Paper 12 Hydrodynamic Forces on Multiple Cylinders
in Waves

M. Ohkusu®

SYNOPSIS

Some kinds of offshore mobile platforms are built up
from several clements such as cylinders. In this paper
two kinds of configurations, horizontal and vertical
multiple cylinders, are taken up as simplified models of
such platforms for a purpose to evaluate the hydro-
dynamic interaction effect between the elements.

First the methods to compute the hydrodynamic
forces on multiple cylinders are given, in which the
interaction effect is taken into consideration. Secondly
with numerical examples of the wave force and the motion
in waves of the multiple cylinders calculated by the
methods. it is concluded that the effect is essential under
certain circumstances for the theoretical prediction of
their motion in waves.

1 INTRODUCTION

SoMe offshore mobile platforms have a common
composite configuration, being constructed from many
elemental sections such as cylinders and ellipsoids. In
computing and discussing the wave exciting forces on
the platforms and the internal forces on the bracings
connecting the elements the hydrodynamic interaction
effect between neighbouring elements has been usually
neglected. The total wave force on the platforms. for
instance, is usually provided by adding the forces on the
elements, It seems to be that the neglect of the interaction
effect has arisen not from its smallness, but because
theoretical calculations taking the effect into account are
very difficult to be performed.

In this paper two kinds of bodies (horizontal multiple
cylinders and vertical multiple cylinders) composed of
cylindrical elements will be adopted as the most simplified
and typical models of the floating platforms with the
composite configuration. Some theoretical and numerical
examples will be given of studies describing the procedure
to compute the hydrodynamic forces on the platforms.
The interaction effect is essential under certain circum-
stances for the theoretical predictions of the response
of the multiple cylinders to the sea.

It is a matter of importance what type of method is
used to calculate the force on the composite body. A
method with the following merit may be most desirable.
For the purpose of calculating the hydrodynamic force
including the interaction effect between the elements of
the body, it is essential that only the hydrodynamic
properties of each element is given. The method having
such a merit will facilitate the calculation for a body
having many elements and may be applied to the design
arrangement of the elements. The procedure introduced
in this paper is believed to have such a feature.
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For the calculation performed in this paper, water is
regarded as an ideal fluid and the wave motion is
assumed to be infinitesimal.

1.1 Notation

A, Wave amplitude generated by jth oscillation of
one two-dimensional cylinder.
Radius of circular cylinder.
Water depth.
Wave force on vertical cylinder in the x-direction.
Wave force on vertical cylinders in the z-direction.
Acceleration of gravity.
Wave number.
Added mass or moment of added mass of two-
dimensional multiple cylinders.
2P Spacing between the centres of cylinders.
T Draft of two-dimensional cylinder.
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g; Wave phase generated by jth oscillation of one
two-dimensional cylinder.

¢, Amplitude of incident waves.

p  Water density.

@ Circular frequency of waves or oscillation of a

body.

2 HYDRODYNAMIC FORCES UPON
TWO-DIMENSIONAL MULTIPLE
CYLINDERS .

This Section introduces an approximate method of
calculating the hydrodynamic forces and moment
acting upon two-dimensional multiple cylinders. This
simplified model of mobile platforms of multihulled
vessel type may oscillate in or below the free surface of
a fluid and is held at a fixed heading in regular waves.
Many authors Ohkusu (1)f, Wang and Wahab (2),
Nordenstrom et al. (3) and Takezawa et al. (4) have
already reported on the procedures of computing exactly
the added mass. moment of added mass and damping
coefficients of half-immersed twin cylinders. The methods.
however, are not convenient enough to be applied for
the case of multiple cylinders having three or more
element cylinders. Moreover they do not satisfy the
requirement of being able to compute the hydrodynamic
forces upon the multiple cylinders from only the hydro-
dynamic properties of one element cylinder. The method
described below is an approximate one. but satisfies all
the requirements.

Suppose that the left two-dimensional cylinder L of
the configuration as shown in Fig. 1 is forced to per-
form an oscillation j (j = 1, swaying x = Re[e"*]:j = 2,
heaving y = Re[e"]: and j= 3. clockwise rolling
about the point L. 8 = Re[¢'*"]) about its mean position
with the right cylinder R kept fixed. Here for simplicity
we consider twin cylinders with identical cross-sections

+ Refervnces are yiven in the Appendix.
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MARINE VEHICLES

although this is not an indispensable condition for
applying the method described below. The distance
between the point L and R is 2P and the cylinders’ draft
is T. Initially we enumerate two relations, which will
be essential in deducing our approximate formula for
hydrodynamic forces on multiple cylinders.

(1) Haskind relation (S)—if we know there exist
diverging waves at x, = +oc, A Jf:“J elor=*xul when
cylinder L makes the oscillation j without the existence
of cylinder R, then we can obtain the wave exciting
force or moment acting upon the cylinder in the j-
direction (j = 1: force in x-direction, j = 2: force in

y-direction, and j= 3: rolling moment around L.
[ —---—-1 P —
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Fig. 1. Co-ordinate system

For a cylinder fixed in the incoming wave {, e"“ 4
the force or moment is given by,
ng{ A gHErTio) -1

where x, denote the x-co-ordinate with respect to the
origin L, P density of a fluid. g acceleration of gravity
and k = w?/g.

(2) Bessho relation (6)—the transmitted wave {_ at
x, = —x and the reflected wave {, at x, = +x
generated by the cylinder fixed in the wave [, e"""*'““
are given by

L = iHY(kT)eter—k=x B )

{_ =k g g (kT)e e (3)
where

H*(kT) = ie“* cose, F e sing, val4)

The method adopted here to compute the forces on
twin cylinders is based upon an approximation that there
exists an interaction only between the two cylinders with
respect to the progressing waves generated by the oscilla-
tion or the reflection of one cylinder. However, the
standing waves being mainly only in the immediate
vicinity of one cylinder have no influence upon the
other cylinder.

The wave motion generated by the motion j of cylinder
L is propagated towards cylinder R and becomes an
incident wave 4 ’ gltesroi=ksel ypon cylinder R according
to the approximation.

Using the Bessho relation (2) a reflected wave from
cylinder R induced by this incident wave can be expressed
in the neighbourhood of cylinder L as follows,

iH-r(kT)e—ilejjein, eilﬁu‘—'k-'l:;_l. =l
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By repeatmg this process we can obfain the total in-
coming wave acting upon cylinder R, which results from
the exchange of reflected waves between the two cylinders.
That is,

~i12kP

- €
A- icy - .
T T H kTR E

it — kxg) . .(6)

The total incoming wave acting upon cylinder L is also
given by

3 0 AH KT e
I T ¥ H (kT e *%F

Bleot + kxp) (7)

where x, is the x-co-ordinate with the origin R.

The force or moment [, which the incident wave (6)
induces on cylinder R in the I-direction is obtained at
once by substituting the wave amplitude and phase
expressions into the Haskind relation (1) above, which
gives,
ipg e MAA
k 1+ H*(kT)* e'**

c:lq‘qleiwl - '(8’

Ju=(=1)==

We can get the force g, upon cylinder L induced by
incident wave (7) by a similar manner and is given by,

ipg iH” (kT)e ™M AA . ih
= tits 4] T - 9
9 =T T+ B kIFe @ ¢ )

Repeating the same process we can also obtain the
formula for the force on each cylinder when cylinder R
oscillates but cylinder L is fixed.

With the application of the results obtained so far to
the motion of each cylinder we can, easily derive the
hydrodynamic force on the twin cylinders as a whole
making the oscillation j about the origin 0. The amplitude
and phase of the wave at x = +o generated by the
oscillation of the twin cylinders are. for instance. given
by the absolute value and phase angle of the following
complex numbers.

2[[ qu = Zkf'l]

> 1 ites = kP .
A, e .2 i PR cuz;--uﬁ] =1) ...010)
_ e [ = ci(lz;—!ﬂ':
A:!e'm*w’w ie[": =2kP) '(z:‘l—zw =2 ...
24 [en R il
2Eiu’ sz eiz.;[] = eﬂzf._zkﬁ] + js-ei:,_‘[l - e"z“‘z“"]
2= [euza.-zm + (,uZ:.z-z.lP‘r:]
(=3 ..(I2)

The added mass m; and moment m, of added mass of
the twin cylinders ‘are expressed by the following
equations.

4

"
m=2.m;’+Rc|:—I"-’

=12) ...(13)

(—‘l jz ei{2:,-2u’l )
V4] } (i
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. 0 2.0
my = 2my + 2P*m,

dip (PA, e — A ')
+ Rc[_ T‘_‘.z_ ;- [eu:z.—zuf] +2’ei|1:;—2tPl]—J e(14)

where m] is the added mass or the moment of added
mass of one cylinder.

It is clear from the Haskind relation (1) that the ampli-
tude and the phase of the wave exciting force in the
j-direction which acts on the twin cylinders fixed in a
wave { e is given by multiplying the equations
(10), (11) and (12) by ipg/k respectively. If we do not take
the interaction effect between two cylinders into con-
sideration the wave force for j = 2 (heaving force) 1s
given by

2ipg/k)(, A, & cos (kP)e™ ...(15)

It is obvious from equation (11) that the force becomes
zero at the freéquency where 2(e, — kP) = (2n + l)m is
satisfied, But equation (15) shows that the zero wave
force occurs at —2kP = (2n + )z when we neglect the
interaction effect. Accordingly the conclusion is that
since £, is not so small except when kT < 1. we cannot
accurately predict the frequency at which the heaving
motion of twin cylinders in waves vanishes. unless the
interaction effect is taken into account. On the other
hand if we know ¢, for one cylinder, we can select the
spacing between the two cylinders in such a way that
their motion vanishes at a given frequency of incident
waves. It is also evident from equations (13) and (14)
that }he interaction effect on added mass is in proportion
to A7.

As is evident from the description given so far there
exists no requirement for the application of the method
that the left and right hand cylinders must have identical
cross-sections, but only that the hydrodynamic properties
of each of them is previously known. Accordingly, when
the properties of twin cylinders are known, we can then
easily compute the hydrodynamic forces acting upon
three cylinders by considering the left cylinder to be
twin cylinders and the right one to be one cylinder and
applying the method. In this way one can calculate the
forces acting upon multiple cylinders with an arbitrary
number of cylindrical elements.

To illustrate the approximate method previously des-
cribed some numerical examples were undertaken. It is
necessary for the application of the method to have
computed previously the hydrodynamic properties of
an elemental cylinder. This was done by considering
the cylinder’s section as a Lewis form and using the
method by Tasai (7).

Fig. 2 shows 4, (the amplitude of waves at infinity/
motion amplitude) of two half-immersed circular cylin-
ders performing a heaving oscillation, where a is a radius
of the cylinders and 2P is the spacing between their
centres. The lines in this fgure indicate the values
obtained by the approximate method and the dots show
the exact values previously presented by the author (1).
We may conclude from this figure that the approximate
method produces results with sufficient accuracy.

The added mass and wave exciting force of the two-
dimensional twin cylinders computed by the method
make it possible to calculate their motions in waves.
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Fig. 2 Ratio of wave amplitude of heaving motion of two
circular cylinders
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Fig. 3. Heaving amplitude of twin cylinders (2P/T = 3)
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Fig. 4. Rolling amplitude of twin cylinders (2P/T=3)

Figs 3 and 4 show the normalized amplitude of heave
motion and roll motion of the twin cylinders with
2P/T = 3 and with cross-sections as shown in Fig. l.
Full lines in these figures give the theoretical values
computed by using the approximate method and accor-
dingly take the interaction effect into consideration. In
comparing them with the dotted lines which are the
theoretical values obtained without taking the interaction
into account and the dots which are experimental values,
it is evident that if we neglect the interaction effect in the
theoretical calculation of twin cylinders” motion, we will
obtain the erroneous results especially in predicting the
frequency of zero motion.

Figs 5 and 6 compare the heave and rolling motion
of twin cylinders’ and three cylinders’ respectively. The
spacing between the outside cylinders is identical
(2P/T = 1.6) in both cases. We can see that il we add
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L] [-X] o [ ] 20 kT
Fig. 6. Rolling amplitude of twin and three cylinders

only one more cylinder to the middle position between
twin cylinders, their motion characteristics change
remarkably.

3 HYDRODYNAMIC FORCES UPON
VERTICAL MULTIPLE CYLINDERS

As a simplified model of some platforms of semi-
submergible type consider the three cyvlinders configura-
tion in Fig. 7. The interaction effect between the hydro-
dynamic forces acting upon them now needs to be
investigated. Here we use the cylindrical co-ordinate
systems (y,,0,,Z), (75,0, Z) and (y,. 0;, Z) with their
origins coinciding with the centres of cylinder 1, 2 and 3
respectively. The water depth is d, the distance between
cylinders’ bottom and water bottom h, the radii of the
cylinders is a and the spacing between them 2P.

When the wave, given by the following equation, is
incident upon cylinder /,
. Zy(z2)
d’l z amO dZ;,(d)

m=—1ix

Jm(ky,) e

+ Y Y a,Zfz)Im@y)e™  ...(16)

m=-—m j=1
or the cylinder is performing a periodical oscillation
about its mean position, the wave

- Zy(2)

bo= X Auogz g Hmky)e™
m= —~om 0
+ 2 2 AZEKm@y,)e™ (17

m=—wm j=1
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is radiated from the cylinder. The real roots xfj # 0)
and imaginary root a, (= —ik) satisfy the equation

xtanod + w'/g =0 ...(18)

where

Z [z) = cosmz/\/[3(1 + sin 2ad/2x d)] ...(19)
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Fig. 7. Co-ordinate system

And Jm (x) is the first kind Bessel function, Hm (x) the
second kind Hankel function, Im (x) and Km (x) the first
and the second kind of modified Bessel function of mth
order.

There exist the following relations between a,,; and

Ay
A =(Y a,Fl,dZ'(d) — a,, Im (ka))/Hm(ka) ...(20)

I=0
Ay = E:o (au,f,'uj - a0, Im (2,))/Km (ka) ) ||

Following the procedure given by Garret (8) the co-
efficients %, . are determined by solving a boundary
value problem in which a diffraction wave from cylinder
1 is produced by the wave described in equation (16).
Knowing the coefficients #, ; we can easily calculate
the wave exciting force acting upon cylinder 1 in the
x and z-directions by using the following formulae,

2 - R — g
szpqna kdmnhkdzsmad sinah
iw =0 NWN)aa

x[la,; — a_  )F9, + ,Z; (ay +a_ )#F1]  ...(22)

2 x “
F:=pg.lm kd tanh kd ZHOI[FIOD+4Z F:}n
(i3] =0 n=1
h 1 (nra/h)
=P ¢ wsd
x rmm I (nma/h) )
where
Fo=3 o o N-tuhsinah...04d)
T e a}hl — 22 Y milg L

Using the additive theorem of Bessel functions the
radiation wave potential ¢} from cylinder 1 can be
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transformed into the form of an incident wave acting
upon cylinder 2 given by,

pi= 3 e T (=1YaH.n(2kP)
" VA :
e in(x/6) d;(:(l{)_]m (k',-z)e""'l

€

£ 3 T e T oK.

m=—-m j=1 = =30
x e ™M9Z (2) Im (2,) e (25)

This incident wave on cylinder 2 has the same form
as the wave described by equation (16). Accordingly,
together with equation (17) we can determine again the
diffraction from cylinder 2 induced by this incident wave.
Thus we can calculate the effect which one cylinder has
on the neighbouring cylinders and vice versa. An iterative
procedure for calculating the interaction effect between
the three cylinders is then possible and is described
below.

If in the beginning, the incident waves acting upon each
of the three cylinders are given in the form of equation
(16) (to the case of the calculation of the wave forces on
the cylinders fixed in waves), the diffracted waves from
each cylinder caused by the first incident waves may be
computed. The diffracted waves transform into new
incident waves on the neighbouring cylinders which
after the necessary computation results in a new diffracted
wave induced by the new incident wave and so on. As a
result of the repetition of this process we obtain three
infinite series for the velocity potentials of the incident
waves on each cylinder.

Assuming that the series converge then their sums
have the form of equation (16). By using the coefficients
#!, and the equations (22) and (23), we can calculate
the wave force on each cylinder induced by the series of
incident waves. This is just the wave force on each of
the three cylinders fixed in waves but also includes the
interaction effects.

When each cylinder makes a periodic oscillation, the
radiative waves from each cylinder described by equation
(17) now occurs prior to the incident waves. In this case
also infinite series of incident waves on each cylinder are
obtained by the iteration procedure and the hydrodyna-
mic force acting upon the oscillating three cylinder
configuration may be determined by adding the force
induced by the series of incident waves to the forces
which act upon each cylinder performing the oscillation
which is treated as a single cylinder.

Practically, it is difficult to prove the convergence of
the infinite series of velocity potentials given by the
iteration. But from some examples of the numerical
calculations of their forms it appears that the terms
decrease comparatively rapidly in magnitude. The
velocity potential may be obtained by terminating the
series after a certain number of terms provided that it
satisfies the boundary condition on each cylinder with
sufficient accuracy for practical application. This approxi-
mate velocity potential is satisfectory for the analysis.

A double series in the right hand side of the equation
(17) may not be too important to the calculations, because
it describes the potential of the standing wave and

decreases rapidly away from the cylinder. Results of
some numerical computation performed for various
dimensions of cylinders show that it is not necessary 1o
take into account the effect of the standing waves upon
other cylinders when we compute the interaction effect
in the hydrodynamic forces upon three cylinders satisfy-
ing the spacing condition 2P/a > 5.

Some numerical examples were performed for the
three cylinder configuration having the dimensions
2P/a = 5 and (draft/a) = 3.65, where water depth d/a
is 40.

Although semi-submergible drilling platforms like
SEDCOI135 have generally larger spacings between
their legs, for instance of the order 2P/a > 10, we adopt
2P/a = 5 as a more severe case from the stand point of
the interaction effect.

Figs 8 and 9 give the amplitudes of the wave exciting
force in the x-direction (swaying force) and the force in

———  gingle cylinder

Fig. 8 Wave force in x-direction on three vertical cylinders
(2P/a=5)"
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Fig. 9. Wave force in z-direction on three vertical cylinders
(2P/a=5)

z-direction upon each of the three cylinders fixed in a
wave [, e propagating in the direction of the
negative x direction. Solid lines represent the force on
the single cylinder, broken lines the force on cylinder 1
and dotted lines the force on cylinder 2. The differences
between either the solid lines, broken lines or dotted
lines indicate the interaction effects and accordingly it
may be concluded that the effect is negligible for the
heave force but it is fairly large for the sway force. Here it
should be noted that the magnitude of the interaction
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effect between vertical cylinders is roughly inversely
proportional to the square root of the spacing between
the cylinders and therefore the effect does not decrease
much even il 2P/a = 10. The results of Figs 8§ and 9
include the effect of the standing wave term in equation
(17).

wilh mreroction

----- withoit mferochion

5 ko

Fig. 10. Wave force on the whole three vertical cylinders
(2P/a=5)

Fig. 10 shows the sway force and the heave force on the
three cylinder configuration. Comparison of the solid
lines which include the interaction effect and the dotted
lines which are the results without the effect but include
the phase difference of the wave forces upon each cylinder
show that the wave forces on the configuration are not
so much influenced by the interaction effect.

Next the hydrodynamic force upon the three cylinder
configuration making an oscillation in still water was
determined. In this Computation the standing wave
terms in equation (17) were neglected. Figs 11 and 12
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Fig. 11. Damping coefficient of swaying three vertical
cylinders (2P/a = 5)

show the damping coefficient (damping/pwna’(d — h))
of the three cylinder configuration for the cases of heave
and sway motion. Solid lines indicate the results with
the interaction effect and dotted lines show the values
for a single cylinder. That is, the values without the
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interaction effect. The interaction effect should be taken
into account if one wants to perform exact calculation
of the cylinders’ sway motion in waves. For the heave
motion the effect is also large, but one cannot be sure of
its influence on the motion from these results because
damping itself is very small.
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Fig. 12 Damping coefficient of heaving three vertical
cylinders (2P/a = 5)

4 CONCLUSIONS

A method of calculating the hydrodynamic forces on
horizontal and vertical multiple cylinders was developed
and some numerical calculations were performed.

In the case of horizontal multiple cylinders which is
taken as typical of platforms with multihulled vessel
configurations, the wave exciting force on them and their
motions in waves are much influenced by the interaction
effect between elemental cylinders. This effect is also
important in calculating the force on each element of
the vertical multiple cylinders which are simplified
configurations of some semi-submergible rigs with
several legs. One may, however, neglect it for the force
on the whole vertical multiple cylinders in most cases.
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