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SUMMARY 
The existence of trapped modes due to rigid obstacles placed symmetrically in between 

parallel walls having either Neumann or Dirichlet conditions imposed upon them are well 
known to occur for frequencies below the continuous spectrum or channel cut-off and for a 
range of geometric configurations. In this paper, we provide convincing numerical evidence 
for an additional isolated trapped mode of both Neumann and Dirichlet type embedded in 
the continuous spectrum (or above the channel cut-off) in the case of a rigid circular cylinder 
placed on the centre-plane of the channel. Thus, for each type of mode we give results showing 
that there is just one cylinder size and wave frequency at which the trapped mode occurs. 

1. Introduction 

IN A RECENT paper, Maniar and Newman (1) showed that at particular frequen- 
cies the in-line first-order exciting forces on those cylinders near the centre of a 
large number of identical bottom-mounted vertical circular cylinders in a linear ar- 
ray become extremely large, compared to the force on an isolated cylinder. These 
frequencies coincide with those associated with certain trapped modes around a cor- 
responding cylinder on the centre-plane of a wave channel. These trapped modes 
are of two types. The Neumann trapped modes, satisfying Neumann conditions on 
all solid boundaries and a Dirichlet condition on the centre-plane, were discovered 
by Callan et al. (2) and have been proved to exist for all values of 0 < a/d < 1 
where 2a is the cylinder diameter and 2d is the width of the channel; see Evans et 
al. (3). Numerical computations by Callan et al. (2) indicate that there is just one 
such trapped mode having a unique wavenumber, kN, satisfying kN c n/2d where 
the angular velocity mN is given by aN = (gkN tanh kNh) 3 with h the depth of the 
channel. Physically the Neumann trapped mode describes an antisymmetric sloshing 
motion about the centre-plane of the channel which is confined to the vicinity of the 
cylinder and decays rapidly down the channel. Mathematically, the value (kN)* is an 
eigenvalue of the Laplacian operator in the unbounded region contained between one 
channel wall, the centre-plane of the channel and one half of the cylinder, and (kN)* 
lies below the continuous spectrum which for this problem is [n2/4d2, 00). 

The second type, discovered by Maniar and Newman (1) and described as Dirich- 
let trapped modes, satisfy a Neumann condition of no normal flow through the cylin- 
der surface but Dirichlet conditions on both the channel walls and the centre-plane. 
They have no obvious physical interpretation in the context of water waves in chan- 
nels but are well known in the acoustical literature where they are termed acoustic 
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resonances. For a review, see (4). Maniar and Newman (1) used image arguments to 
show that both types of trapped modes would occur in the case of an infinite line of 
identical cylinders which explained the near resonance occurring when a large but fi- 
nite line of cylinders was excited by an incident wave at the trapped mode frequency. 
The largest in-line forces were experienced in head seas as might be expected but the 
effect also occurred to a lesser extent in obliquely-incident waves. 

In contrast to the Neumann trapped modes, the Dirichlet trapped modes only ap- 
pear to exist for a restricted range of a/d. Thus the computations of Maniar and 
Newman (1) suggest that a Dirichlet trapped mode exists provided 0 < a/d 5 0.677, 
a figure which the present authors have refined to 0*6788 using the same method. 
Dirichlet trapped modes also occur at higher frequencies than the Neumann modes 
but the corresponding trapped mode wavenumber squared satisfies (k”)2 < n2/d2. 
That is, it still lies below the continuous spectrum which in this case occupies 
[n2/d2, oo). The method used by Evans et al. (3) to prove the existence of a Neu- 
mann trapped mode for all a/d E (0, I) can easily be adopted to consider the 
Dirichlet modes with the result that for a fairly general cross-section described by 
y = &f(x) with f&a) = 0, a Dirichlet trapped mode exists provided 

s a 

sin(2nf (x)/d) dx > 0. 
-a 

For the circular cylinder this reduces to J1(2na/d) > 0 or a/d 5 Oe6098 consistent 
with the numerical computations. 

The method employed by Callan et al. (2) to construct the Neumann trapped 
modes involved the use of appropriate multipole potentials each of which satisfied 
the required conditions on the centre-plane and walls of the channel and which, by 
restricting the allowable range of wavenumbers to lie below the lowest point of the 
continuous spectrum, vanished at large distances down the channel. The unknown 
coefficients in a sum over all such multipoles chosen to satisfy the Neumann condi- 
tion on the cylinder were then shown to satisfy a real homogeneous infinite system of 
equations. The vanishing of the determinant of this system then provided the trapped 
mode frequencies. The same approach has been used by the authors (5) to determine 
the Dirichlet trapped modes and to confirm the results obtained by Maniar and New- 
man (1) who used a different method. This involved applying a general formulation 
valid for an arbitrary configuration of different bottom-mounted cylinders, developed 
by Linton and Evans (6) but which also appears in (7), to the special case of a long 
line of identical cylinders, assuming a phase relation between the field at adjacent 
cylinders consistent with an infinite line of cylinders, and using a method due to 
Twersky (8) to transform a slowly convergent complex infinite system to an infinite 
system having a real infinite determinant whose zeros can be determined relatively 
efficiently. 

The success of the method depends on being able to reduce the generally complex 
system to a real one for values of wavenumber k below the cut-offs (the lowest point 
of the continuous spectra) lr/2d and n/d for Neumann and Dirichlet modes respect- 
ively. In contrast, the multipole method uses sets of real functions from the start and 
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it is clear that no waves are radiated to infinity from the multipoles for wavenumbers 
below the cut-off. For values above the cut-off the system is complex using either 
method and this is to be expected since, for example, the multipoles radiate waves 
down the channel which must be out of phase with the local field since net work has 
to be done over a cycle to radiate energy. However Maniar and Newman (1, Figs 8,9), 
found that at certain wavenumbers above the cut-off, for both Neumann and Dirichlet 
modes (despite being complex), the modulus of the determinant of the system was 
extremely small, showing that only a very small energy leakage was occurring. The 
effect of this on a finite line of cylinders was a slight peak in the forces at those 
frequencies-see (1, Fig. 1). 

The authors recalculated the complex determinant arising from Twersky’s method 
and found that for a precise value of a/d and precise wavenumber the determinant 
is less than lo-’ in both the Neumann and Dirichlet cases. The implication is that 
these are in fact genuine trapped modes embedded in the continuous spectrum. The 
purpose of the present paper is to confirm this using the multipole method of Callan 
et al. (2). This has two advantages over the Twersky method. The complex nature 
of the system can be clearly seen to arise from the radiated waves from each multi- 
pole and the condition that any trapped modes should vanish at large distances can 
be confirmed readily from the form of construction of the solution. In contrast the 
behaviour at large distances is not readily available from the Twersky method which 
makes it difficult to confirm the required behaviour at large distances. 

Extensive use is made of the paper by Callan etal. (2). The aim is to rework (2) for 
k lying in the range n/2d x k < 3n/2d (n/d < k < 2n/d) for Neumann (Dirichlet) 
modes and show that it is possible to find a value of a/d and a corresponding k 
such that although each multipole separately radiates waves, it is possible to find a 
combination which does not, in addition to satisfying the Neumann condition on the 
cylinder. 

2. Formulation 

It follows from (2) that the velocity potential @ for the Neumann modes can be 
written 

@(x9 y, 0 = Re #(x, y)emiw’, (2.1) 

where #(x, y) satisfies 

(V* + k*)# = 0, in r > ;d, Iyl < d, r = (2 + y*$, Gw 

# Y = 0, IYI =d9 -oo<(x<oo, (23 

4 r = 0, r = a, (24 

# =o, y = 0, I4 2 a, 
@ + 0, I4 -+ w lyl < d, 

4 x = 0, x=0, Iyl>a. 

(23 
cm 
(2.7) 

Here 

lo* = gk tanh kh. (2.8) 
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In contrast to (2) we seek possible solutions of the above equations for values of k 
satisfying 

7t/2d < k < 3n/2d. w9 

In seeking Dirichlet trapped modes we replace (2.3) by 

4 = 0, IYI = 4 -oo<x<oo (2.10) 

and look for possible solutions for values of k satisfying 

rr/d < k < 27t/d. (2.11) 

It is sufficient to consider 0 < y < d and choose functions odd in y in order 
to satisfy (2.5). It was shown in (2) how the fundamental singular solution 
i Hit;, (kr) sin(2n + l)& where r cos 8 = x, r sin8 = y, satisfying (2.2), (2.5) 
and (2.7) may be modified by including an integral term, in order to satisfy (2.3). 
The resulting multipole given in (2, equations (A.4), (AS)) was shown to be purely 
real, and to satisfy (2.6) provided that k c n/2d. If n/2d c k c 3n/2d, the 
modifying integral term is now indeterminate, having a pole on the real path of in- 
tegration. It is normal in such a case, on physical grounds, to choose a path which 
passes below the pole so that the now complex-valued integral behaves like a wave 
travelling outwards at large distances. If we do this the total multipole potential is no 
longer real and the resulting infinite system is complex and we would be left with 
the task of showing that the determinant had a real zero and that the correspond- 
ing expansion coefficients were such as to produce no waves at infinity. Instead we 
proceed differently, relegating showing the equivalence of the two approaches to the 
Appendix. The modifying integral term can also be made determinate by interpreting 
it as a principal value integral. This has the advantage that it remains real whilst its 
behaviour at large distances is now as a standing wave. Thus the resulting infinite 
system is also real and we have a simpler task of computing any real zeros of the real 
determinant which simultaneously produce a combination of standing waves which 
vanish at large distances. 

Referring to (2, equations (A.4), (A.5)), we have for the multipoles the expressions 

v92n+lk 0) = Y2n+1 swn + 110 

2(-l)” O” e-yd 
-- 

It s 
- sinh yy cos(kx cash u) sinh(2n + 1)~ dv 

o cash vd 

2 q71 
-- 

f n 0 
tan /Id sin By cos(kx sin u) cos(2n + 1)u du, (2.12) 

where y = k sinh v, p = k cos u, or equivalently 

@2n+l (r, 0) = 

2(-l)n 

7r s 

O” coshy(d -y) -- 
cash yd 

sinh yy cos(kx cash v) sinh(2n + 1)~ dv 
0 

2 

f 

hs/Y(d - y) -- 
n 0 cos /3d 

cos(kx sin u) cos(2n + 1)u du. (2.13) 
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It is clear from (2.12) that (2.5) is satisfied and from (2.13) that (2.3) is satisfied. Note 
the single principal value in the integrals since rt/2d c k < 37t/2d. The behaviour of 
@zn+i (r, 0) for large IX 1 can be determined from (2.13) as follows. The first integral 
vanishes for large 1x1 by the Riemann-Lebesgue lemma and we can write the second 

2 
I= --Re 

It f 

hos/I(d - y) 

0 cos /3d 
e ikxsinu cos(2n + 1)~ du. (2.14) 

Now cos /3d = 0 when cos u = (2n + l)n/2kd, n = 0, AA,.... But $ c n/2kd < 1 
so that there is just one root, u = uo say, when n = 0, on the path of integration. 
Thus 

PO = k cos u. = rr/2d. 

If the integral for I is now closed by a small semicircle about u = uo in the upper 
u-plane, the resulting complex integral is easily seen, by deforming the path slightly 
upwards, to vanish at x + 00, leaving a term arising from the integral around the 
small circle. Thus; evaluating the (half) residue, 

I- 
Re rti cos /?o(d - y)eikxSinUo 2 

kd sin /?od sin uo 
cos(2n + 1)uo asx+oo. (2.15) 

It 

Forx -+ -00, the integral path is closed by a semicircle in the lower half-plane with 
the final result, since I is even in X, 

9+2n+lk 0) - 
2 sin Boy sin(klx I sin UO) 

kd sin uo 
cos(2n + 1)2.4(-j, 1x1 + 00. (2.16) 

We now seek a trapped mode in the form 

Nr, 0) = 2 k-‘anv;n+1 Nwq2n+l o-9 6 (2.17) 
n=O 

and application of the condition (2.4) yields 

a, + 2 &nan = 0, m = 0, 1, 2 )...) 
n=O 

where B,n = A,, Jim+l (ka)/ Y&+1 (ka) as in (2). Here 

(2.18) 

00 

A 
e-Yd 

mn = 
-A(- Qm+” 

n 
p sinh(2n + 1)v sinh(2m + 1)vdv 
cash yd 

4 

f 

+r 
v- tan /3d cos(2n + 1)u cos(2m + 1)u du. 

* 0 
(2.19) 

Thus the system is identical to that in (2) apart from the principal value integral but 
we also have the requirement, from (2.16), (2.17) that 

s = 2 anc;;(2;;a;)uo = 0 

n=O 2n+l 
(2.20) 
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FIG. 1. Curves showing zeros of determinant and of S for the Neumann modes as func- 
tions of kd and u/d. The point of intersection is magnified in the second figure 

ensuring that 

m9 6) - 
2s sin /?oy 

k2d sin ug 
sin(klxl sin UO), Ixl -+ 00 (2.2 1) 

satisfies condition (2.5). Once a trapped mode is found the free surface close to the 
cylinder is determined from 

#(r, 6) = A ganFzn+l(kr) sin(2n + i)e, 
n=O 

(2.22) 

where 
J2n+l (kr) 

F2n+l(kr) = Ji 

YZn+l (kr) 

2n+l Cka) -  ‘in+1 Cka) 

(2.23) 

for any constant A and valid for r < 2d. 

A note on the computation 

The computation of the real zeros of the real determinant of the system (2.18) is 
straightforward, convergence to six decimal places being achieved with as few as 
five multipoles for the particular cylinder sizes being considered here (a/d < i). 
The principal value integral in (2.19) is of the form 
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FIG. 2. Curves showing zeros of determinant and of S for the Dirichlet modes as functions 
of kd and a/d. The point of intersection is magnified in the second figure 

where g(u) = 0 at u = ~0, g’(u0) # 0. For uo > in we write 

f 

gr f(t) 2uo- ;71 

dt - - 
0 g(t) s 0 

;;;; dt + 

where the second integral is now well-behaved and the last term in the second integral 
vanishes since 

f 

;7r dt 
- =o. 

2uo+ t - u() 

For uo c $n we apply a similar technique and in this case the ranges of integration 
in the first and second integrals on the right-hand side of (2.24) are replaced by 
(2~0, in) and (0,2uo) respectively. 

3. Results 

For n/2 < kd x 3n/2 we compute the values of kd for which the determinant 
of (2.18) vanishes as a function of a/d. Just as for values of kd K n/2, there is a 
unique value of kd for each a/d, and a single curve of kd versus a/d can be drawn. 
At each point on this curve a non-trivial vector a = {a~, al ,...} is defined allowing S 
to be computed from (2.20). Then any points on the curve of vanishing determinant 
for which S also vanishes corresponds to a trapped mode. This provides a method 
for determining the values of kd and a/d for which trapped modes occur. Instead, 
however, we choose to proceed slightly differently. The advantage of the method 
below will become clear later. 

Let the eigenvalues of the matrix a,, + Bmn, m, n = 0, 1,2,... in the system 
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o-0 O-5 
x 

FIG. 3. Surface elevation for Neumann trapped mode 

(2.18) be (AT}, each h, having a corresponding eigenvector e’ = {e& e;,...). Let 
A, = min, { I& I} and define 

Unlike S in (2.20), S is defined over all parameters kd and a/d and not just on the 
curve of vanishing determinant. However, the values of S and S do coincide on the 
curve of det = 0 where h, = 0, and the corresponding eigenvector em is equal 
to a. Thus, if in addition to the curve det = 0, the curve S = 0 is also sketched, 
then any points of intersection of these two curves correspond to a trapped mode. 
The advantage of this method is that a trapped mode is clearly seen to correspond 
to the crossing of two lines and that the values of kd and a/d for which a trapped 
mode occurs can easily be read off the graph. Moreover, as series are computed 
numerically by truncation and curves are not exact, it is more convincing to have two 
independently computed curves intersecting rather than using the information from 
an ‘approximate’ curve in a further condition that must also be satisfied. 

For values of kd E (~/2,3n/2) we plot points where S, given by (3.1) vanishes. 
Again this provides a unique curve of kd against a/d. The curves are shown in Fig. 
1, where it can be seen that there is just one intersection indicating a trapped mode. 

Increasingly refined calculations give the values at which this embedded Neumann 
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FIG. 4. Surface elevation for Dirichlet trapped mode 

trapped mode occurs as 

kd = 40677467 = 10488884rt and a/d = Oe3520905. 

The procedure for determining the embedded Dirichlet trapped mode follows that 
outlined above for the Neumann modes with only minor changes arising from the 
replacement of (2.3) by (2.10) in the governing equations. Fundamentally this af- 
fects the form of the multipoles defined in the Neumann case by (2.12). Thus the 
changes for the Dirichlet case involve the replacement of cash yd by sinh yd in the 
denominator of the first integral in (2.12) and of tan /Id by - cot /?d in the second. 
Working through with these altered expressions still gives the two equations (2.18) 
and (2.20) (and therefore (3.1)) but in (2.19), cash yd is replaced by - sinh yd and 
tan /Id is replaced by - cot pd. Note also that now the principal value occurs at the 
value u = uo where PO = k cos uo = n/d. 

Results for the Dirichlet mode are also shown in Fig. 2 as the intersection of two 
curves. Precise values for this new embedded modes are 

kd = 6*257636 = 1.991867~ and a/d = 002670474. 

Contour plots of the free surface elevation near the cylinders in each case are shown 
in Figs 3, 4, where we have taken d = 1. Since there is symmetry in both x = 0 
and y = 0 we only need show one quadrant of the full channel. It can be seen that 
in both cases the amplitude decays down the channel as required for a trapped mode 
and how the various boundary conditions imposed are satisfied. At a first glance it 
appears that in both Figs 3 and 4 there is an antinode (@ = 0) parallel to the centre- 
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FIG. 5. Maximum exciting force on the middle cylinder in a linear array of 36 cylinders in 
head seas against non-dimensional wavenumber kd/n, where the cylinders have radius 

a and centres 2d apart: (a) a/d = 0.35209, (b) a/d = 0.26705 

line at y = $ and y = i respectively. However closer inspection reveals that they are 
in fact not straight lines and therefore cannot be replaced by parallel walls. Although 
the form of the trapped mode oscillation away from the cylinder resembles that of the 
second cross-channel eigenfunction, which in the Neumann and Dirichlet cases are 
sin 3ny/2d, sin 2ny/d respectively, in contrast, the trapped mode solutions vanish 
as 1x1 --+ 00. 

4. Conclusion 

We have presented convincing numerical evidence for the existence of a Neu- 
mann and a Dirichlet trapped mode embedded in the continuous spectrum at just 
one precise value of a/d. Because in each case the value of a/d is fairly small, 
the corresponding wavenumber is close to the cut-off. Although the idea of embed- 
ded eigenvalues is familiar in spectral theory, it had been generally believed that they 
were unlikely to arise in practical situations such as that being considered here. How- 
ever, the recent construction of strictly two-dimensional trapped modes embedded in 
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the continuous spectrum by McIver (9) using suitably positioned surface line sources 
illustrates the need for caution in drawing general conclusions. 

That the new trapped modes described here are of practical importance is borne 
out by Fig. 5 which shows the effect of head seas upon the middle cylinder in a 
line of 36 identical cylinders spaced precisely at the required value of a/d for trap- 
ping. In addition to the peaks due to the effect of the Neumann and Dirichlet modes 
below their respective cut-offs, a force of approximately three times the force on an 
isolated cylinder is experienced at frequencies close to the new embedded Neumann 
and Dirichlet trapped modes. Thus in Fig. 5(a), we have chosen a/d = O-35209 cor- 
responding to the Neumann trapped mode for an infinite line of cylinders and in Fig. 
5(b), a/d = 0.26705 is chosen to pick out the influence of the Dirichlet trapped mode 
solution just below kd = 2n on the finite line of cylinders. It should be noted that 
the peak just below kd = 37t/2 in Fig. 5(b) is due to a small value of the complex de- 
terminant in the infinite system and termed a near-trapped mode-see (1, especially 
the discussion surrounding Figs 8,-g). 

The authors have also adapted the approach outlined here to the problem of trap- 
ping waves above a submerged horizontal cylinder originally due to Ursell (lo), 
again transforming a generally complex system into a real determinant system plus 
a constraint on the vanishing of the far field. However, they have been unable to find 
a trapped mode solution above the cut-off for this problem. 
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APPENDIX A 

Equivalence of section 2.1 to the@11 complex system 
The full complex multipoles for n/2d < k < 3n/2d satisfying Neumann conditions on 

1 y  1 = d are given by 

hn+1(r9 0) = -i Hzn+l (kr) sin(2n + l)e 
2(-l)” 00 e+ -- 

n / 
- sinh yy cos(kx cash u) sinh(2n + 1)~ dv 

o cash yd 
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2i f 
iH &Pd +- - 

n o cos/?d 
sin /?y cos(kx sin u) cos(2n + 1)~ du 

2i cos(2n + 1)~ - 
kd sin uo 

sin &)y cos(kx sin UO), (A4 

where y  = ksinhv, /3 = kcosu and PO = kcosz~ = n/2d. Then they describe outgoing 
waves at infinity: 

11/2n+l (J-9 0) - - 
2i cos(2n + l)uo 

kd sin ~0 
sin poyeiklXl sinu0 as 1x1 + 00. (A*2) 

The real part of the multipoles in (A.l) is just that quoted in (2.12). Thus, we only consider 
the contribution of the imaginary parts of (A. 1) to the final system, (2.18). So, using 

sin By cos(kx sin u) = 2cJ zn+l (kr) sin(2n + 1)0 cos(2n + 1)~ (A3 
n=O 

which can be found in (2, equation (A.8)) after a change of variables, we have 

ImW2n+1 I = - J2n+l (kr) sin(2n + 1)0 
00 

.pcJ 
tH 

2m+l (kr) sin(2m + l)e 
s 

cos(2m + 1)~ cos(2n + 1)~ du 
m=O 0 

4cos(2n + l)uo O” - 
kdsinuo c Jh+l (kr) sin(2m + 1)0 cos(2m + 1)uo WV m o = 

and the first two terms cancel leaving the complex modification to Am, given in (2.19) as 

Amn =A,,-i 4Jim+l (ka) cos(2m + 1)uo cos(2n + 1)~ 

kd sin uo (A.5) 

and the final system becomes 

00 am+ Bmnan-i c I 4Jim+l (ka) cos(2m + 1)uo 
kd sin 

I 
S = 0, m = 0, 1, 2 ,..., (A*@ 

n=O 
uo 

where S is defined in (2.20) and Bmn = Am, J;m+l (ka)/ Y;*+r (ka) is real. This is satisfied if 
and only if the real and imaginary parts are zero simultaneously. From (A.2) and (2.17) the 
condition that the far field vanishes for large IX 1 reduces to S = 0. 


