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Abstract

An exact study on reradiation of an acoustic field due to radial/axial vibrations of a baf-
fled spherical piston, while eccentrically positioned within a fluid-filled thin spherical elastic
shell, into an external fluid medium is presented. This configuration, which is a realistic idea-
lization of a liquid-filled spherical acoustic lens with focal point inside the lens when used as
a sound projector, is of practical importance with multitude of possible applications in
ocean engineering and underwater acoustics. The formulation utilizes the appropriate wave
field expansions along with the translational addition theorems for spherical wave functions
to develop a closed-form solution in form of infinite series. Numerical results reveal that in
addition to frequency, cap angle, radiator position (eccentricity), cap surface velocity distri-
bution, and dynamics of the elastic shell can be of significance in sound radiation.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Acoustic scattering (radiation) by pairs of interacting spherical bodies is essen-

tially a multiple scattering problem that has received substantial attention in the

acoustics literature (Bostrom, 1980; Gaunaurd et al., 1995; Gabrielli and Mercier-

Finidori, 2001; Huang and Gaunaurd, 1997a; Thompson, 1977, 1983). Similarly,
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the studies of acoustic scatterers (radiators) near boundaries have taken extensive
consideration (Gaunaurd and Huang, 1995, 1996; Hasheminejad, 2001; Huang and
Gaunaurd, 1997b). On the other hand, the solutions of acoustic wave radiation
problems in multiply connected domains bounded by eccentric spherical surfaces
seem to be quite sparse. Roumeliotis et al. (1991) and Roumeliotis and Kanello-
poulos (1992) employed a special shape perturbation method to derive analytical
expressions for the acoustic resonance frequency shifts in a hard- (soft-) walled
spherical cavity, caused by introduction of an eccentric small inner sphere. The
more closely related problem of acoustic radiation from a spherical source embed-
ded eccentrically within a fluid sphere and vibrating with an arbitrary, axisym-
metric, time-harmonic velocity distribution is analyzed by Thompson (1973). In
more recent papers (Lease and Thompson, 1991a, b), this analysis is generalized
for a number of non-axisymmetric spherical sources within a fluid sphere. Just
recently, an exact study on radiation of sound from a shell-encapsulated (eccentric)
spherical source, which is undergoing harmonic modal surface vibrations, is offered
by Hasheminejad and Azarpeyvand (in press).

The acoustic radiation from pistons placed on baffles has extensively been con-
sidered in the literature for various piston and baffle geometries (i.e. planes,
spheres, cylinders, and spheroids). The self-radiation impedance for the classic
problem of a radially (axially) vibrating piston on a rigid sphere is presented by
Skudrzyk (1971) and Morse (1981). The mutual acoustic impedance of pistons on a
sphere and a cylinder are analyzed by Sherman (1959) and Greenspon and Sherman
(1964), respectively. Likewise, the acoustic radiation impedance of curved vibrating
caps and rings located on hard baffles of prolate and oblate spheroidal obstacles are
formulated by Van Buren (1971) and Baier (1972). Just lately, Boisvert and Van
Buren, 2002 studied the self and mutual radiation impedances for rectangular piston
sources vibrating on a rigid prolate spheroidal baffle.

A small spherical source freely suspended inside a fluid-filled spherical elastic
shell, which is itself submerged in an unbounded acoustic field, may be regarded as
a sensible model for a spherical acoustic lens when used as a sound projector
rather than a receiver (Belcher, 1993; Makarchenko et al., 1989). A very simple
model of the spherical acoustic lens used as a receiver was originally analyzed by
Boyles (1965). In this analysis, the author considered a plane wave to be incident
upon the lens and solved for the pressure field at any point within it, under the
assumption that the actual sensor (hydrophone) was infinitesimally small so that it
did not perturb the field. The same author has also published an analysis of the
lens as a sound projector (Boyles, 1969) where he assumed that the actual source
was a point source located at the focal point of a perfectly focusing (Luneburg)
lens. A primitive model of the spherical acoustic lens used as a sound projector is
examined by Thompson (1973). A more realistic model is analyzed by Hasheminejad
and Azarpeyvand (in press). An analytical study on reradiation of acoustic signals
(transient pulse) from a centrosymmetrical internal point source through a fluid-
filled spherical elastic shell into an external fluid medium is offered by Poddubnyak
et al. (1985) and Menton and Magrab (1973). The principal objective of current
paper is to study the effect of cap angle (effective radiation area) on acoustic radi-
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ation from a fluid-filled spherical acoustic lens containing an internal eccentric baf-
fled spherical piston. Therefore, the present work is in fact a realistic extension of the
basic models presented by Thompson (1973) and Hasheminejad and Azarpeyvand
(in press) for the case when the internal source is partially baffled (i.e. it is not wholly
vibrating).
2. Formulation

The problem considered here is that of computing acoustic radiation from a
spherical elastic shell with an internal eccentric baffled spherical piston that is
radially/axially vibrating with a time-harmonic, axisymmetric, and arbitrary velo-
city. The geometry and the coordinate systems used are depicted in Fig. 1. The
source sphere is considered to be displaced a distance r0 from center of the shell
along the z-axis as shown in the figure. The origins O1 and O2 of the two spherical
coordinate systems ðr1; h1; W1Þ and ðr2; h2; W2Þ are place at the center of the radiator
and the shell, respectively. Both coordinate systems have the same azimuthal coor-
dinate W, which is not shown in the figure. The direct distance between the center
of the radiator and the receiver (field point) is r1; the distance between the center of
the shell and the receiver (field point) is r2. The problem can be analyzed by means
of the standard methods of theoretical acoustics. The fluid is assumed to be invis-
cid and ideal compressible. Thus, one may start with the familiar wave equation in
an ideal compressible fluid (Pierce, 1991):

@2p

@t2
� c2r2p ¼ 0 ð1Þ

where p is the acoustic pressure, c is the ideal speed of sound evaluated at ambient

conditions, and r2 is the Laplacian operator. As the spherical source is assumed to
undergo time-harmonic surface oscillations with frequency x, we expect solutions
Fig. 1. Problem geometry.
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of the form (Pierce, 1991)

pðr; h; W; tÞ ¼ Re �ppðr; h; W;xÞe�ixt
� �

ð2Þ

where Re indicates the real part of a complex number, and quantity �ppðr; h; W;xÞ
may be complex. Substitution of above presumption into (1) yields a Helmholtz-
type equation:

ðr2 þ k2Þp ¼ 0 ð3Þ
where k ¼ x=c is the acoustic wave number, and we have assumed harmonic time

variations throughout with e�ixt dependence and also the over-bar notation sup-
pressed for simplicity.

The spherical source is supposed to be rigid except for a cap region (0 � h � h0),
which is vibrating radially (axially) with a prescribed velocity U ð0Þ (U ð1Þ). The cap
velocity can be expressed as a linear combination of spherical modes in the form of
infinite series (Skudrzyk, 1971)

uð0ÞðxÞ ¼
P1
n¼0

U
ð0Þ
n ðxÞPnðcosh1Þ ¼ U ð0ÞðxÞP0ðcosh1Þ 0 � h1 � h0

0 h0 � h1 � p

�

uð1ÞðxÞ ¼
P1
n¼0

U
ð1Þ
n ðxÞPnðcosh1Þ ¼ U ð1ÞðxÞP1ðcosh1Þ 0 � h1 � h0

0 h0 � h1 � p

� ð4Þ

where U
ð0Þ
n ðxÞ and U

ð1Þ
n ðxÞ are the modal coefficients of radial and axial velocity

distributions, respectively. These coefficients can readily be determined after multi-
plying both sides of (4) by Pmðg1 ¼ cosh1Þ; ðm ¼ 0; 1; 2; . . .Þ, integrating over dg1,
and subsequently applying the orthogonality property of the Legendre functions.
As a result, we obtain

U ð0Þ
n ðxÞ ¼ nþ 1

2

� �
U ð0ÞðxÞ

ð1
g0

Pnðg1Þdg1 ¼
1

2
Pn�1ðg0Þ � Pnþ1ðg0Þ½ �U ð0ÞðxÞ

U ð1Þ
n ðxÞ ¼ nþ 1

2

� �
U ð1ÞðxÞ

ð1
g0

g1 � Pnðg1Þdg1

¼ 1

2

nþ 1

2nþ 3
Pnðg0Þ � Pnþ2ðg0Þ½ � þ n

2n� 1
Pn�2ðg0Þ � Pnðg0Þ½ �

� �
U ð1ÞðxÞ

ð5Þ
where the integrations are performed by making use of the following well-known
relations (Skudrzyk, 1971):

ð2nþ 1Þ
ð1

g0

PnðgÞdg ¼ Pn�1ðg0Þ � Pnþ1ð g0Þ

ð2nþ 1ÞgPnðgÞ ¼ ðnþ 1ÞPnþ1ðgÞ þ nPn�1ðgÞ
ð6Þ

The fluid in the interior of the spherical shell is denoted as region I, while the
outer medium is denoted as region II. In region I, the possibility of both incoming
and outgoing (standing) waves exists while in region II, only outgoing waves are
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possible. The solution of the Helmholtz equation for the acoustic pressures can be
obtained by means of spherical Hankel functions for the exterior region and
spherical Hankel functions of the first and second kind for the interior region. In
addition, due to the assumed velocity distribution, the acoustic pressure must be
symmetric about the z-axis, i.e. independent of the azimuthal coordinate W.
Accordingly, the acoustic pressure inside the fluid-filled spherical shell may be
represented by

pIðr1; h1;xÞ ¼
X1
n¼0

cn anðxÞhð1Þn ðkr1Þ þ bnðxÞhð2Þn ðkr1Þ
h i

Pnðcosh1Þ ð7Þ

where cn ¼ inð2nþ 1Þ, k ¼ x=c is the acoustic wave number in fluid medium I, h
ð1Þ
n

and h
ð2Þ
n are spherical Hankel functions of first and second kind, respectively

(Abramowitz and Stegun, 1965), Pn is Legendre polynomial, and anðxÞ, bnðxÞ are
unknown modal coefficients. Similarly, noting that the external fluid medium is
unbounded and keeping in mind the radiation condition, the solution can be
expressed as a linear combination of outgoing spherical waves as follows:

pIIðr2; h2;xÞ ¼
X1
n¼0

cncnðxÞhð1Þn k�r2ð ÞPnðcosh2Þ ð8Þ

where k� ¼ x=c� is the acoustic wave number in fluid medium II, and the asterisks
refer to the acoustic parameters in the outer fluid medium.

The equations of motion for a closed spherical elastic shell, including both mem-
brane (extensional) and flexural (inextensional) effects, are presented by Junger and
Feit (1986). The general displacements of the spherical shell are normally expressed
in terms of the shell’s midsurface deflections. Considering only the nontorsional
axisymmetric motions, the midsurface radial Wðx; h2Þ and tangential Vðx; h2Þ dis-
placements may be expanded in spherical harmonics as (Junger and Feit, 1986)

Wðx; h2Þ ¼
X1
n¼0

WnðxÞPnðcosh2Þ

Vðx; h2Þ ¼
X1
n¼0

VnðxÞP1
nðcosh2Þ ð9Þ

where P1
nð Þ is Legendre function of first order (Abramowitz and Stegun, 1965).

The equations of shell motion are satisfied if the modal coefficients WnðxÞ and
VnðxÞ satisfy the equations (Junger and Feit, 1986)

X2 � ð1þ b2Þðt þ kn � 1Þ
� �

VnðxÞ � b2ðt þ kn � 1Þ þ ð1þ tÞ
� �

WnðxÞ ¼ 0

� kn b2ðt þ kn � 1Þ þ ð1þ tÞ
� �

VnðxÞ þ X2 � 2ð1þ tÞ � b2knðt þ kn � 1Þ
h i


WnðxÞ ¼ � b2ð1� t2Þ
Eh

DpnðxÞ ð10Þ

where b2 ¼ h2=12b2, kn ¼ nðnþ 1Þ, X ¼ xb=cp is a nondimensional frequency
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parameter, c2p ¼ E=ð1� t2Þqs is the phase velocity of compressional wave in the

elastic shell, qs is the solid material density, h is the shell thickness, E is the modu-

lus of elasticity and t is the Poisson ratio. Furthermore, Dpn ¼ pI
n � pII

n is modal

component of the acoustic pressure differential at the shell’s surface that can be
expressed in the coordinate system of the elastic shell ðr2; h2Þ through application
of the classical form of translational addition theorem for bi-spherical coordinates
(Ivanov, 1970):

h
ð1Þ
n ðkr1Þ

h
ð2Þ
n ðkr1Þ

( )
� Pnðcosh1Þ ¼

X1
n¼0

Rmnðkr0Þ h
ð1Þ
m ðkr2Þ

h
ð2Þ
m ðkr2Þ

( )
� Pmðcosh2Þ ð11Þ

where

Rmnðkr0Þ ¼ im�n
Xmþn

l¼ m�nj j
elð�iÞlð2l þ 1Þbnlm jlðkr0Þ ð12Þ

in which el ¼ 1 (el ¼ ð�1Þl) when O1 is on the left (right) hand side of O2 (Fig. 1),

bnlm ¼ ðnl00jm0Þ2, and Clebsch–Gordan coefficients are defined, with q ¼
ðl þ nþmÞ=2 and 2q being even, as

ðnl00jm0Þ ¼ ð�1Þmþqq!

ðq� nÞ!ðq� lÞ!ðq�mÞ!




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þ
ð2qþ 1Þ! ð2q� 2nÞ!ð2q� 2lÞ!ð2q� 2mÞ!

s
ð13Þ

and when 2q is odd, ðnl00jm0Þ ¼ 0. Subsequently, incorporation of (11) in (8),
along with (7), allows us to express the pressure differential at the shell’s surface as

Dpðh2;xÞ ¼
X1
n¼0

DpnðxÞPnðcosh2Þ ð14Þ

where

Dpnð xÞ ¼ cn
X1
m¼0

amðxÞ hð1Þn ðkb�Þ þ bmðxÞ hð2Þn ðkb�Þ
h i

Rmnðkr0Þ

� cn cnðxÞ hð1Þn k�bþð Þ ð15Þ

in which b� ¼ b� h=2 (Fig. 1), and the appropriate change of indices are per-
formed to enable factoring out the angular function Pnð Þ.

The unknown modal coefficients, anðxÞ, bnðxÞ, and cnðxÞ, must be determined
by imposing the suitable boundary conditions. Accordingly, the continuity of nor-
mal velocities at the surface of the source requires that

1

ixq
� @p

Iðr1; h1;xÞ
@r1

�
r1¼a

¼
X1
n¼0

U
ð0Þ
n ðxÞ

U
ð1Þ
n ðxÞ

( )
Pnðcosh1Þ ð16Þ
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where q is the fluid density in (inner) region I. Similarly, the continuity of normal

velocities at the inner and outer surfaces of the spherical shell implies that

ð�ixÞWðh2;xÞ ¼ 1

ixq
� @p

Iðr2; h2;xÞ
@r2

�
r2¼b�

¼ 1

ixq� �
@pIIðr2; h2;xÞ

@r2

�
r2¼bþ

ð17Þ

Incorporating (5) in the boundary conditions (16), we obtain, for the n � 0 modes

at r1 ¼ a,

cn
iqc

anðxÞhð1Þ
0

n ðkaÞ þ bnðxÞhð2Þ
0

n ðkaÞ
h i

¼ U
ð0Þ
n ðxÞ Radial Vibrations

U
ð1Þ
n ðxÞ Axial Vibrations

(
ð18Þ

Making use of the series expansions (7) and (8), and also the addition theorems

(11) in the boundary conditions (17) yield

xWnðxÞ � cn
qc

X1
m¼0

amðxÞ hð1Þ
0

n ðkb�Þ þ bmðxÞ hð2Þ
0

n ðkb�Þ
h i

Rmnðkr0Þ ¼ 0

xWnðxÞ � cn
q�c�

hð1Þ
0

n k�bþð ÞcnðxÞ ¼ 0

ð19Þ

where the prime symbol indicates the derivative with respect to the argument, and

the modal components of shell’s midsurface displacements, WnðxÞ and VnðxÞ,
satisfy (10). Subsequently, the unknown coefficients anðxÞ, bnðxÞ, and cnðxÞ may

readily be computed by solving the linear system of equations (18), (19) and (10).
Now, from (8), the radiated acoustic pressure in the far-field may be written as

pIIðr1; h2;xÞ ¼ eik
�r1

ik�r1

� �X1
n¼0

ð2nþ 1Þ cnðxÞPnðcosh2Þ ð20Þ

where we have used the following asymptotic expansion for the spherical Hankel

function (Abramowitz and Stegun, 1965):

hð1Þn k�r2ð Þ
i
r2!r1

� i�ðnþ1Þ e
ik�r1

k�r1
ð21Þ

Subsequently, the relative on-axis forward radiated far-field pressure, or the form

function amplitude, may be defined as

f1ðx; r0Þ ¼
pIIðr1; h2 ¼ 0;xÞ

pIIðr1; h2 ¼ 0;xÞ�r0¼0

�����
����� ð22Þ

where we note that the normalization is performed with respect to the case when

the source is positioned exactly at the center of the shell. This completes the neces-

sary background required for the exact acoustic analysis of the problem. Next, we

consider some numerical examples.
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3. Numerical results and discussion

In order to illustrate the nature and general behaviour of the solution, we con-
sider a numerical example in this section. Realizing the large number of parameters
involved here, no attempt is made to exhaustively evaluate the effect of varying
each of them. The intent of the collection of data presented here is merely to illus-
trate the kinds of results to be expected from some representative and physically
realistic choices of values for these parameters. From these data, some trends are
noted and general conclusions made about the relative importance of certain para-
meters. Correspondingly, noting the crowd of parameters that enter into the final
expressions and keeping in view the availability of numerical data, we shall confine
our attention to a particular model. The surrounding ambient fluid is assumed to
be water at atmospheric pressure and 300 K. The elastic shell is taken to be a 3%
stainless steel shell of radius b ¼ 10 cm, and thickness h ¼ 0:03b ¼ 0:3 cm. The pis-
ton is set on a rigid spherical baffle of radius a ¼ 0:01b ¼ 0:1 cm. The interior fluid
is selected as 3M Company ‘‘Fluorinert’’ chemical FC-72 (available: http://
www.mmm.com; 3M FC). The numerical values for the input parameters, which
are used in the calculations, are summarized in Table 1. A MATLAB code was
constructed for treating boundary conditions, to determine the unknown modal
coefficients, and to compute the relevant acoustic quantities as functions of the
nondimensional frequency kbe ¼ xbe=c [where be ¼ bsinðh0=2Þ is the effective pis-
ton radius; see Skudrzyk, 1971], and distance parameter r0=b for selected cap
angles h0. Accurate computations for derivatives of spherical Bessel functions were
accomplished by utilizing (10.1.19) and (10.1.22) in the handbook by Abramowitz
and Stegun (1965). The computations were performed on a Pentium IV personal
computer with a truncation constant of N ¼ 30 to assure convergence in the high
frequency range, and also in case of close proximity of the source to the shell
boundary (high eccentricity).

The far-field on-axis radiated pressure for the case of a radially/axially vibrating
baffled spherical piston that is located at the center of the shell is primarily exam-
ined. Fig. 2 displays the effects of the nondimensional frequency, kbe, and the

cap angle, h0, on the on-axis far-field pressure magnitude, jpIIðr1; h2 ¼ 0;xÞjr0¼0.
In addition, to further examine the shell dynamic interaction effects, we have
Table 1

Input parameter values
Fluid properties

parameter
Numerical value E
lastic shell

parameter
Numerical value
Pressure (bar)
 1.00 E
 (dyn/cm2)
 2:15 
 1012
Temperature (K)
 300 h
 (cm)
 0.3
c (cm/s)
 5:12 
 104 m
 0.283
q (g/cm3)
 1.68 q
s (g/cm3)
 7.8
c� (cm/s)
 1:49 
 105 b
 (cm)
 10
q� (g/cm3)
 0.997 a
 (cm)
 0.1

http://www.mmm.com
http://www.mmm.com
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nge in the on-axis far-field pressure magnitude with the nondimensional freq
Fig. 2. The cha uency for the

radially/axially vibrating piston positioned in the center of the elastic shell for selected the cap angles.
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presented the on-axis far-field pressure magnitude in absence of the shell in Fig. 3.

Comparison of these figures leads to following observations. As the nondimen-
ange in the on-axis far-field pressure magnitude with the nondimensional frequ
Fig. 3. The ch ency for the

radially/axially vibrating piston positioned in the center of the fluid sphere for selected the cap angles.
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sional frequency is increased, the far-field pressure curves seem to oscillate about
and approach a steady value. Encapsulating the source by the elastic shell causes a
noticeable increase in the overall amplitude of the resonant oscillations that build
up in the far-field pressure curves. Decreasing the cap angle leads to a general
increase in the number of resonant peaks. Moreover, increasing the cap angle for
the radially (axially) vibrating piston instigates an overall increase (decrease) in
pressure amplitudes.

Next, in order to determine the focal points associated with the shell-encapsulated
source (Thompson, 1973; Hasheminejad and Azarpeyvand, in press), we plot in
Figs. 4 and 5 the form function amplitude 10logf1ðx; r0Þ versus the source eccen-
tricity r0=b at the nondimensional frequencies corresponding to the first and second

peak frequencies that appear in Fig. 2 for selected cap angles h0 ¼ 30
v
, 60

v
, 180

v

(see Table 2). Here, we remind that the form functions are normalization with
respect to the case when the source is positioned exactly at the center of the shell.

Consequently, except in the wholly translating (h0 ¼ 180
v
) source case (Fig. 5), a

relative minimum is observed in the figures when the source is positioned at (near)
the center of the encapsulating shell for all cap angles. Furthermore, in the latter

case (i.e. h0 ¼ 180
v
), the form function amplitude turns out to be negative which
form function amplitude versus the source eccentricity at the first and s
Fig. 4. The econd peak

frequencies for the radially vibrating piston at selected cap angles.
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demonstrates the adverse effect of source eccentricity on the radiated far-field

pressure. The eccentricity values corresponding to the primary and secondary focal
form function amplitude versus the source eccentricity at the first and s
Fig. 5. The econd peak

frequencies for the axially vibrating piston at selected cap angles.
Table 2

Nondimensional peak frequencies
Cap angle
 Nondimensional frequency (kbe)
Radial vibration
 Axial vibration
First peak

frequency

S

f

econd peak

requency
First peak

frequency
Second peak

frequency
h0 ¼ 30
v
 1.13 1
.93
 1.13
 1.93
h0 ¼ 60
v
 1.70 2
.20
 1.70
 2.20
h0 ¼ 90
v
 2.40 3
.10
 2.40
 3.10
h0 ¼ 120
v
 2.93 3
.80
 2.93
 3.83
h0 ¼ 180
v
 4.37 7
.50
 3.46
 6.95
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points at the first and second peak frequencies, as read from Figs. 4 and 5, are

summarized in Table 3.
Table 3

The primary and secondary focal points corresponding to the first and second peak frequencies of the

shell-encapsulated piston
Cap angle
 Focal point
 Eccentricity values (r0)
Radial vibration
 Axial vibration
First peak

frequency

S

f

econd peak

requency

F

f

irst peak

requency
Second peak

frequency
h0 ¼ 30
v
 Primary
 �0.651b 0
.630b �
0.651b
 0.651b
Secondary
 0.730b �
0.370b 0
.730b
 �0.380b
h0 ¼ 60
v
 Primary
 �0.599b �
0.729b �
0.610b
 �0.710b
Secondary
 0.599b 0
.781b 0
.610b
 0.781b
h0 ¼ 180
v
 Primary
 �0.651b 0
.625b 0
.000b
 0.000b
Secondary
 0.730b �
0.365b 0
.800b
 0.573b
Fig. 6. The influence of cap angle on angular distribution of the radiated far-field pressure at the

primary and secondary focal points corresponding to the first and second peak frequencies of the

shell-encapsulated radially vibrating piston (the solid/dashed line curves correspond to the primary/

secondary focal points).



S.M. Hasheminejad, M. Azarpeyvand / Ocean Engineering 31 (2004) 1129–11461142
Figs. 6 and 7 display the influence of cap angle on angular distribution of the
radiated far-field pressure at the primary and secondary focal points corresponding
to the first and second peak frequencies of the shell-encapsulated piston (see
Table 3). The solid (dashed) line curves correspond to the primary (secondary)
focal points. It is very interesting to study the change in directionality of the radi-
ated waves as the cap angle is varied. In the radially vibrating cap situation (Fig. 6),
we first observe a noticeable increase in the far-field pressure magnitude (direction-
ality) as the cap angle is increased to h0 ¼ 180

v
. Accordingly, the most efficient

sound projection characteristics (i.e. the highest far-field pressure directivity and
amplitude) for the radially vibrating cap occur for the wholly pulsating source

(h0 ¼ 180
v
). The h0 ¼ 60

v
case is perhaps the least favourable situation, as it exhi-

bits a relatively poor directionality and low amplitude. Furthermore, in this case,
the pressure patterns corresponding to the first and second focal points almost
coincide. Similar comments can be made for the axially vibrating piston problem
(Fig. 7). Here, in contrast to the radially vibrating cap case, there is an appreciable
increase in the far-field pressure directionality as the cap angle is decreased to

h0 ¼ 30
v
. Accordingly, the most efficient sound projection characteristics for the

axially vibrating cap happen for the partially pulsating source (h0 ¼ 30
v
). The h0 ¼ 180

v

Fig. 7. The influence of cap angle on angular distribution of the radiated far-field pressure at the

primary and secondary focal points corresponding to the first and second peak frequencies of the shell-

encapsulated axially vibrating piston (the solid/dashed line curves correspond to the primary/secondary

focal points).
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case is the worst situation, as it exhibits a poor directionality and very low pressure

amplitude.
Finally, to check overall validity of the work, we first used our code to compute

the normalized average radiation impedance load per unit area on the vibrating
tic radiation impedance components for a baffled pulsating spherical cap, susp
Fig. 8. Acous ended inside

a water-filled (very) light and thin spherical shell immersed in water, as a function of kbe (h � 0:0001b,

qs ¼ q ¼ q� � 1 g=cm3).
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piston by taking advantage of Foldy’s definition of the radiated power (Thompson,

1973) for the case of an eccentric baffled radially vibrating cap suspended inside a

water-filled (very) light and thin spherical shell immersed in water (i.e. we set

h � 0:0001b, qs ¼ q ¼ q� � 1 g=cm3). Fig. 8 shows that the corresponding radi-

ation impedance components precisely reduce to the curves appearing in Fig. 20.4,

page 308, in the classic monograph by Skudrzyk (1971). Subsequently, further ver-

ifications were made for the wholly vibrating cap (h0 ¼ 180
v
) suspended inside the

‘‘very thin’’ shell filled with ‘‘Fluorinert’’ chemical FC-72 and immersed in water.

Fig. 9 shows that the acoustic impedance components corresponding to the

radially/axially vibrating sphere agree very well with the pulsating (n ¼ 0)/oscillat-

ing (n ¼ 1) mode results presented in Figs. 6 and 8 of Thompson’s (1973) work.

Note that each curve is normalized to its corresponding value when the source is in

an unbounded medium. The latter validation can also be analytically confirmed by

setting h � 0 in second of (10) which automatically leads to the pertinent boundary

condition for continuity of the acoustic pressure in the non-encapsulated fluid

sphere problem (i.e. Dpn � 0 ! pI
n � pII

n ) (see Thompson, 1973). The continuity
sistive and the reactive components of the relative acoustic radiation impedan
Fig. 9. The re ce for a full

radially/axially vibrating cap (h0 ¼ 180
v
) suspended in a (very) light and thin spherical elastic shell filled

with FC-72 and immersed in water, as a function of kae (h � 0:0001b, qs ¼ q� � 1 g=cm3).
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of the radial velocities at the fluid interface is independently satisfied according
to (17).
4. Conclusions

Acoustic radiation from a shell-encapsulated baffled spherical piston, that is
undergoing time-harmonic axisymmetric radial/axial surface vibrations, is exam-
ined in an exact fashion. The solution of the problem is generated by systematically
analyzing multi-scattering interaction between the source and the elastic shell.
Accordingly, an exact treatment of the fluid/structure interaction that involves uti-
lization of the appropriate wave field expansions, shell dynamic equations of
motion, and pertinent boundary conditions in combination with the translational
addition theorems for spherical wave functions is presented. Subsequently, the
basic acoustic field quantities such as the on-axis far-field radiated sound pressure
(form function) and the pressure directivity pattern are evaluated for representative
values of the parameters characterizing the system. The numerical results reveal
that encapsulating the source by the elastic shell causes a noticeable build up of the
resonant oscillations in the far-field pressure. Furthermore, the most efficient sound
projection of the radially (axially) vibrating cap occurs for the wholly pulsating
(partially translating) configuration. The presented study can be of practical inter-
est in underwater acoustic lens analysis and design.
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