same as those using 32 elements. Then the

Appl. Math. Modelling, 1983, Vol. 7, April 113
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1.2 -6
2,0 45
€ o
EOB __zge
5086 A3 &
g g

04 s w
8 k-

0.2 =1

i | TR S| ] 1 L
o] 50 00

Number of elements

computer storage and time used for the case of considering
or not symmetry were obtained to complete the analysis.
The results presented as a ratio are presented in Figure 18.
Results were also obtained using 16 quadratic elements

to represent the whole cylinder. These results validate the
constant element solution and the proposed treatment of
symmetry.

Note that when the number of elements increases the
symmetry solution requires only 25% of the total storage
and 20% of the computer time required for the case of
solving the full problem. This shows the advantages of
implementing symmetry conditions in boundary element
Programs.

Conclusions

The present paper has presented an application of the
boundary element method for computing wave forces on
offshore structures. The paper compares solutions obtained
using constant, linear and quadratic elements and critically
discusses their accuracy and convergence. It also shows how
symmetry conditions can be introduced and their impor-
tance in order to reduce computer time and storage in
many cases. The examples studied and their comparison
with other solutions validate the use of boundary elements
to study wave diffraction and, in particular, points out the
simplicity of this approach by comparison with solutions
such as finite differences and finite elements.
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Appendix

The Hankel function of the first kind of zero order is
defined as:

H(x) = Jolx) + i¥(x) (A1)

Its derivative is:

d
d— [Ho(x)] = —J (%) — iy, (x) (A2)
x
For large X:
2
Hy(X) = /—exp[i(x—w/4)] (A3)
nx
For small x and up to second order:
X2
Jox)=1——
A4
Yolx) = { +1 x)(l x=)+x2 v
o() = (‘r "3 4] 4
Jox)=—=
’ (49
Y, HE{f (os— —1ni)+ 1—}
olx) = 212 U 6 & 2 %
¥=0.577216...
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