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We consider the image problem for domains with plane boundaries. We list all three and two
dimensional domains for which the image method yields solutions of the potential problem, and
we describe the image arrays generated by these domains in familiar crystallographic terms. One
obtains from the group-theoretic description of images two representations for the Dirichlet
Green’s functions for V2. The first is obtained by summing the unrestricted Green’s function over
the crystal image structures, and the second is obtained in terms of an eigenfunction expansion

using solutions of V2 = 1y which vanish on the plane boundaries.

I. INTRODUCTION

If a point charge g is at some distance d from a grounded
conducting plane, the boundary condition imposed by the
plane on the resulting potential may be satisfied by replacing
the plane with an “image charge” — ¢ located at a position
which is the mirror image location of ¢. This type of solution
was called the “method of images” by its inventor, Sir Wil-
liam Thomson," and is illustrated in Fig. 1.

We have studied the general problem of a solution by
images for a point charge in a domain bounded by several
grounded conducting planes, with the unexpected result that
we are able to list all such domains for which the image
solution exists. The possible corners are limited to intersec-
tions of three planes and are well known in the theory of
regular polyhedra. In each case, the set of image charges at
such a corner forms a representation of a finite point group.
Additional planes result in an infinite crystal structure of
image charges in which the unit cell is the finite group of
images at a corner. There are no domains whose boundary
consists of more than six planes.

The existence of the group structure yields the surprise
that one can determine complete systems of fundamental
eigenfunctions of the Laplace operator V2, i.e., solutions of
V21 = Ay which vanish on the boundaries. Moreover, the
only classical cases are the eigenfunctions for the box, the
square, and the three types of Lamé eigenfunctions.’

Given one of our domains there are two ways to repre-
sent a Green’s function for it, i.e., the potential for a unit
charge. One is a direct sum of multipoles determined by a
unit cell of images, and the other is an eigenfunction
expansion.

In Sec. II we deduce the allowed domains with plane
boundaries. In Sec. III we summarize the group theory ap-
propriate to the problem, and we show that reflections in a
plane not containing the corner vertex generate an infinite
crystal structure. In Sec. IV we show that the existence of the
image solution for potentials and Green’s functions follows
directly from the group structure of the array of image
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charges. In Sec. V we calculate the image arrays for cylinders
and prisms formed by terminating a cylinder with planes
normal to the cylinder axis. In Sec. VI we consider the tetra-
hedral domains, which make essential demands on our
group theoretic formalisms. In Sec. VII we consider the ico-
sahedral Mobius corner. In Sec. VIII we display a general
formula for eigenfunctions of image domains and we devise a
completeness proof. In Sec. IX, X, and XI we display explicit
eigenfunctions as well as the Green’s function expansions for
the more interesting image domains.

In an earlier publication® we illustrated the details of
some constructions and announced some of our principal
results.

Il. IMAGE DOMAINS WITH PLANE BOUNDARIES

The image solution exists if the potential of the original
charge and its images vanishes on each conducting boundary
plane, and no proper image lies in the domain bounded by
the conducting planes. We first consider the wedge formed
by two intersecting planes, where it is well known that the
necessary and sufficient condition for existence of an image
solution is that the wedge angle is #/n, with 7 an integer
greater than 1. For a domain bounded by more than two
planes, it remains a necessary condition that each pair of
intersecting planes meets at 7/n. We proceed to find all do-
mains bounded by planes which satisfy this necessary con-
straint. In succeeding sections we show that this necessary
condition is sufficient by constructing the space group that
generates the image charge array. This group determines the
images completely. Thus existence of the domains we seek
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FIG. 2. The n/3-Wedge. The array generated is represented by dark and
light circles {charges of opposite sign).

will follow from the group structure of the image array. A
general domain for which the image method works is called
an image domain.

A. Intersection of Two Planes

Many texts* apply the method of images to a point
charge placed between a pair of intersecting planes, where it
is easy to show that the image solution exists if and only if the
angle between the planes in 77/n, with # an integer greater
than 1. If nn is an integer, there are 2n —1 image charges as
shown in Fig. 2. If n is not an integer, the successive reflec-
tions needed to satisfy the boundary condition ¥ = Q pro-
duce images which lie in the domain 0<8<#/n. We refer to
the domain bounded by planes at an angle 7/n as a 7/n
wedge. The case of two parallel planes may be considered as
the limit #-— c0, in which case the number of image charges is
infinite.’ A single plane may be considered as the special case
n=1

B. Open Cylinders

Since the interior angles of a polygon with »n sides add
up to (n —2), the only possible cylindrical cross sections
are triangles with angles (7/3|7/3|%/3), (7/2|w/4|7/4),
(w/2|m/3|m/6), the rectangle (w/2|m/2|7n/2|7/2), and an
open figure (/2|7 /2|0), in which two sides meet at infinity.
The cylinders are shown in Fig. 4.

C.Corners

If a corner of n planes has its apex at the center of a
sphere, the intersection angles between planes are seen to be
the interior angles at the corners of a spherical polygon. For
a spherical polygon, the sum X of the interior angles satisfies
(n —2)m < Z < (n + 2)7r. Simple enumeration shows that
the only possible corners have three planes with angles
@/2|w/2\w/n), (w/2|w/3|7w/3), (w/2|m/3|7w/4),
(m/2|w/3|m/5). The spherical triangles associated with such
corners are known in the theory of regular polyhedra as the
Mobius triangles. We shall call such corners Mébius corners.

We also note that since the interior angles of an n—sided
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(b)

FIG. 3. Angles. Angles of intersection for the admissible bounded four sided
image domains. With terminology from VIone has: (a) primitive octahedral
domain, (b) centered octahedral domain, and (c) large tetrahedral domain.

plane polygon add up to (» —2)m, the faces of a closed do-
main with the above corners must be triangles or rectangles.

D. Other Open Domains

With the limitation to corners listed in (C), the only
other open domains are cylinders from (B) terminated at one
end by a plane perpendicular to the cylinder axis, and a
wedge of two planes at an angle 77/n intersected by two paral-
lel planes having the 7/n intersection as a normal. We find
these by the enumeration described in part (E).

E. Closed Domains—4 Faces

Four planes intersect in six lines, each of which is
shared by two faces. The only domains are thus tetrahedra
with triangular faces. We find the allowed domains by a sim-
ple enumeration which consists of taking each corner from
(C), intersecting the surfaces with a plane which makes one
allowed corner, and then testing the remaining corners. Only
three basic tetrahedra emerge. They are described in Fig. 3
by the topology of the corner angles. Fig. 5 shows their con-

N PN
S e ¢
N | |~ |
N = |
i . i | |
| | | i |
i | | |
[
| | | | |
|
| /)\-\ ———— ;‘J\ | |
L/ N -7 N {
-~ —|-—-- e
AN /// N

(c)

FIG. 4. Geometric Types. The bounded prismatic image domains are: (a)
rectangular orthohombic domain, (b) (7/2|7/4|m/4)-triangular domain,
() (w/3\w/3|7/3)triangular domain, and (d) (7/2|7/3|7/6)-triangular
domain.
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FIG. 5. Geometric Types. Cubic constructions show the relationship be-
tween the three distinct types of bounded four-sided image domains. De-
picted are: (a) primitive octahedral domain, (b) centered octahedral do-
main, and {c) large tetrahedral domain.

struction by sectioning a cube. We can also arrive at these
domains using Descartes’ theorem in part (G).

F. Closed Domains—5 Faces

There are no five-sided domains in which each face in-
tersects all the other faces. This would produce 10 lines of
intersection; since the number of corners is integer and 2/3
the number of lines, this is impossible. If two planes do not
intersect in the surface, this gives 9 lines of intersection
which must be the edges of two triangles and three rectan-
gles. The only such domains are the triangular cylinders of
part (B) intersected by a pair of parallel planes normal to the
cylinder axis. See Fig. 4.

G. Closed Domains—6 or More Faces

Since all planes meet at angles less than 7, they form
only convex polyhedra. If

C = number of corners,
E = number of edges,
F = number of faces,
Euler’s theorem states
C+F—-FE=2.

Since all corners are formed from 3 edges, it follows that
2E = 3C. Hence

C=2F-4

Thus, a figure of 6 faces has 8 corners. The sum of the plane
angles at a corner is less than 27. The difference is called the
angular defect; the corner (/2|7/2|m/2) has the smallest
angular defect, which is 7/2. A theorem of Decartes which
can easily be derived from Euler’s theorem,>® states that the
angular defects sum to 4+ for the corners of a convex polyhe-
dron. Hence, we have C<8, or from Euler’s theorem F<6.
For F = 6, all corners must be (7/2|7/2|7/2) and the figure
is a rectangular parallelipeped. Descartes’ theorem, with the
condition that an edge angle is shared by two adjacent cor-
ners, may be used to derive the results of parts (E) and (F).
The above domains were found by imposing the neces-
sary condition that the angle between any two intersecting
planes is 7/n. We need to show that the image arrays created
by our admissible domains do not contain additional image
points which lie inside these domains. We also need to dem-
onstrate that the potential and Green’s functions that arise
vanish on all the boundaries. As is shown in the following
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sections, each of the above domains satisfies these condi-
tions. Our necessary condition for a region to be an image
domain is thus also sufficient.

111, GROUP THEORY

In order to describe the crystal structures of images, we
are fortunate in having at our disposal the language of
groups as they occur in solid-state theory and crystallogra-
phy. In this section we shall recall and elaborate on the nec-
essary group-theoretical formalisms, but for a detailed ele-
mentary description of groups we shall refer the reader
elsewhere.”-5*

If G is a group and H and K are subgroups, then one
defines HK = {uA |ucH, i€K]}. If G = HK and the sub-
groups H and K have only the identity element in common
the G = HK will be called a product decomposition. If
G = HK is a product decomposition and 4 = Ay for all
p<H and all A€K, then G = HK will be called a direct prod-
uct decomposition.

In general, for arbitrary subroups H and K of G, the set
S = HK will not be a subgroup of G. One says that H is
normal (or invariant ) with respect to K if x ~'Hx C H for all
xeK. If H and K are subgroups of G and if H is normal with
respect to K then S = HK = KH is a subgroup of G. The
normality condition is useful for constructing groups, but it
should be noted that S = HK can be a group without the
normality condition. A necessary and sufficient condition
for S = HK to be a group is that HK = KH. For a finite
group H, the number of elements of in H, denoted by ny,, is
called the order of H. If § = HK is a product decomposition
then ng = nyng.

Let E be a vector space with inner product (x|y). A
reflection with respect to a plane through the origin is given
by the formula

Ax = x —2a(x|a)/(ala) (acE,x<E). )]
The vector a is said to be normal to the plane which deter-

mines 4.
In three dimensions one has the matrix representation

1-2e2> —2ab —2ac
A=|—-2ab 1-2b% —2bc )
—2ac —2bc 1-2¢7

when the normal (g,b,c) satisfiesa> + 6> + 2 = 1.

For any reflection A one has the determinant relation
det(1 ) = —1. The orthogonal group O(n) for the vector
space E is defined to be the set of all linear transformations
on E which leave the inner product invariant, i.e.,

(ox|oy) = (x|y) for all x,yeE. It follows that every group
generated by reflections in planes through the origin is a
subgroup of O(n).

Two reflections Ax = x —2a(x|a)/(a|a) and
4x = x —2b(x[b)/(b|b) commute if and only if (a/b) =0
or aXb = 0. One infers this from the commutator relation

(Ap — pAd)x = 4(ab) (x X (axb)). 3

Two reflection A and u are perpendicular if (ab) =0
holds for their normals. We have shown a refiection com-
mutes with any perpendicular reflection and itself.
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The Mébius corner (w/2|m/2|m/n). For such a Mobius
corner one reflection A is perpendicular to the other two. IfD
is the order-two group generated by 4, and H is the group
generated by the other two reflections, then perpendicularity
implies that S = DH is a group and a direct product. In the
Schoenflies notation the group S is called a dihedral group
and is denoted by the symbol D,,,,.

Generation of space groups. A set Lin a vector space E is
a lattice if L contains a set of linearly independent vectors
such that every element of L can be expressed as an integral
combination of these elements. The basis vectors will be
called primitive translation vectors. The parallelepiped
spanned by a set of such vectors is called a primitive cell.

The group of integers Z is a one-dimensional lattice in
the space of real numbers. Henceforth, the space E will be a
real three-dimensional space, even though this assumption is
not formally necessary in this section.

Let S be a finite group generated by reflections with
respect to planes containing the origin. If we adjointo S a
number of reflections with respect to planes not containing
the origin, then the group thus generated will be called a
space group. While the images of a point under S will be
restricted to the surface of a sphere, the images under the
space group can lie infinitely far from the origin.

Hypothesis I. We shall not add to S an arbitrary reflec-
tion. It is assumed that £ is a reflection and that the related
transformation Ax = £x — & O, which defines a reflection A
with respect to a plane containing the origin, is an element of

the group S.
Given this hypothesis about &, one writes a = £ O and
thus £ is expressiblein the form£x = Ax + awithla= —a.

Given a point x we are now interested in determing all im-
ages of x under the space group G generated by the finite
group S.
Given o€S we now consider a transformation
p = 0éAc . One has ux = x + oa and thus u acts as a
raising operator. Clearly u is an element of the space group
G.Onehasy 'x = x — gaand thus u ~ acts as a lowering
operator. It follows that u*x = x + koa is an image of x for
any integer keZ. Let L be the integral span of {oa|oeS].
The pair (S,L) can now be given a group structure by
defining (o,n)e(S,L) to be a transformation with action

(o,m)x =ox + n. “4)

The multiplication in (S,L) is defined by composition of
transformations and has the formula

(Am)p,m) = (Ap,Am + n), (%)
and in the context of lattices is called Seizz multiplication

It may now be observed that L is invariant under S and
§. It follows that all images of x under the space group G are
of the form (o,n)x = ox + n with 08 and neL. Indeed, G
and (S,L) can be isomorphically identified by assigning & to
(4,a) and o€S to (0,0).

Our notation would suggest that L always has the struc-
ture of a lattice, but this need not be the case. For example, it
is easy to see that the set of real numbers {nv/2 + m |n,meZ}
can not be expressed in terms of integral multiples of a single
generator.
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Hypothesis 11. The second hypothesis is that {oa|oeS ]
contains independent vectors such that every other vector in
{oa|oeS] can be expressed as an integral combination of
these vectors.

Under the second hypothesis the set L is a lattice.

In order to adjoin to S simulataneously two reflections
& and &', it will be assumed that both satisfy Hypothesis 1.
One sets a = £ O and a' = £ 'O and one defines L to be the
integral span of the sets { a|oeS{u{ca’|geS]. If this larger
integral span satisfies Hypothesis II then L is a lattice and
(S,L) is the space group generated by {S, £, £'}. In this man-
ner, any number of suitable reflections can be adjoined to S.

On the assumption that the space group (S,L) is deter-
mined by a lattice, our group (S,L) will be a space group in
the crystalographic sense.” The only situation of interest in
our theory and in electrostatics is the case where L is a Bra-
vais lattice.

IV.IMAGE CRYSTAL STRUCTURES

The images of a point in suitable domains formed from
planes form crystal structures in the abstract sense. We shall
give an overview of this approach.

Space groups for image domains. One associates a space
group to any domain V formed by plane surfaces by consid-
ering the group G generated by reflections with respect to the
bounding planes.

If for every geG distinct from the identity and for every
x€V the image gx lies outside of V, then V is an image do-
main. The group theory section shows that one should be
able to represent the space group G in the form (S,L), where
S is a finite group of reflections and L is the lattice which
arises through the extension process. However, the fact that
L is a lattice does not follow from general considerations and
needs to be verified through explicit computation. More-
over, it turns out that the proper corner to choose for the
generation of S is the sharpest corner of the domain. The
resulting accounting of images will allow one to deduce that
all the domains described in the first section are image
domains.

Potentials for image domains. Let V be a corner domain
or a wedge domain. Let S be the associated group of reflec-
tions. If a unit charge is placed at xeV then the potential is
given by

¢ @) = 3 det(@)fox —ul| . ©)

Let V be a general image domain with space group
(S,L). The potential for V is then given by

P =7 ¢n+u), ™

nel

where ¢ (u) is the corner potential defined by (6). It is a conse-
quence of Seitz multiplication (5) that the sign of the image
charge at (0,n)x is specified by the determinant of ¢. When
the monopole, dipole or quadrupole moments of the charge
distribution { det(0),0x|0€S} vanish, then ¢ (u) tends to zero
rapidly as u gets large. This circumstance allows one to as-

sert that (7) converges absolutely. The explicit determina-
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tions of (S,L) will allow one to see this with complete rigor.

The potential satisfies the transformation property

@ ((o,n)u) = det(0)P (u) (8)
for an arbitrary (o,n)e(S,L).

Vanishing of the potential. One has that @ (u) = 0 when
u lies on the boundary of V.

The assertion is easily proved. When u lies on the
boundary of V then (g,n)u = u, for (o,n) the reflection with
respect to the boundary plane containing u. For a reflection
one has det(o) = —1. One now computes that
@) =P ((o,nu) = — P (u). Thus () =0.

Interchange of summation and differentiation. One can
prove mathematically that if D is any differential operator
with respect to u then

D@ ()= Dé(n+u) )

nell
and the derived series converges absolutely.
The differentiation interchange implies that @ (u) satis-
fies the Laplace equation

V2P (u) = —476 (x — u), (10)

where & is the Dirac delta function and V? is the Laplace
operator with respect to u.

Interchange of summation and integration. This inter-
change is not always valid. It is worthwhile recalling the
hypotheses for integration and summation interchange. If
for a convergent series 24, of integrable functions the series
2 § |#, | converges, then the interchange f 24, =2 [ ¢,
is valid. The example we mention is a rare instance where
this interchange is not possible and where the problem arises
in a natural context.

We shall consider the potential for parallel plates. The
function ||(x — u,y — v,z — w)|| "' is the unrestricted poten-
tial for all space. The difference

¢ (upw) = ||(x — uy — v,z —w)|| =
—(=x—uy—vz—w)

is a special case of the group sum (7). The lattice sum

D (uv,w) =Y ¢ (2n+ up,w) (11)

neZ
is an absolutely convergent series and represents the poten-
tial due to a unit charge at (x,y,z) between two conducting
parallel plates at x = 0 and x = 1. The derived series

P __ - 9

du ez Ou
is also seen to be absolutely convergent. However, if one now
considers the surface integral over the whole infinite plane at
x =0, then term by term integration (up to factor of 27)
yields
2 =)=+ (— 1+ D+ A+ D+ A =D+ =2,

(12)

where the left-hand side is obtained from the correct total
charge computation of Zahn,®> Schockley,'® and Kittel and

Fong."" Despite assertions to the contrary by Pleines and
Mabhajan,'? there exists no physically meaningful rearrange-
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ment of parentheses which wiil make (12) an identity. In this
regard we also note the discussion of Epstein and Smith.'* In
Terras' the “method of theta functions” is applied to the
parallel plate problem.

V. CYLINDERS AND PRISMS

In this section we will derive the space groups for the
admissible cylinders and prisms. This computation will
demonstrate that these figures are indeed image domains. If
S = HK is a product decomposition of a point group then

Y det(0) f(ox) = ¥ det(d) S det(u) f(uix). (13)

oeS AeH pnek

This decomposition of a group sum underlies our for-
mulas for normal modes. Use of this method to construct
efficient codings for potentials is illustrated by (31) and (36).
It is for these reasons that in our listings we give point groups
in product form, but we also identify these groups with the
point groups of crystallography in Schoenflies notation.”

e |0 ® (O

o|e o|e

®!0O oo

[N 2 o/ e

e |0 ® 0

[« BN J cle
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e |0 ®|O ®]|0
L ]
o]

oje ole NN ]

e |0 ® |0 [ B
[ ] o]
o] ®

ol|e ocl|e ol®

(®)

FIG. 6. Crystal Structure. (a) A charge in the dark rectangle generates a
cluster which is replicated by a rectangular Bravais lattice; (b) achargeina
(w/2|7/4|w/4)-triangle generates a cluster which is also replicated by a
rectangular Bravais lattice.
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®)

FIG. 7. Crystal Structure. (a) A charge in the dark (7/3|7/3|mw/3)-triangle
leads to a hexagonal Bravais lattice; (b) a charge in a (7/2|7/3|7/6)-trian-
gle also leads to a hexagonal Bravais lattice.

A. Rectangular and (7/4|7/4|7/2) triangular cross
sections

The following notation for matrix generators of reflec-
tion groups will be used in this section:

-1 0 0 [1 0 o0
A=} 0 1t O] u=10 . -1 O
0 0 1 o o0 1
. (14)
1 0 ¢ 0 1 0
7=10 1 0 v=|1 0 ol.
0 0 -1 0 0 1
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1. The open rectangular cylinder V = {(x,y,2)/0<x<a,
oO<y<b).

The bounding planes through the origin determine re-
flections A and u, and generate the point group

S=(14){Lu} = {1,4,uAu}, (Schoenflies C,,) (15)
which we term the square corner group. The cylinder is then
seen to have space group (S,L), where

L = {(2am,2bn,0)|m,neZ}, (16)
which is a rectangular Bravais lattice. The crystal structure
generated by this space group is depicted in Fig. 6(a).

In terms of the unrestricted potential, formula (6) trans-
lates into the formulas

¢ (u,v,w) = z det(a)Ha(x,y,z) - (u,v,w)H !
58S

= [&xy,2) — @ow)| =" = I(— xp,2) — @ow)l| =
+ I(=x, — y2) — @rw)l "
— lx, = y,2) — (o)l " (17

Itis easy to see that this is the potential due to a quadru-
pole and goes to zero as ||(u,v,w)|| ~*. It follows that

D (u,0,w) = z z ¢ (2am + u,2bn + v,w)
meZ neZ

converges absolutely. Such a verification would have to be
made for every explicit realization of (6) in order to substan-
tiate our claim regarding absolute convergence, but we will
leave the remaining verifications for the reader. It is worth
noting that we had good success in computer evaluation of
this and other lattice sums due to additional cancellation
which occurs when summation is carried out over blocks of
indices that are invariant under the point group action.

We tabularize the remaining space groups with sparse
detail. The data presented is needed to parametrize the nor-
mal modes discussed in Sec. VIII. The computations need to
be performed in order to finish the formal proof that our
admissible regions are indeed image domains as defined in
Sec. L.

One should note that the domains are all oriented in
such a manner that the sharpest corner is at the origin. The
generators of the point groups are the reflections in the
bounding planes through the origin. The lattice is generated
by the adjoining to the point group the remaining reflections
in the bounding planes, through the group extension process
described in Sec. II1. The geometric constructions of image
arrays in Figs. 6 and 7 may be used to good advantage in
checking our data.

2. The closed cylinder V = [(x,y,2)/0<x<a, O<y<b, 0<z/.
Generators: 4, u, n;
S = {14} {Lu}{1n)

L = {(2am,2bn,0)|m,neZ} [see Fig. 6(a)].

We shall refer to the frequently occurring point group S
as the cube corner group.

(Schoenflies D,,,),
(18)
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3. The reclangular box V = {(x,y,2)/0<x<a, O<y<b,
O<zgcy.

Generators: A, u, 7;
S=(14}{tu}{lLy},

L = {(2ak,2bm,2cn)|k,m,neZ}.

19)

4. The (n/2/m/4/m/4) cylinder V = {(x,y,2)/0<y<x<a].
Generators: i, v; Relations: A = vuv

S={14}{1u}{1,y] (Schoentlies C,,),
20)

L = {(2am,2an,0)|m,neZ} (see Fig. 6(b).

5. The closed (r/2/n/4/7/4) cylinder
V= {(xy,2)/0<y<x<a, 0<z].

Generators: u, v, 17; Relations: 4 = vuy,
S={1A}{Lu}{l,v]{l,y} (Schoenflies D,,),

D
L = {2am,2an,0)|m,neZ}.

6. The (w/2|n/4/n/4) prismV = [(x,y,2)/0<y<x<a, O<z<c).
Generators: u, v, 7 Relations: 4 = vuv;

S={1LA}{Lu}{lv}{Ln],
(22)
L = {(2ak,2am,2cn)|k,m,neZ}.

B. Triangular (=/3|7/3|7/3) and (r/2|7/3|7/6) cylinders
and prisms

We shall consider the additional matrix generators:

172 v3/2 O -172 v3/2 0
k=[V3/2 =172 0] y=[v3/2 172 0].
0 0 1 0 0 1

1. The open w/3 cylinder V = [(x,y,2)/0<y/1 3<X,
y<(a—x)h1/3j.

Generators: u, ¥,

S={luy,yul{lu} (SchoenfliesC,,),

(24)
L = {(3a(n + m)/2,v/'3a(n — m)/2,0)|k,m,neZ}
[see Fig. 7(a)].

2. The closed w/3 cylinder V = {(x,y,Z)/0<y/1 3<X,
y<ta —x)13, 0<zj.

Generators: u, v, 7;

S = {Luy,yu}{lp}{1n} (Schoenflies D;,),

(25
L = {(Ba(n + m)/2,v/ 3a(n — m)/2,0)|m,neZ}.

3. The prism V = {(x,y,2)/0<y/1/3<x, y<(a — x)1/3,
0<z<cy.

Generators: u, ¥, 7;
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S = [Luyyul{lp}{ln},
(26)
L= {QGa(r + m)/2,v/ 3a(n — m)/2,2kc)lk,m,neZ}.

4. The open 1/6 cylinder
V= [xy.2)/0<1 y<xy<(a — x)1/3).

Generators: «, u; Relations: y = xuk, A = kuxux;
S = (Luyyu} (Lp} (LA ] (Schoenflies C,,),
27

L= {(Ba(n + m)/2,v/3a(n — m)/2,0)|m,neZ} [see
Fig. 7(b)].

5. The closed w/6 cylinder V = [(x,y,2)/0<1 3y<x,
y<(a—x)3 0<z).

Generators: «, u, 77; Relations: y = suk, A = xukux;
S = {Luyyul{lu}{1A}{1,n) (Scheonflies D),

(28)
L = {3a(n + m),v/3a(n — m)/2,0)|m,neZ}

6. TheprismV = [(x,y,2)/0< 1 3y<x, y<(a — x)1/3, O<z<c).
Generators: &, 1, 77; Relations: y = xux, A = kuxux;
S={Luyyul{lul{1A}{1n],

(29)

L = {(3a(n + m)/2,v/3a(n — m)/2,2kc)|k,m,neZ}.

V. THE BOUNDED FOUR-SIDED DOMAINS

Analysis of these domanisn requires more use of group
theory and less reliance on geometrical construction. These
bounded domains are all tetrahedra, but will be distin-
guished according to the space groups associated with them.
Our three tetrahedra will thus be termed the large tetrahe-
dral domain, the centered octahedral domain, and the primi-
tive octahedral domain.

A. The large tetrahedral domain

The representation considered is V = {(x,y,2)|x<y,
z<x, —z<x, x + y<2a}, and is depicted in Fig. 5(c).

The Mobius corner (w/2,7/3,m/3). This corner gener-
ates the tetrahedral group. The planes of V which pass
through the origin generate the reflections

0 0 1 0 1 0
A=lo 1 of,u=|1 0 of,
1 0 0 0 0 1
0 0 -1
v=l0 1 o0 |. (30)
-1 0 0

One finds that Av(x,y,2) = ( — x,y, — z) and
uAVU(x,p,2) = (x, — y, — z). The elements Av and uAvu gen-
erate the diagonal group D of order four, the matrices of
determinant unity with diagonal entries plus or minus unity.
The effect of D on (x,y,z) is to generate the images

{(x’y)z)» &, ~y,—2),(—x, -2, (—x,, —Z)}
On the other hand, A and i generate the permutation
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FIG. 8. Symmetric Cell. (a) Under the action of the tetrahedral group 7, the
large tetrahedral domain generates a Wigner—Seitz cell (a rhombic dodeca-
hedron) for the associated cubic F-lattice; (b) the Wigner—Seitz cells stack
to fill all space without gaps.

group P on three letters. The effect of P on (x,p,z) is to gener-
ate the images

{(x.2), @y x), (¥.x,2), (2.x)), (x.2,9), (9,2,%)}

The group D is normal with respect to P. It follows that
S = DP is a group and has order 24. In Schoenflies notation
the group S is denoted by T, .

The corner potential. Use of (13) with f(x,y,2)
= ||(x — u,y — v,z — w)|| ~* allows one to write the poten-
tial (6) with the help of a simple sequence of auxiliary func-
tions. One has

8Qu,0,w) = f (W) + £ (— u, — v,w)

+f(u, —v, —w) +f(—up, —w),
h (uo,w) = guv,w) + g,w,u) + gw,u,w), 31
& (u,0,w) = h (u,v,w) — h (,u,w).

In the manipulations of these formulas we made free use of
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the duality property
Y det(@)|lox —uf| ~' = Y det(o)||x — ou|| ~'.
geS oeS

Thespace group. Reflection across the planex + y = 2a
has the formula £ (x,y,2) = ( — y, — x,z) +2a(1,1,0). It is
this reflection which needs to be adjoined to S. One has
(VA )u(vA Y(x,y,2) = ( — y, — x,2) and thus Hypothesis I for
space group generation is satisfied. One now needs to exam-
ine all the images of £ (0,0,0) = 2a(1,1,0) under the action of
the tetrahedral group. A glance at our decomposition result
S = DP shows that the listing of the twelve elements
2¢(F 1,F1,0), 2200, F 1, F 1), 2a( F 1,0, F 1) yields all
possible images. Thus Hypothesis II is also satisfied. Let

L={2a( + ki +j,j+ k)i, j,keZ}. 32)

This is a face—centered cubic Bravais lattice. The space group
for V is thus seen to be (S,L).

The different images of the domain V produced by the
action of the tetrahedral group S are disjoint and do not
overlap except at the boundaries. The solid region represent-
ed by the union Vg = u{o'V|0€S} appears in Fig. 8(a), and is
called a Wigner—Seitz cell for the cubic F-Lattice L. The
effect of the lattice L is to fill all three dimensional space with
copies of this cell is a non-overlapping manner as in Fig. 8(b).
One thus deduces that the tetrahedral domain V is an image
domain.

The potential function. If ¢ (u,v,w) is the potential (31)
for the corner region, then the lattice sum

P (upw) = ;Z & ((uo,w) +2a + ki +j,j+ k))
o (33)

is an absolutely convergent series for the Green’s function
for the image domain V.

B. Centered Octahedral Domain

A representation of this octahedral domain is
V = [(xp»2)|x<y, 0<z<x, x + y<2a}. The orientation of
this domain is depicted in Fig. 5(b).

The Mébius corner (w/2,m/3,m/4). This corner gener-
ates the octahedral group. The planes passing through the
origin generate reflections A (x,y,2) = (z,y,x), £(x.y,2)

= (y,x,2) as in (30), and the reflection 7(x,y,2) = (x,y, — 2),
which is not an element of the tetrahedral group. One con-
structs diagonal elements by noting that
AnA (x,p,2) = (— x,9,2) and
(ApA m(Apld )x,p,2) = (x, — y,2). The elements n, AnA, and
(Aud )n(Aud )aremutually orthogonal and generate the cube
corner group D, which is a diagonal group of order eight.
The elements A and i generate the same permutation group
P as occurred in the tetrahedral case. Since D is normal with
respect to P it follows that S = DP is a group of order forty-
eight.

The space group. One has to add the reflection
& (xy.2) = (—y, — x,2) +2a(1,1,0) to the octahedral group
in order to generate the space group. The product decompo-
sition S = DP shows that hypothesis I is satisfied. The de-
composition also shows that the images of
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£(0,0,0) = 2a(1,1,0) under the octahedral group are the
same as under the tetrahedral group. Thus Hypothesis II is
also satisfied and it follows that the space group is given by
(S,L), where S is the currently discussed octahedral group
and L is the previously defined face-centered cubic lattice
(32).

The Wigner-Seitz cell Vg = {oV|0€S] is the same as
the one that occurred in the tetrahedral case. It follows that
V is an image domain.

C. Primitive Octahedral Domain

This region has the representation V = {(x,,2)|x<y,
0<z<x, y<a}. The orientation of the figure is as in Fig. 5(a).
The Mobius corner at the origin generates the octahedral
group. The reflection to adjoin is £ (x,p,2) = (x, — ,2)

+ 2a(0,1,0). One sees that Hypothesis I is satisfied. The im-
ages of £ (0,0,0) = 24(0,1,0) under the octahedral group are
just the eight vectors { + 24(1,0,0), + 22(0,1,0),

+ 2a(0,0,1)}. It follows that Hypothesis II is satisfied. We
now define

L = {2a(;, j,k)li, jkeZ}, (34
which is a primitive cubic lattice. The space group for V is
thus (S,L), where S is the octahedral group, and L is the
currently defined lattice (34).

The Wigner-Seitz cell Vg = u{ogV|oeS} isjust the cube
{(x.,2)] — a<x,y,z<a} and is formed as a union of domains
which do not overlap. Moreover, under the action of the
lattice L all space is filled in a non—overlapping manner with
these cubes. It follows that V is an image domain.

VII. THE ICOSAHEDRAL POTENTIAL

The Mébius corner (m/2,m/3,m/5). The reflection group
generated by this corner is called the icosahedral group Y.
This group does not manifest itself as a crystallographic
point group. Nevertheless, the unit cell of some intermetallic
compounds, such as MoAl,, contains an icosahedral struc-
ture.'>-'® The group is best known from the theory of regular
polyhedra and was discussed by Mobius'’ and more recently
by Coxeter.®

We shall obtain an explicit representation by exploiting
the relation cos(7/5) = (v/5 +1)/4. Set 7 = (v/'5 +-1)/2.
One notes that 7 ' = (v/5 —1)/2. One now considers the
sector {(x,y,2)|z<7~'x — 7, y>0, z>0}. The sector is de-
picted in Fig. 9. The reflections associated to the corner have
matrix representations 4 and 7 as in (14) and

T 1 !
A=—1[1 -7 =T}
T —T 1
The elements K = { L,ud Au Audp, pAud } form a cy-
clic group of order five and represent rotations through 0O,

21/5, 81/5, 41/5, 617/ 5 radians. The matrix elements for the
non-identity rotations are
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X 1 37° 23'
20°54'
FIG. 9. Reflection Planes. Geodesics in the sphere are used to represent the

reflection planes in the first octant generated by the icosahedral Mobius
corner outlined in the lower left.

! T 1
! 7! ]
plpd =—| -7 —1 1 , (35)
| T 1 —7]
[ 1 —7r! T 1
/l,u/l,u=—1- r! -7 -1
2 | 7 1 -7

A calculation yields pun p*(x,y,2) = (— x,p, — 2),
where p = (Audu)n(Aud Y(mAn), for which one has
p(x,3,2) = (z,x,y). The element p generates the cyclic group
of order three P = {1, p, p?}. The diagonal elements y, u1,
pu7 p* generate the cube corner group D, which has order
eight. The product S = DPK can be shown to be a group,
and is the icosahedral group that we have been seeking to
define.

The potential for the icosahedral corner is now easy to
obtain by using (13). Let f(w,0,w) = ||(x — u,y — v,
z—w)|| ~'. Define
gupw) =fwo,w) + f(—u, —v,w)

+f(u, —v, —w) + f(—up, —w),
h (uow) = f(u.v,w) + gv,w,u) + glw,u,v),
(36)
k (u,w) = h (wo,w) — h (U, —ov,w),

& (up,w) = z k (o(u,v,w)).

The formidable problem of coding a matrix sum with
120 terms has thus been reduced to the problem of coding a
matrix sum with 5 terms. The necessary elements of K were
listed in (35).
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VIIl. EIGENFUNCTION EXPANSIONS

In this section we shall discuss normal modes for image
domains. We also consider the abstract aspects of Green’s
function expansions in normal modes for the cylindrical im-
age domains and the bounded image domains. We omit the
famous parallel plate problem which was considered by
Fong'! and Jackson.'®

The principal problem is to parametrize complete sys-
tems of normal modes. Because normal modes occur in the
description of waveguides and cavity resonators, this aspect
of the problem is useful for its own sake. The Dirichlet nor-
mal modes for the plane (7/3|7/3|7/3) and (w/2|7/3|7/6)
triangles appeared already in the treatise of Lamé,* which,
however, contained no proof of completeness. After years of
controversy the completeness problem was settled by C. G.
Nooney.'” Our own completeness proof is based on group-
theoretic methods and is short and novel and applies to the
Lamé normal modes as well as our own varieties and is by far
the most significant contribution of this section.

Normal Modes. We shall consider image domains in
two or three dimensions, but most arguments are formal and
apply quite generally. Let V be an image domain with space
group (S,L). Let

$,(w) = ¥ det(o)e 7, (37)

where u and v are elements of the same underlying vector
space E.

We shall call ¢, (u) a Dirichlet normal mode for E.

It is easy to see that

Vig, (W)= —47(v|v)¢, (u), (3%

where V2 is the Laplace operator with respect to u. It follows
that our terminology is appropriate.

Weshall consider the symmetric cell Vg = U{oV|oeS}.
One sees from the preceding sections that in every instance

= {Vs + n|neL} and that this union is formed in a non-

overlapping manner. It follows that an arbitrary function
Jf(u) on V can be extended to a function on all space by
Sf(ou + n) = det(0) £ (u) forueV. This extension of £ (u) to all
space is called the alternating extension. If f (n) is continuous
and vanishes on the boundary of V then the alternating ex-
tension is a continuous function on all space.

The lattice L need not have the same dimension as E.
We thus consider the space F spanned by L in E. The dual of
L is defined to be a lattice in F defined by

L' = [meF|(m(n)€Z, for all neL}. 39)
When neL and meL’ then one has
Bomm W) = ¢, ((0,m)u) = det(0)d,, (). (40)

These relations show that #,, (u) = 0 when either u or m lies
on the boundary of V.

Any L-periodic function g(u) on F can be expanded as a
Fourier series*® through

gw) = _(Tﬁ 2;, g(m)e* ™™, (41

where
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4m) = [ gule 2 au,

and where v(R) is the volume of a primitive cell R in L, and
where the integration du is carried out in F.

Bounded Image Domains. Let V be a bounded image
domain with space group (S,L) and let g(u) be a function
which is continuous on V and vanishes on the boundary of V.
If we now consider the alternating extension of g(u) to E then
41 yields

glu) =

ns (R) m;g(m) 3 det(o)e2mmlow,

which in terms of (37) becomes

gu) = ne (R) ...ZL g(m)é 1 (u). (42)
If mel. then one has

[ e =

Ul oV|oeS}

g(u)e —2mi{m|u) dll

- f glwe ~7mw gy, 3)
X |

where R is a primitive cell in L. The change in the domain of
integration from u{o'V|0eS] is permissible in every one of
our explicit constructions.

Define [n] = {on|oeS}. Two classes [n] and [m] have
either no elements in common or are the same. Let L(S)
denote a selection of parameter elements in the dual L’ ob-
tained by choosing one element from each maximal equiv-
alence class. In actual fact, L(S) may be obtained by choos-
ing those elements of L’ which lie properly in the interior of
the sector that defines S, as illustrated in Fig. 10.

For n, meL(S) one has that

vor [0 [n]#[m]
Jv¢m(u)¢n(u) du = [v(R) [n] = [m).

The normal mode expansion is thus summarized by

1 *
gw) = ) ...;(5) gm)é 1 (w),

(44)

where

TS

LIS

/ ] " [0 130
-14/30 1430

ASAN
VAVAN SVAVAYAN
ﬂVV\vve

b a3l
{g} ]

FIG. 10. Index Sets. (a) The standard index set, the sector M(S), parametri-
zies the normal modes, for the (7/3|7/3|m/3)triangle; (b) the natural pa-
rameter set L(S) is a sector with a simple relationship to the (7/3|7/3{7/3)-
domain.
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#(m) = fvg(u)«»... (W) du. @5)

Since g(u) was an arbitrary function on V with the ho-
mogeneous boundary condition g(u) = 0, the above demon-
strates completness of the Dirichlet normal modes. Neu-
mann normal modes can be defined by the symmetric sums
¥, (u) = 2 ge " 2"lew) A demonstration of completeness
can be obtained through the use of symmetric extensions of a
functionon V.

Green'’s Functions for Bounded Image Domains. Let V
be a bounded image domain with space group (S,L). Let
@ (u) = G (x,u) be the Green’s function for V, i.e., the poten-
tial for a unit charge at x. Computing as in Jackson'® one
obtains the eigenfunction expansion. One has

o= [m®]"" Y (mm) ' 4,(x) (W) . (46)

meL(S)
Set ap, (u) = [$, (W) + ¢ _ . (0)}/2 and B, (0) = [¢..
() — ¢ _ . (W))/2i. One has Ve, (u) = —47°(m|m)a,, (u)
and V3B, (u) = —47°(m|m)p,, (). Thus a,(u) and 3, (u)
are real eigenfunctions of the Laplace operator, which van-
ish on the boundary of V, and will be called the real Dirichlet

normal modes for V. One sees that

¢(ll) - [W(R)] ~1 Z [am(x)am(u) +Bm(x) Bm(ll)] )

meL(S) (mlm)

@7

It follows that {a,, (w)|meL(S)}u{ B, (u)|meL(S)}
forms a complete set, but it should be pointed out that this
listing may contain duplications due to additional relations.

We will now explain why most three-dimensional Dir-
ichlet normal modes are purely imaginary for three-dimen-
sional image domains. One has the relations a,, (ou)

= det(o)a,, (u) and B, (ou) = det(v) B, (u) for o€S. If in-
version is an element of S, i.e., if — n can be obtained from n
by a group operationin§, thena _ ,(u) = — a,, (u). Howev-
er, the defining condition implies that a,,(u) = a _ ,, (u). It
follows that a,, (u) = O whenever inversion is an element of
S.

Lattices of the form Z, Z X Z, ZXZ X Z,--- are called
standard lattices. In practice it is desirable to index the eigen-
functions on a standard lattice. Let M be a standard lattice.
Let T be an invertible linear map which transforms M into
L'. One sets

Py (1) = @, () + iy (0). (48)
Our explicit expansions adhere to this notation. The param-
eter set for the real and imaginary parts ,, (u) and 3, (u)
then is M(S) = {meM|T(m)cL(S)}. The relationship be-
tween M(S) and L(S) for the (7/3|#/3|7/3) cylinder is illus-
trated in Fig. 10.

Green’s Functions for Cylinder Domains. Let {¢,(u,v)
|a€l} be a complete set of orthonormal Dirichlet normal
modes with respect to the Laplace operator d 2/du® + 3*/dv*
on a bounded plane domain D. With respect to such a system
any continuous function f(#,v) on D which vanishes on the
boundary has the expansion

fp) = 3 f@d. o), (49)

acl
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where

f@)= J; f(u,v)g, (u,v) du dv.

Let @ (u,0,w) = G (x,y,2|u,v,w) be the Green’s function
for a perpendicular cylinder with cross section D. Comput-
ing as in Jackson'® one obtains the expansion

A2, _
¢ (u,v,w) = 2” 2 exp( /:,’1/2|z wl) ¢l (x’y)¢ :(u,v),
ael a
(50)

where the eigenvalue A, corresponds to V? ¢, (#,v)

= _'l- ¢n(urv)'
IX. FORMULAS FOR CYLINDERS

The case of the rectangular cylinder is a well-known
classical case,?! but the remaining formulas are expressed in
terms of our versions of the Lamé normal modes.

A. The Rectangular Cylinder V = {{xy,2)/0<x<a,
O<y<by

P (u, v,w)—-— Z E

m=1n=1

exp{ — w[(m/a)* + (n/b)*1"?z — w|}

8 [(n/ay + (/b)Y
XAy (X D), (1), (51
where
a,, ,(u,v) = 4 sin(mmu/a) sin(wnv/b). (52)

With the parameter set M(S) = {(m,n)|m>1, n>1} one has
a complete set of Dirichlet normal modes for the square
{(x)|0<x<a, 0<y<b }.
B. The »/4-Triangular Cylinder V = /(x,y,z)/0<y<x<a/
n—1
@ (uv,w) = — Z >
n=2m=1

exp[ —ma~'(m* + n?)"?|z — w|]

% (m )
xam,n (x’y)am,n (u)v)! (53)
where
sin(wmu/a) sin(mmv/a)
= 54
% (4,0) sin(wnu/a)  sin(rnv/a) 54

With the parameter set M(S) = {(m,n)|0 <m < n| these
Dirichlet normal modes form a complete set.”’

C. The »/6~Cylinder
V = ((xy,2)10<V 3y<xy<(a — x5}

n—1

D (uvw) =

V3@ S me 0 1

X exp[ — (477/30)[2 et w|(n2 —mn + m2)1/2]
(% — mn + m»)"?
X ()0 (140), (55)

where [x] denotes the greatest integer less than or equal to x,
and where
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a,, ,(u,v) = 4[sinQ2m(n + m)u/3a) sinQm(n — m/v 3a)
— sinQm(2n — m)u/3a) sinQRarmv/v/ 3a)
— sin(2m(n — 2m)u/3a) sinQRQwnv/v/ 3a)l. (56)
With the parameter set M(S) = {(m2,7)]0 <m <n <2m] one
has a complete set of Dirichlet normal modes.
D. The 7/3-Cylinder V = {(x.y.2)/0<y<1"3x,
y<(a—xh1/3)

P (u,v,w) = ‘/1 > nil

30 n=2m=1

X [( -—41T/3a)|z — wl(n2 —mn + m2)1/2]
(nz —mn + m2)1/2
><¢(m,n) (x’y)¢ Fm,n) (u,U), (57)

where ¢, ., =a,, , +i8, ., and where

a,, ,(u,v) = 2[sin(27(n + m)u/3a) sin(2m(n — m)v/v/3a)
— sin(27(2n — m)u/3a) sin(2rmyv/+/ 3a)
— sin(2m(n — 2m)u/3a) sin(2rnv/v/3a)),
(58)
B.. . (u,v) = 2[sin(2r(n + m)u/3a) cos(2m(n — mv/v/ 3a)
— sin(2m(2n — m)u/3a) cos(Qmmuv/v/ 3a)
— sin(2m(n —2m)u/3a) cosQmrnv/v/ 3a)].
With the parameter set M(S) = {(m,)[{0 <m <n, m,neZ}
the complex functions é,,,, ,, form a complete set of Dirichlet
normal modes. The relationship between L(S) and M(S) is

depicted in Fig. 10, which also allows one to infer the addi-
tional relations in the real modes. One may thus write

2 =& 1 4mn
D (upw) == —e (_ —-w)
(u,0,w) a n;n xp| — = |z — w|

XBn,Zn (x’y) Bn,Zn (u,v)
2 o0 n—1
V38 S (41

{ — @7/3a)|z — w|(n® — mn + m*)'7?]
(n* —mn + m?»'2

Xexp

X (am,n (x’y)am,n (ll,l)) + Bm,n (x’y)ﬁm.n (U,U)) *

X. FORMULAS FOR PRISMS

A. The Rectangular Box

V = [(x),2)/0<x<8,0<y<b,0<z<c)
l o0 oo o

¢ Yy =
(w,vw) 2mrabe =, mZ.——;l ,,;1

5k.m,n (x,y,z) Bk,m,n (u,v,w) (60)
(k/a)* + (m/b)* + (n/c)*’

where

B (0,0) = —8sin(rku/a) sin(rmuv/b ) sin(mnw/c).

(61)

With the parameter set M(S) = { komn)lk>1, m>1, n>1,
k.m,neZ}, one hasa complete set of Dirichlet normal modes
for the box. It should be noted that the expansion reported in
Courant and Hilbert?? is flawed, but the formula is very clas-
sical and appears in Jackson. '8

B.The 7/4 Prism V = ((x,y,2)/0<y<x<a, O<z<hy

1 % w k—1
P (up,w) = 27a%h nz_,l kgz m};]
Bl nX:,2) By, (0,0
k /ay* + (m/a)* + (n/b )’ (62)
where
B (1,0,0)
e PR

With the parameter set M(S) = {(k,m,n)|I<m<k — 1,
1<n} one has a complete listing for these normal modes.

C.The 7/6 Prism V = {(x,y,2)/0< 1 3y<x, y<@—xh/3,
ogzgcef

0 o0 n=1
D (u,v,w) = ———1—-——2—
12v/3ma’c < In=2m=(n/2]+1
ﬁk,m,n (x,y,z) Bk,m,n (u,U,l.U)

[(m* — mn + n?/(32)%] + [k */(4c)?]
(64

where 8, . , (u,0,w) = 2a,, . (uw) sin(rkw/c), with a,,,(u,p)
defined by (56). One obtains a complete set of real Dirichlet
normal modes with the parameter set

M(S) = [(k,m,n)|k>1,0<m <n <2m]j.

D.The 7/3 Prism V = {(x,,2)/0<y<1 3x, y<(a — x)173,

n—1

+ 6V 3ma*c ,;,:1 ,.Z: 2 (65)

2 m={n/2) 41

(59) O<z<ce/
]|
1 s & nal mmy AKX P2, *mn 0w,
¢(u,U,UJ)= 2 2 Z 2 ¢(k' ’)( ’J: ) ¢(/; ')( 2 ) 2
12V 3ma’c &, =2 = [n? —mn +m )/(3&) 1+ [k /(4C) ]
- i & i Qi nam (x’y’z)ak,m.zm (u,0,0) 1
12v/3ma’c &\ 20 [n%/30%] + [k %/ (4c)?]
[ak,m,n CI 2, @0,0) + By 1 (X 9.2) B 11 (u,v,w)]
[(n* — mn 4+ m®/(3a)*] + [k*/(ac)?] '
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where @ ,nny = Xmn + 1 Bim,n and where a, ., (w,0,w) = 2 B, , (u,) sin(wkw/c), and By . , (u,0,w) = 2a,,, , (4,v)
Xsin(mkw/c), with a,,, , and B, , as in (58). The parameter set M(S) = {(k,m n)[k>1 O<m < n} determines a complete
orthogonal set of the complex modes.

XI. FORMULAS FOR THE TETRAHEDRA

Our most novel formulas appear in this section. The derivation of the normal modes for these domains makes essential
use of our group-theoretic approach. In these cases it is even hard to depict and generate the image crystal structures through
geometric constructions.

A. Primitive Octahedral Domain V = {(x,y,2)/x<y, 0<z<X, y<a/.

o m—1 k- B ,m,n(x,y,z)ﬁ ’m,n(uyv’w)
YT 3

D (u,v,w) =
( )= 2ma 2y~ (kP4 mP+n?)

(66)

where
sin(mku/a) sin(mkv/a)  sin(wkw/a)
B Yup,w) = —8 |sin(mmu/a) sin(rmv/a) sin(rmw/a)| . ()
sin(mnu/a)  sin(wnv/a)  sin(wrnw/a)
The above Dirichlet normal modes form a complete set with the parameter set M(S) = {(k,m,n)|0 <n <k <m}.

B. Centered Octahedral Domaln V = {{x,y,2)/x<y, 0<z<x, x + y<2a)

& — — Bkmn(x’y’z)ﬁkmn(uvw)
D (u,p,w) = ; 5
ma KZan=( +3)/2]m4k——n+13(k + m? + n?) —2(km + kn + mn)
where

(68)

sin(ru(k + m — n)/2a) sin(wv(k + m — n)/2a) sin{(rw(k + m — n)/2a)
BicmnYuv,wy= —8 | sin(ru(k —m + n)/2a) sin(7v(k —m + n)/2a) sinfmwk —m +n)/2a) . (69)
sin(mu( — k + m + n)/2a)  sin(m( —k + m + n)/2a)  sin(mw( — k + m + n)/2a)
One obtains a complete orthogonal set with M(S) = {(k,m,n)|1<m <n <k <m + n}.

C. Large Tetrahedral Domain V = {(x.y,.2)/x<y, —x<z<x, x + y<2a/

d’(uvw):—- i kot gl Bty XaV52) ¢.:‘;(,m,n)(u’v!w) ’
k—3n=2m=13(k2+m2+n2)—-2(km+kn+mn)
LSS SN mlenn) 3 5 S s
Ara =y niZ m? + n® Ta Zan=1Ex3y2)m=K=—n+1

ak,m,n (x’y9z)ak,m,n (U,U,W) + Bk,m,n (x,y,z) ﬂk,m,n (u ,U,LU)

(70
3(k 2+ m* 4+ n*) —2(km + kn + mn)

where
_ cos(mu(k + m — n)/2a) cos(mv(k + m — n)/2a) cos{(mw(k + m — n)/2a)
Qo) =4 | cos(mu(k —m + n)/2a) cos(mv(k — m + n)/2a) cos(mw(k — m + n)/2a) |, an
cos(mu( — k +m + n)/2a)  cos(mv( — k + m + n)/2a)  cos(mw(—k +m + n)/2a)
and B, ,,, , (,0,w) is as in (71), except that cos is replaced by the sin. A complete set of orthogonal complex modes ¢, ...,
=@y + i Bimn is obtained with M(S) = {(k,m,n) = [l<m<n<k}.

XIi. SUMMARY wedge and rectangular prism are in the existing litera-
We have determined all the domains bounded by linear ture.*!® For the Green’s functions we have numerically eval-
planes for which the image method determines the solution uated the Coulomb sums as well as the eigenfunction expan-

of the potential problem. In the applications one considers sions, which required special summation methods, and we
such domains to have conducting walls. The domains are found numerical agreement. We found the partial Coulomb
listed in Table I, together with the point group and lattice sums over invariant sets of indices to be rapidly convergent
which determine the crystal structure of the images. The when three-dimensional lattices were involved, and to be
lattice parameters are given in the text, as are the Green’s moderately rapidly convergent fOT_ two-dlmensmnal.lattlceg,
functions associated with each domain. Solutions for the but we have refrained from including our mathematical esti-
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TABLE L. Image domains

Schoenflies
Domain corner group Lattice
Parallel Plates C, (1 dim)
m/n-Wedge C.. None
(r/2,7/2,7w/n)—Corner D, None
(7r/2,7/3,7/3)-Corner T, None
(n/2,r/3,7/4)-Corner 0, None
(7w/2,7/3,m/5)-Corner Y, None
Open Channel C,, (1 dim)
Prismatic Wedge D, (1 dim)
Open Rectangular Cylinder C,, Primitive rectangular (square if 2 sides equal)
Closed Rectangular Cylinder D,, Primitive rectangular (square if 2 sides equal)
Rectangular Prism D, Primitive orthorhombic (tetrahgonal or cubic if equal sides)
Open 7/4-Triangular Cylinder Ce. - Square
Closed m/4-Triangular Cylinder D,, Square
7/4-Triangular Prism D, Primitive tetragonal (cubic if equal sides)
Open 7/3~Triangular Cylinder C,, Hexagonal (2 dim)
Closed 7/3-Triangular Cylinder D, Hexagonal (2 dim)
w/3-Triangular Prism D, Hexagonal (3 dim)
Open 7/6-Triangular Cylinder (o Hexagonal (2 dim)
Closed 7/6-Triangular Cylinder D, Hexagonal (2 dim)
m/6-Triangular Prism D, Hexagonal (3 dim)
Tetrahedral Domain T, Face centered cubic
Primitive Octahedral Domain o, Primitive cubic
Centered Octahedral Domain o, Face centered cubic

mates on the rates of convergence of these sums in this paper.

The eigenfunctions that we have displayed also arise in
a number of other boundary value problems, such as those
connected with cavity resonators and waveguides, but these
problems also require the Neumann normal modes, which,
as we indicated, can be defined with symmetric sums.
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