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Abstract—The problem is studied through the concept of influence (Green's) function for Laplace
equation. When the classical eigenfunction expansion method (EEM) is used in elliptic PDEs for the
construction of Green's functions, the latter appear in the form of non-uniformly convergent series.
the ones that are not suitable for immediate computational applications. To refrain from this defect.
a modified version of the EEM has earlier been proposed, the key point of which is splitting off
the singular and regular components of Green's function. This radically enhances the computational
effectiveness of the approach. The modified version of the EEM is applied in this study 1o a variety of
(mixed) boundary value problems stated for the two-dimensional Laplace equation over the circular
ring-shaped region. Results are obtained in the form suitable for engineering applications.

1. INTRODUCTION

The field of potential, generated by a point source in a region, is usually interpreted
in physics through the influence function of a point source. In mathematics, in
turn, it is associated with the Green’s function of the corresponding boundary value
problem for Laplace equation. Clearly, the compactness of the Green's function is
a defining issue in engineering applications. Unfortunately. the representations of
Green’s functions for PDEs that are available in literature, are rarely appropriate for
the immediate computational use. As one of the rare examples of an immediately
computable form, recall the classical (Tikhonov and Samarskii, 1963) expression
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for the Green’s function of Dirichlet problem stated for Laplace equation on the
disk {(r,¢) : 0 < r < a.0 < ¢ < 27}. Here z = r(coseg + ising) and
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¢ = p(cos s + i sin ) represent the field and the source point, respectively, while
¢ stands for the complex conjugate.

In the standard Green’s function-related texts (see, for example, Morse and
Feshbach 1953; Tikhonov and Samarskii, 1963 and Smirnov, 1964), one finds
readily computable expressions for Green’s functions of the Dirichlet problem for
such regions as a half-plane, a circular sector, an infinite strip, and a semi-strip. For
instance, the expression
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T 27 [cosh(x — &) — cos(y —n)][cosh(x + &) — cos(y + )]

represents the Green’s function of the Dirichlet problem on the semi-strip {(x, y) :
0 <x <00,0<y<mx}. Here (x, y) and (&, n) represent the field and the source
point, respectively.

To be accurately computed, many of the existing representations of Green's
functions usually require certain adjustments prior to the actual involvement in a
numerical computation. Those adjustments are sometimes quite nontrivial. Recall,
for example, the well-known double-series form
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of the Green’s function for Dirichlet problem stated on the rectangle {(x, y) : 0 <
x <a, 0 <y < b}, where £ = mrm/a and . = Im/b. The above expression
is not appropriate for accurate computations, because the series in Eqn (3) does
not uniformly converge. This computational deficiency can, however, be fixed for
series representations of the type in Eqn (3). From Melnikov (1998), for example,
one can find out how such a series reduces to an accurately computable form by
explicitly separating its logarithmic singularity. Such an operation eventually yields
a uniformly convergent series for the regular component of Green’s function.

Recall another representation that is not directly suitable for computing. That is
(Smirnov, 1964)
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the Green’s function of the mixed problem

dula, )
ar
stated for Laplace equation on the unit disk (@ = 1). Here R symbolizes the real
part of a complex-valued function and @ = rp expli (¢ —¥)], with (r, ¢) and (p, ¥)
representing the field and the source point, respectively.
As it follows from Eqn (4), the regular component of G4(z.¢) is expressed in
terms of the real part of a complex-valued function written in an integral form.

+ Bula,¢) =0
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Hence, the accurate computation of the entire expression in Egn (4) represents quite
a cumbersome problem itself.

A number of computable forms of Green’s functions are obtained in (Melnikov,
1998) tor elliptic boundary value problems of applied mechanics. Among those, an
alternative form of G4(z. ¢) was found there as
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Since the regular component of this form of G(z, ¢) is written as a uniformly
convergent series (its convergence rate is of the order of 1/m?), the above expression
is more computationally effective compared to the form shown in Eqn (4). Indeed,
to attain a required level of accuracy when computing the expression in Eqn (5), one
appropriately truncates the series.

It is well known that when the classical (Morse and Feshbach, 1953) EEM is
applied to the construction of Green’s functions, non-uniformly convergent series
appear. To fix this shortcoming, the modified version of the EEM was developed
in (Melnikov and Krasnikova, 1981). Within the modified version. a special
transformation was proposed allowing the singular component to be expressed
analytically, while the regular component obtained in the form of a uniformly
convergent series. In (Melnikov, 1998), it was shown that this method has proven to
be effective for many settings in applied mechanics.

Note that it is especially difficult to construct accurately computable representa-
tions of Green’s functions for multi-connected regions. In fact, none of such forms
can be found in the existing literature for the ring-shaped region. The present study
aims to fill this gap.

From mathematical physics (see, for example, Smirnov, 1964) it follows that if
the solution of the well-posed boundary value problem

B[ula, ¢)] =0, Bolu(b, ¢)] =0, (6)
stated for Poisson equation
Aulr,p) = —f(r.@), (r.p) e, (7)

over the circular ring Q2 = {(r,¢p) :a <r < b, 0 < ¢ < 27}, is found as

U(I‘.(p)=f[ Glr,o:p. ) f(p. ) dQ(p, ). (8)
@

then G(r, ¢; p, ) represents the Green’s function of the problem posed with Eqn
(6) for Laplace equation over .

Note that within this study, B, and B, are understood as continuous operators with
constant coefficients. In other words, a single type of boundary conditions (either
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Dirichlet, or Neumann, or mixed with constant coefficients) is imposed on each of
the edges of the circular ring €2. This creates eight different types of boundary value
problems for 2 to consider.

The relation in Eqn (8) suggests, in particular, a clear way of constructing
G(r,@; p. ). That is, of all of the methods for solving the problem in Eqns
(6) and (7), we select the ones which express u(r, ¢) in a form of the integral in
Eqn (8), because the latter yields the explicit expression of G (r, ¢: p, /). The EEM
represents, in fact, such a method.

2. DIRICHLET PROBLEM

If B and B, in Eqn (6) represent unit operators, then the formulation in Eqns (6)
and (7) is said to be the Dirichlet problem.

Assume that the solution u(r, ¢) to the Dirichlet problem posed with Egns (6)—(7)
is expandable in Fourier series,

I =
uir,¢) = 5un(ir‘) 4 Z[u;(r') cos(ng) + u, (r) sin(mp)]. (9)

n=l

Upon expressing the right-hand term of Eqn (7) with Fourier series

. I - o
)= i'fn(r) + Z[f,j (r)cos(ng)+ [, (r) sm(mp)] (10)
n=I
and substituting the expansions from Eqns (9) and (10) into (6) and (7), one obtains
the following set of ordinary boundary value problems

d / du,(r) n? .
= 2 : = T dy ") = —rp\r), :().I.z ..... 11

w,(a) =0, u,(h) =0, (12)

which holds for both the cosine and sine coefficients in Eqns (9) and (10).

It is important to note that the fundamental solution set of the homogeneous
equation corresponding to (11) for the case of n = 0 differs of that for the general
case of n = 1. That is why., when solving the problem posed by Eqns (11) and (12),
those two cases must be considered separately.

The standard procedure based on Lagrange method of variation of parameters
yields, for the problem in Eqns (11) and (12),

b
“n.(r):f ka(r, p)pfulp)dp. (13)

4]

where for the case of n = 0, the kernel of the integral in (13) is obtained as

1 In(r/a)In(h/p), r < p.
In(a/b) | In(p/a) n(b/r). r = p,

ko(r, p) =
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whereas forn = 1. we have

1 (bln o p2n)(r2n . 02.-7) P o,
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Clearly, the symmetry of ky(r, p) and k, (r, p) reflects the self-adjointness of the
formulation in Eqns (11) and (12).

According to the fundamental rule for coefficients of the Fourier series, one writes
the following expressions:

ku(r~ ,0) —

L [
fip) = - flo. ) costny)dyr, n=0,1,2,.... (14)
0

1 2
Lp)= ~f Slp ) sin(mfr)dyr, n=1,2,3,..., (15)
T Jo

for the coefficients f(p) and f(p) of the series that appears in Eqn (10).
Equation (13) can now be written, for both the cosine and sine coefficients of the
series in Eqn (9), as

b
u:;(r') :f kn("ﬂ)pff:(/))dp (16)

a

b
u, (r) :f k,,()“p)pj;':(_p)dp_ (17)

Upon substituting (14) and (15) into (16) and (17), and then the coefficients
ug(r), uy,(r), and u; (r) into Eqn (9), one obtains the solution u(r, @) of the Dirichlet
problem posed by Eqns (6) and (7) in the form

u(r, @) = f f[kg(r 2 Zk,,(r p)cos(neg) cos(niyr)
0

n=|

+ZAH: p)bln(nw)s1n(mlf):|f(p v)pdpdy,

n=|

which can be rewritten as

k o0
u(r,¢) = f f |: o5 p) +ZA,,(: p)eos(n(p — 1/;)):|f(p Yr)pdp dir.
0

n=|

(18)

Thus, the solution u(r, ¢) of the Dirichlet problem for Poisson equation stated on

the ring €2 is found as an integral over Q. Consequently. referring to Eqn (8), one
concludes that the kernel

|
G(r, @, p, W) = |:k(,(r p)+7ZA (r, p)cos[n(yp — I/I)]} (19)

n=I
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of (18) represents the Green's function of the Dirichlet problem for Laplace equation
on the ring. In other words, Eqn (19) delivers us the influence function of a point
source for the field of potential in the circular ring, given that the potential function
vanishes on the ring’s edges.

The form of the coefficient &, (r, p) presented earlier implies that the trigonometric
series in Egn (19) converges non-uniformly at the rate of 1/n. The analysis
reveals, causing this, three different types of singularity: (i) the principal logarithmic
singularity which shows up whenever the field point (r, ¢) approaches the source
point (o, ) (it is associated with the term (rb*/p)" in k,(r, p)): (ii) the near-
boundary singularity showing up whenever both the field and the source points
approach the outer contour, r = b, of the ring (this is due to the term (rp)"
in k,(r, p)): and (iii) another near-boundary singularity (associated with the term
[(ub)g,/ (rp)]" in k,(r, p)), which occurs whenever both the field and the source
point approach the inner contour, r = a.

The non-uniform convergence makes the expansion in Eqn (19) inappropriate
for direct computational implementations. To illustrate this issue, the profile of
G(r.: p. ) is depicted in Fig. la for @ = 1.0 and b = 3.0, with the source
point fixed at (2.0, 0.0). It has been computed by truncating the series to the partial
sum with ten terms counted. It is clearly seen that the contour lines are not smooth
enough oscillating around their expected shapes. The smoothness of the contour
lines improves somewhat but not much for higher order of partial sums (see Fig. 1b
for the profile of G(r,¢: p, ) computed with one hundred terms counted in the
truncated series).

Thus, as it follows from our analysis, the costly way of involving of higher
partial sums in computing the non-uniformly convergent series in Eqn (19) is not
productive. There is, however, an effective way of improving the convergence of
the series. This can be done by a certain decomposition of its coefficient k, (r, o).
Note that either branch of k,(r, p) is appropriate for this purpose. In what follows,
the decomposition is performed with the branch that is valid for r < p. This yields

| I I | 2n wi e 2n
ka(r, p) = o) |:(!32” —an b_:";) + bjil (b = p*)(r*" —a™)

1 a™ 1 3 2 5 5 <
l: A ](b‘” —p™)(r" —a™). forr < p.

= 2”(',-‘));1 b.-"!n(b?_n = aln) bj

With this, the series in Eqn (19) brakes down into two, the first of which, the one
associated with the term

n

a
b.‘!n(bln . aln)

in k,(r. p), is uniformly convergent, whereas the other series, associated with the
term 1/6”", is non-uniformly convergent. It allows, however, a complete summation
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(b)

Figure 1. Profile of the Green’s function in Eqn (19) with: (a) 10 terms counted; (b) 100 terms
counted.

with the aid of the standard (Gradstein and Ryzhik, 1980) formula

n

.53
Z % cos(na) = —Iny/1 — 2pcosa + p2,

n=I
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which is valid for p?> < 1, and 0 < @ < 27. The summation yields

Glr. g, p.oir)

1 - i
=5 ko(r, p) + Zk”(r. p) cos[n(y — vl 20)

n=I
1. [b* —2b%rpcos(e — ) + rip’lla* — 2a*rpcos(e — V) + r*p?)

+51n 2 2 o] 7.2 21 E
2 [r2 =2rpcos(yp — ) + p?1[b*r? — 2ab?rp cos(p — ¥) + a*p?]

where & (r, p) is (similarly to k,(r, p)) defined in two pieces and its branch that is
valid for r < p, is found as
alu(b?_u . pln') (]..'ln _ aln)

n(B2rpyr (b — an)

k;‘:(r. oy =

while the branch of k*(r, p) that is valid for p < r, can be obtained from the above
one by interchanging r with p.

Shorthanded notation can be introduced for the logarithmic terms in Eqn (20) so
that the expression for the Green’s function of Dirichlet problem on the ring of radii
a and b is finally rewritten as

. 1 b? — 2Z||a* — 22|
Glroo:p. )= —11In -
i § z —&||b?%z — a*¢|

2T

+ko(r, p)+ Y ks(r, p) cosln(p — ¥l ¢, (21)

n=1

where z and ¢ are the field and the source point, respectively.

It is important to point out that the representation just derived should inevitably
be much more effective compared to that of Eqn (19), because the series in
Eqn (21) converges uniformly allowing pretty accurate computation at a consid-
erably low cost. Figure 2 convincingly supports this point. It depicts the profile of
G (r. ¢; p. ) computed with the aid of the representation in Eqn (21) for the same
set of initial data as that used for Fig. la, included the order (ten terms counted)
of the partial sum for the truncated series. The smoothness of the contour lines in
Fig. 2 is notably higher compared even to that of Fig. 1b, where one hundred terms
have been counted in the series of Eqn (19).

3. OTHER PROBLEMS

The procedure described in Section 2 is applicable, with slight modifications, to
other boundary value problems of the class indicated earlier. In what follows, the
subsectional titles specify the types of boundary conditions to be imposed on the
inner edge, r = a, and the outer edge, r = b, of the ring.
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Figure 2. Profile of the Green's function in Eqn (21) with 10 terms counted.

In Section 3.1 we begin with deriving an effective representation of the influence
function for the “mixed—mixed” problem. Then in Sections 3.2 through 3.7, the
other problems from the class are considered.

3.1 Mixed—mixed problem
Let the following mixed boundary conditions:

dula, du (b,
M_ﬁlu(a’w):n‘ M

2it(bh, @) =0, 22
a7 ar + Baue(h. @) (22)

with f; = 0 and > = 0. be imposed on the ring’s edges. This formulation
represents the most general (of the class specified earlier) statement of a boundary
value problem for Laplace equation on the ring. The point is that all other
formulations, of the class, follow from (22) as particular cases. And the only
meaningless of them is that of “Neumann—Neumann” type (when both £, and
B2 equal zero), which simply does not allow the Green's function to exist in the
classical (Smirnov. 1964) sense.

In compliance with the EEM procedure, the Green’s function for the problem that
is posed in Eqn (22), appears in a form of the series of Eqn (19), whose coefficients
ko(r. p) and &, (r, p) are symmetric functions of r and p, and their r < p branches
are found in this case as

[I +apf In(r/a)][l — bB: In(p/b)]

ko(r, p) = S
o(r, p) aBy + bpa[1 + apy In(b/a)] o

(23)
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and
A(a.r.n, B))B(b, p.n.
ko(r, p) = - FUEG, pon ﬂz). F<p, (24)
2n(rp)*D(a.b.n, By, f2)
where
Ala,r,n,B) =(n+ apr™ + (n — aBy)a™,
B(b, p.n. B) = (n + bBa)b™ + (n — bB) p™",
and

D(a,b,n. Bi. o) = (n + api)(n + bp)b™ — (n — apy)(n — bB)a>".

It is clearly seen that the expressions for ky(r, p) and k,(r, p) in Eqns (23) and
(24) reduce to those of Section 2 for the Dirichlet problem, if both the parameters
£, and B, are taken to infinity.

Analogously to the Dirichlet problem, the expansion in Eqn (19) in the present
case does not uniformly converge (its convergence rate is also of the order of 1/n).
To improve the convergence, one of the factors of the coefficient &, (r. p) in Eqn (24)
is transformed in a manner similar to that suggested in Section 2. That is

] 1 | |
Dia.b.n, B, B2) B |:D("‘- b.n, B, B2) - ”2[’3"] " n2b>
R(a.b,n, B, B») 1

- . 25
n2b2 D(a, b.n, By, B2)  n*b> (),

where
Ra.b,n, B, p) = [112(:1 +ap)a+ bﬁg)]bz” + (n— apy)(n — bp>)a™"
= (n —ap)(a — bp2)a™ — [n(ap + bpr) + abB B> 1b™".
Substituting (25) into (24), one obtains

ky(r, p) = Ky(r, p) + E,,(!'. P).

where
Ala,r,n, B))B(b, p,n, B>)
Kn P == - & -b. ‘ "
(r.p) 2n3(b*rp)* D(a. b.n, Bi. B2) (@a.b,n, By, B)
and
R (. py = Aarn POBG. p. 1 b))

2”3(b2}‘p)"

_By splitting off the components of the order of 1/n, the above expression for
K, (r, p) regroups as

~ | r " ﬂ: n r \ i a: n
w6+ (5) +(2) + (2]



Potential fields generated by a point source 233
where

Ki(r,p)= {n[(ap) + bﬁg)((f'b)z” — (ap)™)

20t (b*rp)"
5 (Uﬁl — bﬂg)((r‘p)l” o (ab)lu)] S abﬁ]ﬁz(b?_n . plr!‘)“.lu _UEH)}

is the component of the order of 1/n”. This transforms the coefficient k, (. p) of
the series in Eqn (19) to the form

ko(r, p) = K,(r,p) + K, (r, p)

l r n tlz f ,'p n (lzp n
walG) () () ()] -

With this, the expansion in Eqn (19) brakes down onto two series, of which the one
associated with the component K, (r, p) + K (r. p) converges uniformly allowing
accurate computational implementations. The non-uniformly convergent second
series in Eqgn (19) (the one associated with the third component of &, (r, p)) sums up
analytically providing finally us with the form

0.

N\

|z = ¢lla® — z¢||b? — 2L ||b%z — a’¢|
(b2rp)?

1
G(r,@: p, ) = —[ln
2r

+ko(r, p)+2 Z[K,, (r,p) + K (r, p)] cos[n(¢p — 111)]} (26)

o=

of the Green's function to the “mixed—mixed” problem, which is accurately
computable.

[lustrating the computational efficiency of the above representation, Fig. 3 depicts
the profile of G(r. ¢: p, ), where the parameters are fixed as: a = 1.0, b = 3.0,
p=20,v =0 8 = 1.0, and f; = 5.0. The series in Eqn (26) has been truncated
{o ten terms.

3.2, Dirichlet—Neumann problem

Clearly, the case of the boundary conditions imposed on the ring’s edges as

du(b, @)

ar a
follows from that stated with Eqn (22). if ; — oc and > — 0. In physical terms
the above conditions imply that the potential vanishes on the ring’s inner edge while
its outer edge is insulated. The Green’s function is, in this case. also written as the
series in Eqn (19), whose coefficients ko(r, p) and k,(r, p) are symmetric about r
and p, and are found, for r < p. as

ula,p) =0, 0

(‘blu o pin)[rln o GZH)
2?’1(}‘,0)"([)2" 4+ aEn)

ko(r. p) = In i and k,(r,p) =
a
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Figure 3. Profile of the Green’s function in Eqn (26) with 10 terms counted.

These are obtained by taking the corresponding limits of the expressions derived
earlier in Eqns (23) and (24).

Splitting off the singular components and regrouping, one finally arrives at the
accurately computable representation

1 P2z —a*c|la? — zZ|
G(r, g p, = —11 —
(r,e:p, %) 7 | pr T

+ ) ki(r p)coslnp — ¥ (27)

r=y
of the Green's function for the “Dirichlet—Neumann” problem. The r < p branch
of k¥ (r, p) is found in this case as
a?_n blu i 2 aln —3 r!:r)
k:(r,p)z ( 7 i 1( 2 "
n(b2rp)" (" +a=")

3.3. Newmann—Dirichlet problem
The case of the boundary conditions imposed as
du(a,
42 = 0. H(b. QD) =0
ar
follows from that stated in Eqn (22), if 8y — 0 and > — oco. The Green’s function
is in this case also written as the series in Eqn (19), whose coefficients ky(r. p)
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and k, (r, p) are found by taking the corresponding limits of the expressions derived
earlier in Eqns (23) and (24). This yields, for r < p,

([)3” _ ”2”)“.3:1 4 (1'2”)
2n(rp)"(b*" 4 ai)

b
ko(r, p)=ln—) and  k,(r.p) =
(
Analogously to the derivation shown in Section 3.2, we split off the singular

components and regroup. This finally yields the readily computable representation

|b*z — a*C||b* — 2|
blz — ¢|la® — zZ|

1
Glr.e;p.yr) = —{In
2w

+ 3 k(. p) cosln(y — w)'l} (28)

n=]
of the Green’s function for the “Neumann—Dirichlet” problem, where the r < p
branch of & (r, p) is found as

% a:-‘f(pln . [}ln)“.éu s aln')
k*(r p) = i - -
n(b2rp)" (b 4 a®)

Axe

3.4. Dirichlet—mixed problem

The r < p branches of the coefficients ky(r, p) and k,(r. p) in Eqn (19) of the
Green’s function for the boundary value problem stated as

ula, @) =0, W%—ﬁgu(l).(p) = 0,
}vith B2 = 0, can be obtained from Eqns (23) and (24), if g, is taken to infinity. That
is
1+ b In(b/p)

ko7, p) = Ini(r fa@)——t20 9/8)
ol p) = Wt fa g Pinb/a)

r =.p,
and

“.'.l’n _ aln)[n{'b.?n o4 pbr) 4 ﬁgb(bzn . ﬂlu)]
2n(rp)"[n(b* + a?) + Bab(b* — a?)]

k(r, p) =

Bl

The readily computable representation of the Green’s function is, in this case,
finally obtained in the form

bRz =a*é||la® = :_EI

z— b — zZ|

|
Gr.g:p. ) = —{ln
2

a0

+kolr, p) — Inr + Zk:(r. p)cos[n(p — wr)]}. r<p,. (29)

n=|
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where the r < p branch of &} (r, p) is found as

“_a'_‘n (bln ¥ p2n) L ﬁzb[plu:(hlnr o uln ¥4 b]n(p,!n o alrl)]

H(bzl‘p)” [”(bzn = ”?.n) = ﬁgb(bl” — aln)]

Note that if 2 = 0. then the expression in Eqn (29) reduces to that of the
Green's function for the “Dirichlet—Neumann™ problem presented with Eqn (27) in
Section 3.2. On the other hand, the expression of Eqn (21) for the Green’s function
of the Dirichlet problem, derived in Section 2, does not directly follow from that
of Eqn (29) when f, is taken to infinity. An additional algebraic transformation is
required for that.

kir, p) = (r* —a™)

3.5. Mixed—Dirichlet problem

The r < p branches of the coefficients ky(r, p) and k,(r. p) in Eqn (19) of the
Green’s function for the boundary value problem stated as
dula, @)
A0l ) + pula, ) =0,
ar

with B = 0, can be obtained from Eqns (23) and (24), if B is taken to infinity. That
is

(b, ¢) =0,

ko(r, p) = In(,b/p)-:%.
and
B — p™a(r® + a*) + Bia(r® —a*")]
2n(rp)[n(b* + a*) + Bra(b> —a®")]
Splitting off the singular components, one obtains the effective representation
bz — a’¢|b* — 2|
Iz~ ¢lla? = 28|

ka(r. p) = rsop.

|
G(ropip. W) = E{ln |

+ ko(r, p) + Zk:(r. p)eos[n(e — Yy, r<p. (30)

n=I
of the Green's function under consideration. The r < p branches of kj(r, p) and
k! (r, p) are found in this case as
. Bialn(b/r)In(p/b)
ko(r, p) =
| -+ BialIn(b/a)

and
nr® 4 a®) + Bial(* —a®™) + ¥ — ™))
n(bzrp)nln(b?.n 4+ any 4+ ﬁ]ﬂ(bz" == aln)]

Note that if g = 0, then the expression in Eqn (30) reduces to that of the
Green's function for the “Neumann—Dirichlet™ problem (see Eqn (28)). However,

k:(f ﬂ) — aln (pln . blr:)
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analogously to the situation in the previous section, some additional algebraic
transformation is required to reduce it to that of Eqn (21).

3.6. Neumann—mixed problem

The expression in Eqn (26) can be considered as a efficient representation of the
Green’s function for the boundary value problem

8 4 X a I.
P oy 2D g =D,
ar ar

with fy = 0, if the components kq(r, p), K, (r. p), and K . (r. p) are obtained from
those shown in Section 3.1 by letting 8, be zero. This yields

ko(r, p) = __]?—/p r<p

ﬂgb
K, (r, p)
s _— (rlu +c.!2”')[(ﬂ +ﬁ2b)b2” 4 (” o ﬁgb)pz"]
== — BabVa? — Byt I ]
[(H Prbla P2 ]2J13(b2f'p)”[(11 + Bab)b*" — (n — Brb)a]
rsp,
and
K r; p)= —&b—{n[(rb)l” — (ap)z"] — [(rp)z” - (ab)z"]}‘ F£p.
" 2n3(b2rp)" :

3.7. Mixed—Neumann problem

Analogously to Section 3.6, the efficient representation of the Green's function for
the boundary value problem

dula, du(h,
_H(a Qo} —ﬁ;u(u.(p):(). —“(J (P) :0
ar ar

with 8, > 0, can also be given by Eqn (26). The components ko(r, p), K,(r, p).

and K J(r. p) are obtained, in this case, from those shown in Section 3.1 by letting

B> be zero. This yields

| 4+ Bialn(r/a)
kolr.p) = ————, r<p
pra
K,(r. p)
= [(n — Bia)a™ — ﬁmbl"]

r<p,

(b + p™)[(n + Bra)yr™ + (n — ra)a™]
2”2(})2!'{))"[(” +ﬁ]£l}b2” — (= ﬁla)a‘.?n] ’
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and

ﬁlfl

K”(I'. ﬂ) = 2”3([92}-{))':

{H[(f'b)z” = (up)ln] o [(rp)’ln . ((H))EH]}‘ r& .

4. CONCLUSION

The emphasis in this study is on the providing of engineers and other practitioners,
who work in industry, with computationally effective representations of influence
functions for potential problems formulated in elements of constructions that are
annular in shape. In addition, the expressions of influence functions derived herein,
can also be of help in solving problems formulated on regions that are not quite
annular but close to that, like a circular ring with cutoffs or extra apertures. The
point is that Green's functions, being used as kernels of harmonic potentials (see
Melnikov, 1977), may in such cases, significantly enhance the productivity of the
boundary element method.
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