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Trapping and near-trapping by arrays of cylinders in waves
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Abstract. In this paper, some recent developments and new results concerning the trapping of waves by arrays of
vertical circular cylinders is presented. In particular, the cases are examined when there is a circular arrangement
of cylinders and both finite and infinite periodic linear arrays of identical cylinders. Only for the infinite array
is there pure trapping of waves – known as Rayleigh–Bloch or edge waves – which, for particular dominant
wavenumbers, reduce to the well-known trapped-mode solutions for a cylinder between two parallel walls having
either Neumann or Dirichlet conditions upon them. This latter case is considered separately and some new results
are presented. In the circular array and finite linear array the concept of near-trapping is introduced where large
resonant motions are found to occur at certain frequencies of the incident wave field. In the case of the finite linear
array, these near-trapping frequencies are related to the Rayleigh–Bloch trapped-wave frequencies for the infinite
array. Finally, the case when there are two or more lines of cylinders in the linear array is examined.
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1. Introduction

The classical linear theory of water waves has proved extremely successful in predicting the
forces on fixed or moving structures in low amplitude waves and forms the basis for such
considerations in ocean engineering and related fields.

The simplest, and the only explicit solution, in three dimensions, involving a fixed structure
is the solution derived by McCamy and Fuchs [1] for the total wave field due to a long-
crested wave in water of finite depthh, incident upon a bottom-mounted surface-piercing
fixed rigid circular cylinder, extending Havelock’s (1929) infinite-depth wavemaker theory.
The solution, for example, for the first-order exciting forces on the cylinder turns out to be an
infinite series of Hankel functions. See Mei [3, pp. 312–315] for details. The reasons why this
problem permits an explicit solution are two-fold. First, since the cross-section of the cylinder
is constant with depth and the cylinder is fixed, the dependence on depthz of the velocity
potential describing the flow can be extracted via a multiplicative term coshκ(h + z) where
κ is the positive root ofω2 = gκ tanhκh, thereby reducing the problem to a solution of the
Helmholtz equation in two-dimensions with a Neumann condition on the circler = a (we
have assumed the circle, of radiusa, has its centre at the origin of Cartesian co-ordinatesx, y

with x = r cosθ , y = r sinθ). The second reason is that the incident wave potential can be
expressed in polar co-ordinates as an infinite sum of a product of Bessel and trigonometric
functions enabling the Neumann condition to be satisfied onr = a explicitly.

It is natural to consider how this solution can be extended. Clearly, the depth dependence
can be extracted for any number of fixed vertical cylinders of arbitrary cross-section extending
throughout the depth. Also, if they are circular, the Graf addition theorem for Bessel func-
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150 D. V. Evans and R. Porter

tions can be used to shift co-ordinates between cylinders. This device enables the problem
of the scattering by arbitrary arrays of circular cylinders to be reduced to the solution of a
rapidly-converging infinite system of equations for certain Fourier coefficientsAkn related to
the expansion of the field in the vicinity of, say, thekth cylinder. This idea was used by
Twersky [4], whilst Linton and Evans [5], unaware of Twersky’s work, re-derived the theory
and also showed how the potential on any cylinder could be expressed simply in terms of an
infinite series involving theAkn, whilst the exciting forces depended only onAk1 andAk−1.

The Linton and Evans [5] theory is the starting point for the present paper and is summa-
rized in Section 2. In Section 3 we consider a circular configuration of cylinders and consider
how the exciting forces on each cylinder differs from the force on a single cylinder predicted
by the McCamy and Fuchs [1] results. The relevance to the wave forces on the supporting
columns of an offshore drilling platform is clear, but there are undoubtedly other industrial
applications involving the solution of the Helmholtz equation in the domain exterior to a
circular array of circular cylinders.

It is shown that the exciting force increases dramatically as the spacing between each of
four identical circular cylinders, placed at the four corners of a square, is reduced. We term
this phenomenon near-trapping and show that it arises because of the existence of standing
waves trapped in the interior region bounded by the cylinders whose energy slowly leaks
away to infinity. A general consideration of this effect is presented. In particular, we show, by
destroying the symmetry of the circular arrangement, whilst not increasing the gaps between
adjacent cylinders, that the effect disappears showing that this phenomenon is not simply a
manifestation of the large resonant oscillations which can occur within a harbour connected
to the open sea by a narrow entrance when excited by an incident wave field of appropriate
frequency.

In Section 4 the theory is applied to a linear periodic array of cylinders in a manner similar
to Maniar and Newman [4] and this part of the paper has much in common with their work.
They showed how the forces on the centre cylinders in a large linear array of identical cylinders
became large at certain frequencies of the incident wave field which correspond to the trapped
modes which can exist in the vicinity of a circular cylinder confined between two parallel
walls on which either a Neumann or a Dirichlet condition is applied. Such trapped modes in
the Neumann case were first discovered by Callanet al.[7]. In the present paper we show how,
by increasing indefinitely the number of cylinders, dropping the incident wave, and assuming
a Bloch or Floquet-type expansion for the wave field, an infinite system is obtained whose
solution describes Rayleigh–Bloch waves which are confined to the vicinity of the line of
cylinders and decay to zero in a direction normal to this line. For a discussion of Rayleigh–
Bloch waves in the context of diffraction gratings, see Wilcox [8].

When the dominant wavenumberβ in the Rayleigh–Bloch expansion takes particular val-
ues, the solution reduces to standing waves along the infinite array which, just as in Maniar
and Newman [6], can be interpreted as trapped modes of either Neumann or Dirichlet type
around a single cylinder confined between parallel walls.

For other values ofβ we demonstrate that the Rayleigh–Bloch solution is connected to the
near-trapping of waves arising in a corresponding finite periodic linear array of cylinders as
shown by Maniar and Newman [6]. This conclusion is important in enabling the prediction of
large forces on finite arrays of cylinders to be made on the basis of results for infinite arrays
which are usually easier to determine. The results of Section 4 are new.

We return, in Section 5, to the original formulation of Callanet al.[7], but we now allow the
possibility of both Dirichlet and Neumann modes above the lowest point of the corresponding
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continuous spectrum and also allow the possibility of modes which can be either symmetric
or antisymmetric about a plane through the centre of the cylinder normal to the channel walls.
We find new antisymmetric Neumann modes below the cut-off and a single Dirichlet and
Neumann mode above the cut-off at a precise value unique cylinder to channel width ratio.

It is clear that knowledge of the trapped modes which can exist near a single cylinder
in a channel is important in predicting the large forces on cylinders near the centre of a
long single linear array of cylinders. However, in many applications at least a double linear
array of cylinders would be needed as, for example, the supports of an offshore runway. It
is therefore important to predict the corresponding trapped mode frequencies for two or even
more cylinders on the channel centreplane. This is considered in Section 6 where results for
the special case of two identical cylinders are discussed.

2. Formulation

We use classical linear water-wave theory in which we seek a harmonic velocity poten-
tial 8(x, y, z, t). The formulation follows that of Linton and Evans [5] where the velocity
potential8 is expressed as

8(x, y, z, t) = Re{φ(x, y) coshκ(z+ h)e−iωt }, (2.1)

whereω/2π is the wave frequency,h the depth of water andκ is the positive root of

ω2 = gκ tanhκh. (2.2)

Thenφ satisfies

(∇2+ κ2)φ(x, y) = 0 (2.3)

exterior to the cylinders and

∂φ

∂n
= 0 (2.4)

on each cylinder.
We assume there areN circular cylinders having arbitrary position and radius and write

φ(x, y) = φinc(x, y) +
N∑
j=1

φjs (x, y), (2.5)

where

φinc(x, y) = eiκr cos(θ−θinc) = Ik eiκrk cos(θk−θinc) (2.6)

and

Ik = eiκ(xk cosθinc+yk sinθinc). (2.7)
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Figure 1. The co-ordinate system of Linton and Evans [5] and for the cylindrical array.

Thus, the incident wave makes an angleθinc with the x-direction and cylinderk has centre
(xk, yk). The general form for the scattered potential from cylinderj is

φjs =
∞∑

n=−∞
AjnZ

j
nHn(κrj )einθj , (2.8)

where

Zjn = J ′n(κaj )/H ′n(κaj )
andaj is the radius of cylinderj . HereHn ≡ Jn+ i Yn is the Hankel function of the first kind.
By using Graf’s addition formula, Linton and Evans [5] showed that to satisfy (2.4) then the
coefficientsAkm must satisfy

Akm +
N∑
j=1
6=k

∞∑
n=−∞

AjnZ
j
n ei(n−m)αjkHn−m(κRjk) = −Ik eim(π/2−θinc)

k = 1, . . . , N, −∞ < m <∞. (2.9)

HereRjk is the distance between the centres of cylindersj andk, andαjk is the angle between
the line from the centre of cylinderj to the centre of cylinderk and the positivex-direction.
Notice that the effect of the incident wave is included through the termθinc on the right-hand
side.

It was shown in Linton and Evans [5] that the total potential may be expressed in the
coordinates of cylinderj , say, as simply

φ(rj , θj ) =
∞∑

n=−∞
AjnFn(κrj )einθj , rj < Rjk ∀k, (2.10)

where

Fn(κrj ) = ZjnHn(κrj )− Jn(κrj ) (2.11)
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and whererj , θj are polar coordinates measured from the centre of cylinderj in the positive
x-direction. From the above equation, the first-order exciting force on thej th cylinder can be
derived. Thus

Xj

F j
= −1

2

{
i
1

}(
A
j

−1

{ −
+
}
A
j

1

)
, (2.12)

whereFj is the first-order exciting force on a isolated cylinder, radiusaj in the direction of
the incident wave and the upper (lower) elements refer to the force in thex- (y-) direction.

The development up to now is entirely general and Equation (2.12) with theA
j

±1 found by
solving (2.9) gives the forces on any of the cylinders in an arbitrary arrangement, in a given
incident wave train.

We now assume theN cylinders are identical (aj = a, j = 1, . . . , N) and are equally-
spaced around a circle of radiusR. It is convenient to exploit the symmetry of the cylindrical
array and choose local polar coordinates at each cylinder measured from the line joining the
centre of that cylinder to the centre of the array as shown in Figure 1. It follows by elementary
geometry that

αjk = π

N
(k + j)+ π

2
sgn(k − j), (2.13)

where we have chosen cylinderj to make an angle 2πj/N with the positivex-direction(j =
1,2, . . . , N) and to have its centre at

xj = R cos(2πj/N), yj = R sin(2πj/N). (2.14)

Substitution of (2.13), (2.14) in (2.9) gives

Bkm +
N∑
j=1
6=k

∞∑
n=−∞

BjnZ
j
nHn−m(κRjk)ei 1

2 (n−m)πsgn(k−j) ei(n+m)π(k−j)/N

= −Ik eim(π/2+2πk/N−θinc), k = 1, . . . , N, −∞ < m <∞, (2.15)

where now

Ik = eiκR cos(2πk/N−θinc) (2.16)

from (2.7), (2.14) and

Rjk = 2R

∣∣∣∣sin
π(k − j)

N

∣∣∣∣ (2.17)

and we have also written

Akn exp2πkni/N = Bkn. (2.18)

Note that we can obtain the same result by using local polar co-ordinates from the outset in
(2.8) withAjn replaced byBjn .
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Figure 2. Arrangement, dimensions and cylinder labels for a circular arrays of four cylinders.

It is easily shown that the forces in the radial/tangential directions are
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(2.19)

normalised with respect to the force on an isolated cylinder of radiusa in the direction of
the incident wave. Either (2.9) and (2.12) or (2.15) and (2.18) can be used to determine the
forces on cylindrical arrays of circular cylinders and as expected they give identical results. In
particular, they confirm the corrected results of Linton and Evans for the first-order exciting
force on four cylinders (Linton and Evans corrigendum [9]).

3. Forces on a circular array of four identical cylinders

In this section we shall be concerned with the forces on a circular arrays of 4 cylinders
arranged as shown in Figure 2. For simplicity we will only consider an incident wave pro-
gressing in the positivex-direction (θinc = 0) such that the cylinder labelled as one is the
lead cylinder and so that the results for the forces are symmetrical. Note that this labelling
is different from that used in Figure 1 and throughout the rest of the section in developing
the analysis. The cylinders have diameter 2a with 2d the distance between adjacent cylinders.
It is illuminating to define a gap to diameter ratiog/2a = d/a − 1 being the ratio of the
gap between adjacent cylinders to a cylinder diameter. The circled numbers against the peaks
in the curves that follow will be referred to later in the section. We derived the results by
computing (2.19) usingBn calculated from (2.15).

Results for thetotal maximum force on each of four cylinders in a circular array with
θinc = 0 against the nondimensional wavenumberκa as the ratioa/d varies are presented
in Figures 3(a)–(d). In Figure 3(a),a/d = 0·5 as in Linton and Evans [9]. Notice the peak
in the force on each cylinder at roughly the same value ofκa ≈ 1·66. Figures 3(b) to (d)
show the effect of bringing the cylinders closer together and it can be seen that the peaks
increase markedly asa/d increases (org/2a decreases) to such an extent that fora/d = 0·8
(g/2a = 0·25) in Figure 3(d) the peak force onall four cylinders is some 54 times the force on
an isolated cylinder. This can only be due to a near-trapped wave at the wavenumber given by
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Figure 3. Resultant force on four cylinders against wavenumber,κa: θinc = 0, a/d = 0·5 (a), 0·6 (b), 0·7 (c),

0·8 (d).

κa = 4·08482. Results for four, five and six equally-spaced cylinders can be found in Evans
and Porter [10].

We shall see later that these large forces are accompanied by large motions in the vicinity
of the cylinders. In a sense this is to be expected since as the gap ratiog/2a decreases the
enclosed water region resembles more closely a harbour with a narrow entrance and large
motions can be expected at frequencies close to the ‘resonant’ frequencies of the internal fluid
region. This is confirmed in Figure 4 which plots, the maximum force on the lead cylinder
against the gap ratio, and shows how the force increases with decreasingg/2a. One has to
take care when numerically computing the forces forg/2a smaller than 0·2, since a larger
truncation parameter is needed in the infinite system of equations. That the large force is
not simply a narrow entrance harbour effect can be seen from Figure 5 where the forces on
four cylinders witha/d = 0.8 are computed when the diameter of one of the cylinders is
increased by just 2%. Despite the narrowing of the gap between it and its neighbours we see
by comparison with Figure 3(d) that the maximum force has reduced to less than 4·5 once the
symmetry has been broken.

It is clear that the large forces and amplitudes of motion in the vicinity of the cylinders at
frequencies and spacings corresponding to near-trapping are related to the near-vanishing of
the determinant of the infinite system (2.15). It is also clear that this determinant is indepen-
dent of the incident wave, which only appears on the right-hand side of (2.15) and that a more
direct approach to near-trapping is to assume that theB

j
n are related purely through a phase

factor describing the angle between cylinderk and cylinderj .
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Following the approach of Maniar and Newman [6] for the linear array, we shall seek
near-trapped modes directly from (2.15) by putting the RHS equal to zero and assuming a
relation between theBkn. Thus it might be expected that, for a near-trapped mode,Bkn would
only differ fromB

j
n by a phase factor reflecting the angle 2π(k− j)/N between the cylinders.

More generally, whilst preserving single-valuedness, we may write

Bkn = ei(k−j)2πp/NBjn, p an integer, j, k = 1, . . . , N, (3.1)

186109.tex; 7/08/1995; 8:44; p.8



Trapping and near-trapping by arrays of cylinders in waves157

whence substitution in (2.15) gives

Bm +
∞∑

n=−∞
BnKmn = 0, (3.2)

whereBn = B0
n and the superscript zero indicates a cylinder in the ‘zero-th’ position on the

positivex-axis. Hereafter we drop the superscript zero throughout for ease of notation. Here
we have

Kmn = Zn
k−N∑
j=k−1
6=0

Hn−m
(

2κR sin
π |j |
N

)
e−2πpj i/N ei 1

2 (n−m)πsgn(j) ei(m+n)πj/N (3.3)

after redefining the summation variable. This is easily seen to be independent ofk when we
show, in an obvious notation, that

Kmn(k) = Kmn(k + 1), k = 1,2, . . . , N. (3.4)

It follows that, in particular, we may choosek = N in which caseKmn reduces to

Kmn = Zn ei(n−m)π/2
N−1∑
j=1

Hn−m
(

2κR sin
πj

N

)
ei(m+n−2p)πj/N (3.5)

and we have reduced (2.15) to the single infinite system (3.2) withKmn as above.
Now, from (3.3), we first replace the summation variable,j , by −j and then substitute,

without loss of generality, the value ofk = 1 to give

K−m,−n(p)Zn
N−1∑
j=1

Hn−m
(

2κR sin
πj

N

)
e−i 1

2 (n−m)π ei(n+m+2p)πj/N (3.6)

in an obvious notation, but different to that used in (3.4), and comparison with (3.5) gives us

K−m,−n(p) = (−1)n−mKmn(N − p) (3.7)

whilst, it is clear from (3.5) that

Kmn(0) = Kmn(N). (3.8)

It follows from using (3.7) in (3.2), that(−1)nB−n(N − p) satisfies the same homogeneous
equation asBn(p) and the two systems share the same determinant. This immediately gives
us that the values ofκd at which the determinant vanishes for a particular value ofp are the
same as those forN − p. Moreover,

Bn(p) = C(−1)nB−n(N − p)
and so

Bn(N − p) = C(−1)nB−n(p), (3.9)
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which implies thatC2 = 1 orC = ±1. In particular, choosingp = N/2,N even, gives

Bn(N/2) = ±(−1)nB−n(N/2). (3.10)

We can also use the information in (3.8) to deduce from (3.2) thatBn(0) = CBn(N), which,
used in (3.9) withp = 0 gives

Bn(0) = C(−1)nB−n(0). (3.11)

It remains for us to look at the radial and tangential forces due to these two modes of reso-
nance. Thus, from (2.19) withp = N/2 in (3.1) to relate cylinderj to cylinder 0,

Xj
r (N/2) = −1

2i(−1)j (B−1(N/2)− B1(N/2)) =
{

i(−1)jB1(N/2), C = 1
0, C = −1

(3.12)

X
j

θ (N/2) = −1
2(−1)j (B−1(N/2)+ B1(N/2)) =

{
0, C = 1
−(−1)jB1(N/2), C = −1.

(3.13)

In other words, the force is either radial or tangential, but never a combination of the two and
switches in sign from one cylinder to the next. Likewise, withp = 0 (orN),

Xj
r (0) = −1

2i(B−1(0)− B1(0)) =
{

iB1(0), C = 1
0, C = −1

(3.14)

X
j

θ (0) = −1
2(B−1(0)+ B1(0)) =

{
0, C = 1
−B1(0), C = −1

(3.15)

giving the previous result, namely that the force can only ever be either totally radial or totally
tangential, but here the sense in which the force acts is the same for all the cylinders in the
array. This mode therefore corresponds to either a tangential torque on the array or a radial
pull on the array. These four cases are illustrated in Figure 6. For other values ofp, there does
not appear to be a simple way of predicting the direction of the force on the cylinders in the
array.

The four possible resonant modes summarised in Figure 6 can each be shown to possess
symmetries of motion about lines joining the centre of the array to the centres of the cylinders
and those from the centre passing midway between adjacent cylinders. For example, in case
(a)(i) in Figure 6, using the expression for the potential close to cylinderk, we find

∂φ(rk,0)

∂θ
= ∂

∂θ

( ∞∑
n=−∞

BknFn(κrk)e
inθk

)∣∣∣∣∣
θk=0

, (3.16)

whereFn = (−1)nF−n is defined in (2.10). Then

∂φ(rk,0)

∂θ
=

∞∑
n=−∞

inBknFn = 1
2i(−1)k

∞∑
n=−∞

nFn(Bn(N/2)− (−1)nB−n(N/2)), (3.17)

sincep = N/2,

= 0, forC = 1, or case(a)(i) (3.18)
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(a)(i) (ii) (b)(i) (ii)

Figure 6. An illustration of the two possible forces in the resonant modes corresponding to (a)p = N/2, (b)
p = 0, N .
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Figure 7. Location of zeros of determinant in complex wavenumberκa space forN = 4 cylinders asa/d varies
from 0·5 to 0·8: p = 2( ), p = 1(− − −), p = 0(· · · · · ·); a/d = 0·5(�), 0·6(∗), 0·7(×), 0·8(+).

and therefore there is symmetry about the lines joining the centre of the array to the centres of
the cylinders. Similarly, it is trivial to show that there is antisymmetry about the lines passes
midway between adjacent cylinders in this case.

It appears from our computations that all four near-trapped mode types associated with
p = 0,N/2 and illustrated in Figure 6 exist and this can be seen more clearly by looking at
the free surface plots.

3.1. FURTHER RESULTS FOR A CIRCULAR ARRAY OF FOUR IDENTICAL CYLINDERS

It is reasonable to ask whether the assumption for a near-trapped mode given in (3.1) provides
all the possible resonances. Numerical experiments performed on a range of array sizes and
wave parameters suggest that no others exist. In other words all resonances correspond to a
value ofp in the determinant system (3.2), (3.5) which has assumed (3.1) expressing only a
change in phase from one cylinder to the next for the occurrence of a near trapped mode. An
alternative approach would be to appeal to symmetries of the problem as was done by Gaspard
and Rice [11] in their consideration of the resonances of a three disc system on which a ‘soft’
condition was applied.

It is the determinant system (3.2) that we turn our attention to next. Given that all reso-
nances are accounted for by a value ofp, the determinant system, in much the same way as
for the infinite line of cylinders discussed earlier, provides a far more efficient way of locating
the frequency at which near-trapped modes occur. Not only this, but we can also identity by,
means of the value ofp, the behaviour of the type of mode. The reader is reminded that
choosingN −p gives the same results as choosingp (this comes from equation (3.7)) and so
we need only restrict ourselves to considering values ofp 6 [N/2].

186109.tex; 7/08/1995; 8:44; p.11



160 D. V. Evans and R. Porter

(a) (b)

Figure 8. (a) Re{φ} and (b)|φ| for N = 4, a/d = 0·8, κa = 4·08482, θinc = 0◦.

(a) (b)

Figure 9. (a) Re{φ} and (b)|φ| for N = 4, a/d = 0·8, κa = 5·797, θinc = 121
4.

For the purpose of locating the frequency at which a near-trapped mode occurs, and hence
where we may expect to find large first and second order forces acting on the array, it is
sufficient to scan through the nondimensional wavenumber,κa, as a real parameter and mon-
itor the modulus of the value of the complex determinant. Then, whenever the modulus of
the determinant dips close to zero, one would expect to find a resonant motion in the forcing
problem. But it is perhaps more enlightening for us to seek the precise zeros of the determinant
by regardingκa as a complex variable. This extra dimension adds to the computational effort
in locating trapped modes, requiring the use of Newton’s Method in two dimensions, but in
essence is straightforward.

The zeros of the complex determinant in the cylinder array are found in the following
way. For each value ofp, we perform a search of the complexκa space close to the real
line for a value ofa/d = 0·8 using Newton’s Method and pick out the complex values of
κa corresponding to a zero of the determinant in this region. For each of these valuesa/d is
then varied from 0·8 to 0·5 in small steps, so as to trace the path of the zero as the cylinders
are separated. This provides us with the most compact way of illustrating the influence of
near-trapping for any geometry consisting ofN cylinders in a circular array. For example in
Figure 7, it can be seen how the peak in Linton and Evans [9] is due to the real-valuedκa

passing ‘close’ to the pole in the complex plane at approximately 1·67− 0·1i and, asa/d
is increased to 0·8, this pole moves to within 0·001 of the real line. Furthermore, the mode
corresponds top = 2 (= N/2). Thus, in the plots of maximum force againstκa presented
in Figures 3(a)–(d), the peak in the forces can be associated with the occurrence of a pole in
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the complex plane close to the real axis. Clearly, as the pole moves closer to the real axis one
would expect the response in the forced problem to increase. We are also able to use Figure 7
to identify the types of modes responsible for the peaks in the forces, and these are represented
in Figures 3(a)–(d) by the circled values next to each of the peaks.

In order to assist our understanding of the various resonant motions due to near-trapping
that have become apparent in the force plots, and whose frequencies can be predicted from
the determinant system (3.2), we can also use plots of the free surface. The elevation of the
free surface,H(x, y, t) = Re{η(x, y)e−iωt } non-dimensionalised with respect to an incident
wave of unit amplitude is given by

η(x, y) = φ(x, y). (3.19)

In the two free surface plots presented in this section, we will use two plots: one showing
Re{φ}, the other|φ|. The former of these two corresponds to the free surface elevation at a
particular instant in time during the cycle, namely att = nπ/ω, n = 0,1, . . . (this can be
seen by considering equation (2.1)), and allows us to observe the relative position of peaks
and troughs. Alternatively, we could have presented plots of Im{φ} which corresponds to the
free surface elevation att = (n+ 1

2)π/ω, n = 0,1, . . .. Instead, we choose to plot|φ| which
corresponds the maximum free surface elevation attained over a cycle. The circular array of
cylinders are arranged as in Figure 2 in such a way that the distance between consecutive
centres is unity (2d = 1), and attention is focused on the interior domain, since the motion
outside the array is relatively insignificant and of little interest. Also, since it is near-trapped
resonant modes that we seek, we plot the free surface due to the scattered potential only
by discarding the influence of the incident wave rather than using the total potential. In the
vicinity of cylinder j , say, we may use the computationally efficient method of calculating the
potential given by the expression in (2.13).

Figure 8 shows the free-surface elevations Re{φ}, |φ| at the closest real values ofκa for
a/d = 0·8. It can be seen that the maximum wave amplitude for thea/d = 0.8 near-trapped
case is predicted at over 150 times the incident wave amplitude and is responsible for the peak
in the first-order force of 54 times that on an isolated cylinder. The motion in between the
cylinders resembles a floppy saddle: where there is a wave peak on one cylinder, there is a
trough on a neighbouring cylinder. From Figure 7 we see that this mode is associated with a
valuep = 2 and this ties in with the prediction made by the analysis earlier for ap = N/2
mode where the force alternates in sign from one cylinder to the next.

The only other pole in the complex plane that comes near to the real line is thep = 0 mode
as the cylinders are moved close together. Again, the free-surface plot in Figure 9 shows that
this rather weak near-trapped mode contributes to a tangential force on the array as predicted
by the theory. Note that in order to excite this mode we would need to use an incident wave
that destroys the geometric symmetric of the array and we have chosenθinc = 121

4
o

in Figure 9
(there is nothing special about this value). However, in Figures 3(a)–(d) an incident wave with
θinc = 0 was used that preserved the symmetry and so no peaks corresponding to thisp = 0
mode are observed.

For a discussion of the surface plots at near-trapping frequencies for a circular array of
four, five and six identical cylinders see Evans and Porter [10].
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4. Rayleigh–Bloch waves along linear arrays of cylinders

We can use similar ideas to those used in the circular arrays of the previous section to obtain
solutions describing pure trapping in the case of an infinite periodic linear array of identical
cylinders spaced a distance 2d apart along they-axis. Such trapped waves are often termed
Rayleigh–Bloch waves or edge waves and are well known from the theory of diffraction
gratings. They describe localised time-periodic motions along the grating and can exist in the
absence of a source of excitation such as an incident wave field. In the present case, because
of symmetry of the geometry aboutx = 0, the grating is described by a periodic array of
semi-circles on which a Neumann condition is satisfied protruding from a wall having either
a Neumann or a Dirichlet condition imposed upon it. Rayleigh–Bloch waves along a grating
with periodicity 2d are described by

φ(x, y + 2jd) = e2iβdjφ(x, y), j an integer (4.1)

and a decayingx-variation is sought such that the motion remains confined to the periodic line
of cylinders.

What follows is very similar to the procedure used by Maniar and Newman [6] in showing
the connection between the large forces on finite linear arrays of equally spaced identical
cylinders and the trapped waves which occur in the case of an infinite periodic linear array of
cylinders.

Thus we return to the general system (2.9) and apply it to an infinite line of identical
cylinders spaced a distance 2d apart along they-axis. Now the only effect in going from
cylinder j to cylinder k is the change in the phase of the incident wave in they-direction,
e2iβd(k−j), say, whereβ = κ sinθinc in accordance with (4.1). It follows from the local potential
near a particular cylinder given by (2.8) that

Akn = e2iβd(k−j)Ajn, −∞ < j, k <∞ (4.2)

and that allAkn can be referred toA0
n ≡ An, say, where the cylinders are labelled such that

cylinderj has centre(0,2dj),−∞ < j <∞.
In seeking a trapped-mode solution, we discard the incident wave and seek values ofκ, β

satisfying the homogeneous system withκ < β in general to ensure no radiation of waves for
large|x|. By making use of (4.2), writingj ′ = j − k and then dropping the prime, we obtain

Am +
∞∑

n=−∞
AnKmn = 0, −∞ < m <∞, (4.3)

where

Kmn = Zn
∞∑

j=−∞
6=0

Hn−m(2κd|j |)e2iβdj e−i 1
2 (n−m)πsgn(j) = ZnHn−m, (4.4)

say, where

H2n = 2(−1)n
∞∑
j=1

H2n(2κdj) cos 2βdj, (4.5)
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H2n+1 = 2(−1)n
∞∑
j=1

H2n+1(2κdj) sin 2βdj. (4.6)

In Maniar and Newman [6],δ is used instead ofβd and their cylinders are positioned ony = 0
rather thanx = 0 to derive a system that is similar to (4.3), (4.4).

Clearly from (4.2) or from (4.4), we need only restrict our attention to 0< βd 6 π .
Furthermore, replacingβd by π − βd in (4.4), we haveKmn(π − βd) = (−1)m−nKmn(βd)
and so(−1)mAm(π − βd) satisfies the same homogeneous equation asAm(βd). It follows
that

κd(π − βd) = κd(βd)
and so we need only consider the range 06 κd < βd 6 1

2π .
Note that from (4.4)K−m,−n = Kmn and so from (4.3)An satisfies the same homogeneous

equation asA−n. It follows that

An = CA−n (4.7)

for some constantC. Replacingn by −n we may show thatC2 = 1 and substitutionn = 0
shows thatC = 1 providedA0 6= 0.

Twersky [12], in considering the scattering of waves by an infinite array of circular cylin-
ders, shows how to rewriteHn in a form which is rapidly convergent and his expressions for
Hn are repeated using our notation in the Appendix. In particular, it can be seen from the
Appendix that, when 06 κd < βd < π − κd, thenm+ = −1,m− = 0 such that all terms in
(A.1)–(A.3) containingθm’s vanish and it follows thatHn = −δn0 + iYn whereYn are real.
Thus, from (4.4)

Kmn = Zn(−δmn + iYn−m)

and substitution in (4.3) gives

(iAmZm)+ J
′
m(κa)

Y ′m(κa)

∞∑
n=−∞

(iAnZn)Yn−m = 0. (4.8)

Hence, the task of finding zeros of the complex determinant in (4.3) has been reduced to
finding zeros of the real determinant in (4.8) provided 0< κd < βd < π − κd

It is also possible to reduce the generally complex system (4.3) to a real system provided
βd = π , with κd < π in a manner similar to Maniar and Newman [6]. It follows from (4.6)
and the Appendix withβd = π , that

H2n+1 = 0, and H2n = −δn0 + (−1)n

κd
+ iY2n. (4.9)

Thus, only the even values ofn− m occur in (4.3) and this implies that (4.3) decouples into
n,m both even andn,m both odd. Now if we chooseC = 1 in (4.7) such thatAn = A−n then
only the oddAn can occur. This point is justified later in this section. Then we may rewrite
(4.3) as

A2m+1+
∞∑

n=−∞
A2n+1K2m+1,2n+1 = 0, −∞ < m <∞ (4.10)
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and from (4.4), (4.9)

K2m+1,2n+1 = Z2n+1(−δmn + (−1)m−n/κd + iY2m−2n).

Substituting this in (4.10) gives

(iA2m+1Z2m+1)+ J
′
2m+1(κa)

Y ′2m+1(κa)

[ ∞∑
n=−∞

(iA2n+1Z2n+1)Y2m−2n

+ 1

κd

∞∑
n=−∞

(−1)m−nA2n+1Z2n+1

]
= 0

and the final sum vanishes sinceZn = Z−n and we have assumedAn = A−n. We are therefore
left with a real determinant system as before. It is emphasized that this reduction to a real
system only occurs onβd = π , κd < π . Note that it is also possible for us to obtain a real
system whenβd = π for the evenAn by choosingC = −1 in (4.7) to giveAn = −A−n,
although the resulting homogeneous system does not have any solutions.

For any value ofβd for which (4.3) has a solution, the potential in the vicinity of cylinder
j is given by (2.10), which after using (4.2) is

φj(rj , θj ) = e2iβdj
∞∑

n=−∞
AnFn(κrj )einθj . (4.11)

Thus

∂φj

∂θ

∣∣∣∣
θj=π/2

= e2iβdj
∞∑

n=−∞
inAnFn(κrj )e

inπ/2

= 1
2i e2iβdj

∞∑
n=−∞

nFn(κrj )einπ/2(An −A−n) (4.12)

and similarly,

φj |θj=π/2 = 1
2 e2iβdj

∞∑
n=−∞

nFn(κrj )einπ/2(An +A−n), (4.13)

where the resultF−n = (−1)nFn has been used. By virtue of (4.7) the right-hand side of either
(4.12) or (4.13) vanishes and so the Rayleigh–Bloch wave is either symmetric (An = A−n)
or antisymmetric (An = −A−n) about the linex = 0 for all values ofβd as expected by the
symmetry in the geometry.

We are therefore able to identify the type of mode by monitoring the sign ofAn/A−n. The
results are shown in Figure 10, where values ofκd corresponding toβd 6 1

2π are plotted for
various values ofa/d. The solutions described by Figure 10 satisfy Neumann conditions on
each cylinder and in 10(a) they also satisfy a Neumann condition on the plane containing the
centre of every cylinder, whilst in 10(b) a Dirichlet condition is satisfied on this plane. Notice
that in the symmetric case, Rayleigh–Bloch waves exist for all cylinder sizes (0< a/d 6 1)
and for all values ofβd (we have concentrated on the rangeβd ∈ [14π, 1

2π ] here; the full
picture can be found in McIveret al.[13]). However, the situation for the antisymmetric mode
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Figure 10. Rayleigh–Bloch wavenumberκd vs.βd along a cylindrical grating for variousa/d. (a) The symmetric
mode:a/d = 1

4 ( ), 1
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4 (· · ·), (b) the antisymmetric mode:a/d = 0·85 (—), 0·9 (- - -), 0·95 (· · ·).

is more complicated. Our numerical work suggests that fora/d . 0·81, no antisymmetric
mode exists for all values ofβd and for values ofa/d greater than 0·81, antisymmetric
Rayleigh–Bloch modes only appear to exist for a limited intervalβd ∈ [β0d,

1
2π ], say.

An alternative approach to obtaining these localised surface waves has been given by
McIver et al. [13] using appropriate periodic multipoles as in Linton and Evans [14]. This
approach has the advantage of showing clearly that the modes decay to zero in a direction away
from the line of cylinders, something that is not evident from the expression (4.11) derived
here. Similar results for Rayleigh–Bloch modes near identical periodically-spaced cylinders
of rectangularcross-section have been given by Evans and Fernyhough [15]. In both cases
only modes symmetric aboutx = 0 are produced; the antisymmetric modes described by
10(b) are believed to be new.

In general, with time-harmonic variation re-introduced, such modes are not periodic in
y, unless 2βd is a rational multiple ofπ , so that the modes carry energy in one direction or
another along the infinite periodic array. In some cases, such as the circular cylinder array, it is
possible to deduce further information from the particular form of the solution. For example,
we can show that when 2βd is an integer multiple ofπ , the solutions reduce to standing modes
and the energy remains localised near each cylinder.

Thus, it is clear from (4.6) that, whenever 2βd is an integer multiple ofπ , the system
decouples into systems forA2n+1 andA2n. Then from (4.11)

φj(rj , θj )± φj (rj ,−θj ) = e2iβdj
∞∑

n=−∞
(AnFn einθj ±AnFn e−inθj )

= e2iβdj
∞∑

n=−∞
Fn einθj (An ± (−1)nA−n)

= e2iβdj
∞∑

n=−∞
[F2n e2inθj (A2n ±A−2n)

+F2n+1 ei(2n+1)θj (A2n+1∓A−(2n+1))], (4.14)
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We now return to our Rayleigh–Bloch waves along an infinite array and consider a value
of βd close to the standing wave solutionβd = 1

2π , by choosingβd = 1
2π(1− ε). Then,

from (4.1)

φ(x, y + 2jd) = eijπ(1−ε)φ(x, y) = e−iπjε[(−1)jφ(x, y)]. (4.18)

The standing-wave component of the solution is contained in the square brackets, whilst the
exponential term represents a modulation with one wavelength given byjε = 2. Matching
this modulation to the finite array, wherej = 2N corresponds to one wavelength gives simply
thatNε = 1 and so

βd = 1
2π(1− 1/N) (4.19)

and the corresponding wavenumberκd(βd) may be computed by means of (4.8). This value
of κd provides an estimate of the frequency at which the trapped mode occurs in a finite array,
and the comparison between these predicted wavenumbers and those at which there is a peak
force in a finite array ofN cylinders witha/d = 1

2 (computed from (2.9)) is shown in Table 1.
It can be seen that the agreement is excellent forN > 25, and even forN = 10 the agreement
is within 1%.

More recently, J. N. Newman (personal communication) has analysed the smaller peak in
the forces that occurs at a value ofκd slightly lower than that for the largest peak. It was
found that this value ofκd corresponded to the value at which thelargestpeak occurred for
an array of half the size, and that the distribution of forces along the array was now such that
the cylinders a quarter and three-quarters of the way along the array experienced the largest
forces, whilst the centre cylinders, in addition to the end cylinders, experienced onlyO(1)
forces. This is consistent with our analysis, since we may regard this case as either an array of
N cylinders modulated by a whole wavelength, in which case we chooseNε = 2 from (4.18),
or that of two arrays with half the number of elements joined together, each undergoing a
half-wavelength modulation, when we write12Nε = 1. Either way results in the same value
of βd and henceκd at which we expect the peak force to occur.

To add further weight to the argument connecting the Rayleigh–Bloch waves with near-
trapping we compare free-surface elevations along the lines of cylinders in the two cases.
Thus in Figure 11(a), we have sketched the free-surface elevation alongN = 25 cylinders
placed aty/d = 2j , j = 0,1, . . . ,24 whena/d = 1

2 due to head seas at the near-trapping
frequency. The vertical axis represents Re{φ(a, y/d)}, which is the free-surface elevation in
the plane touching the outside of all cylinders at timet = nπ/ω, n = 0,1, . . . where the
amplitude of the incident wave is unity. As previously noted, the motion resembles that of a
standing mode in each cell containing a cylinder along the array modulated in amplitude by a
cosine-type variation. By way of comparison, in Figure 11(b) we have plotted, using the solid
line, Re{φ(a, y/d)} againsty/d in the case of a Rayleigh–Bloch wave travelling along an
infinite array. The surface-profile here is periodic iny/d with period 50 whereβd is defined
by (4.19) withN = 25, and the corresponding value ofκd given in Table 1. It can be seen that
the wave profile between 06 y/d 6 50 is remarkably close to that in Figure 11(a) (overlayed
with dots on Figure 11(b)) for the near-trapping case. Note that the Rayleigh–Bloch solution
is homogeneous and has been scaled to match the amplitudes in Figure 11(a).

As a final remark, we notice that the earlier analysis for predicting the near-trapping fre-
quencies is independent of the geometry and so (4.19) is applicable to a finite linear array
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whilst
φj(rj , θj )∓ φj+1(rj+1, θj+1)|(rj ,−θj )

= e2iβdj
∞∑

n=−∞
(AnFn einθj ∓ e2iβdAnFn e−inθj )

= e2iβdj
∞∑

n=−∞
Fn einθj (An ∓ e2iβd(−1)nA−n)

= e2iβdj
∞∑

n=−∞
[F2n e2inθj (A2n ∓ e2iβdA−2n)

+F2n+1 ei(2n+1)θj (A2n+1± e2iβdA−(2n+1))] (4.15)

Let us first consider the case when the mode issymmetricabout the line joining the cylinder
centres,x = 0. From earlier, we showed that in this case,An = A−n. Let us assume that
A2n 6= 0, andA2n+1 = 0, for all n. Then, taking (4.14) with the lower sign, we render the
right-hand side zero and thereforeφj symmetric acrossθj = 0 for all j . In other words,
the solution is symmetric with respect to the planesy = 2jd, ∀j . Similar consideration of
(4.15) with the appropriate sign reveals the solution is either antisymmetric (ifβd = 1

2π ) or
symmetric (ifβd = π ) across the planesy = (2j+1)d, ∀j . In both of these cases, McIver and
Linton [16] have shown that no such solution exists and so we have a contradiction. We must
therefore haveA2n = 0, andA2n+1 6= 0. This argument provides the justification for choosing
the system (4.10). Returning to (4.14) and (4.15) with these values, we may show that the
solution is antisymmetric about the planesy = 2jd and either symmetric (ifβd = 1

2π ) or
antisymmetric (ifβd = π ) about the planesy = (2j + 1)d.

Similarly, we can analyse the case when the mode isantisymmetricaboutx = 0, where we
have shown thatAn = −A−n. First assume thatA2n = 0 andA2n+1 6= 0 for all n. Then from
(4.14) with the upper sign shows thatφj is symmetric aboutθj = 0 and hence the solution is
symmetric about all planesy = 2jd. From (4.15) with the appropriate signs, we find that the
solution is once again either antisymmetric (ifβd = 1

2π ) or symmetric (ifβd = π ) across
the planesy = (2j + 1)d, ∀j . From McIver and Linton [16], such conditions cannot give
rise to trapped modes. Thus, we must haveA2n 6= 0 andA2n+1 = 0 in the case of a mode
antisymmetric aboutx = 0 thoughA0 = 0 is also required so as not to contradict (4.7).
Consequently, the solution is antisymmetric about the planesy = 2jd and either symmetric
(if βd = 1

2π ) or antisymmetric (ifβd = π ) about the planesy = (2j +1)d as in the previous
case.

Thus, in each case the motion reduces to a standing wave mode in each intervaly ∈ [(2j −
1)d, (2j + 1)d]. We can replace the entire configuration using images by a single cylinder on
the mid-plane,y = 0, of a channel|y| < d,−∞ < x <∞ for which

φ = 0, ony = 0, |x| > a
and either φy = 0, ony = |d|, (βd = 1

2π), (4.16)

or φ = 0, ony = |d|, (βd = π). (4.17)

Whenφx = 0 onx = 0 and (4.16) is chosen gives precisely the condition for trapped modes
discovered by Callanet al.[7], whilst (4.17) completes the conditions satisfied by the Dirichlet
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Table 1. Table showing the values ofκd at which large forces occur in a
linear array ofN cylinders,a/d = 1

2 and the wavenumbers predicted using
Rayleigh–Bloch theory.

N (no. of cylinders) βd = 1
2π(1− 1/N) κd(βd) κd (peak force)

100 1·5550 1·3907 1·3907

50 1·5394 1·3889 1·3889

25 1·5080 1·3818 1·3820

20 1·4923 1·3767 1·3775

15 1·4661 1·3659 1·3680

10 1·4137 1·3376 1·3470

trapped modes described by Maniar and Newman [6]. The antisymmetric modes, whereφ = 0
onx = 0, are described briefly in Evans and Porter [17] in the note added in proof. We return
to these trapped modes in Section 5.

4.1. APPLICATION OFRAYLEIGH –BLOCH THEORY TO NEAR-TRAPPING BY FINITE

LINEAR ARRAYS OF CYLINDERS

In the final part of this section we make a connection between Rayleigh–Bloch waves and
the near-trapping of waves by large butfinite linear periodic arrays of vertical cylinders as
described in Maniar and Newman [6]. They showed that when an incident wave of a certain
frequency interacts with a large array of evenly spaced cylinders in a line, large forces are
experienced by the cylinders near the centre of the array corresponding to large near-resonant
motions of the surrounding fluid. The frequencies at which these large responses occurred
were found to be close to those trapped mode frequencies for a single cylinder between two
walls having Neumann or Dirichlet conditions imposed upon them described at the end of the
previous section. The former case is obtained by takingβd = 1

2π , and it is possible to make
a stronger connection between near-trapping by finite arrays and trapped modes about infinite
arrays of cylinders by considering the Rayleigh–Bloch solutions for generalβd.

In what follows we are motivated by Figure 2(b) in Maniar and Newman [2] in which the
distribution of forces along a finite array of 100 cylinders at the ‘near-trapping’ frequency
is plotted as a function of distance along the array and shows that the maximum force (of
approximately 34 times the isolated cylinder force) is experienced by the centre cylinder, with
the forces falling off toO(1) at the two ends of the array.

Thus, the wave motion at this near-trapping frequency would appear to be a near-standing
mode in each cell containing a cylinder, but modulated in amplitude along the array with one
wavelength equal to twice the length of the array. This is confirmed by Figure 11(a) which
shows the free-surface elevation in the plane touching the outside of all 25 cylinders placed
at y/d = 2j , j = 0, . . . ,24 in head seas at the near-trapping frequency. Clearly, in each cell
y/d ∈ [2j − 1,2j + 1] containing a cylinder, the wave appears to be of the standing-mode
type modulated in amplitude by half a cosine wave along the array.
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Figure 11. (a) The free-surface elevation alongN = 25 cylinders at the near-trapping frequency (a/d = 1
2), and

(b) overlayed (· · ·) on the Rayleigh–Bloch surface profile () along a corresponding infinite array withβd given
by (4.19).

consisting of elements of any cylinder cross section for which Rayleigh–Bloch waves exist in
the corresponding infinite array. More work is currently being done here.

5. Trapped waves in channels

In this section we describe the method of Callanet al. (1991) for predicting trapped modes
near a circular cylinder in a channel, but allow for the possibility of obtaining further solutions
at wavenumbers embedded in the continuous spectrum prompted by the numerical work of
the previous section. Two types of modes will be sought: Neumann(N) modes for which the
normal derivative of the velocity potential vanishes on the channel walls, and Dirichlet(D)
modes for which the solution itself vanishes on the walls. A further sub-division is made into
modes which are symmetric about a plane through the cylinder normal to the channel walls,
NS or DS modes, and modes which are antisymmetric about this plane, designated NA or DA
modes.

The velocity potential8 is expressed by (2.1) where, for the NS modes,φ(x, y) satisfies

(∇2+ κ2)φ = 0, in r > a, |y| < d, r = (x2 + y2)1/2, (5.1)

φy = 0, |y| = d, −∞ < x <∞, (5.2)

φr = 0, r = a, (5.3)

φ = 0, y = 0, |x| > a, (5.4)

φ→ 0, |x| → ∞, |y| 6 d, (5.5)

φx = 0 x = 0, |y| > a, (5.6)
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andκ is given by (2.2). We seek possible solutions of the above equations for values ofκ

satisfying

0< κ < 3π/2d. (5.7)

In seeking DS trapped modes we replace (5.2) by

φ = 0, |y| = d, −∞ < x <∞ (5.8)

and look for possible solutions for values ofκ satisfying

0< κ < 2π/d. (5.9)

For NA or DA modes, we replace (5.6) byφ = 0, x = 0, |y| > a. We focus attention on
possible NS modes and indicate at the end the minor the changes needed in considering the
other possible mode types.

It is sufficient to consider 06 y 6 d and choose functions odd iny in order to satisfy
(5.4).

The fundamental singular solution iH(1)
2n+1(κr) sin(2n+1)θ wherer cosθ = x, r sinθ = y,

satisfying (5.1), (5.4) and (5.6) may be modified by including an integral term, in order to
satisfy (5.2). The resulting multipole turns out to be purely real, and to satisfy (5.5) provided
thatκ < π/2d. If now 0 < κ < 3π/2d, the modifying integral term is now indeterminate,
having a pole on the real path of integration. It is normal in such a case, on physical grounds,
to choose a path which passes below the pole so that the now complex-valued integral behaves
like a wave travelling outwards at large distances. If we do this, the total multipole potential
is no longer real and the resulting infinite system is complex and we would be left with the
task of showing that the determinant had a real zero and that the corresponding expansion
coefficients were such as to produce no waves at infinity. Instead, we proceed differently. The
modifying integral term can also be made determinate if we interpret it as a principal-value
integral. This has the advantage that it remains real, whilst its behaviour at large distances is
now a standing wave. Thus, the resulting infinite system is also real and we have a simpler
task of computing any real zeros of the real determinant which simultaneously produce a
combination of standing waves which vanish at large distances.

We find (see Callanet al. (1991)) that we have for the multipoles the expressions

ψ2n+1(r, θ) = Y2n+1 sin(2n+ 1)θ

−2(−1)n

π

∫ ∞
0

e−γ d

coshγ d
sinhγy cos(κx coshv) sinh(2n+ 1)v dv

− 2

π

∫ 1
2π

0
− tanβd sinβy cos(κx sinu) cos(2n+ 1)udu, (5.10)

whereγ = κ sinhv, β = κ cosu, or equivalently

ψ2n+1(r, θ) = −2(−1)n

π

∫ ∞
0

coshγ (d − y)
coshγ d

sinhγy cos(κx coshv) sinh(2n+ 1)v dv

− 2

π

∫ 1
2π

0
− cosβ(d − y)

cosβd
cos(κx sinu) cos(2n+ 1)udu. (5.11)
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It is clear from (5.10) that (5.4) is satisfied and from (5.11) that (5.2) is satisfied. Note the
single principal value in the integrals ifπ/2d < κ < 3π/2d and which is not needed if
0< κd < π/2d. The behaviour ofψ2n+1(r, θ) for large|x| can be determined from (5.11) as
follows. The first integral vanishes for large|x| by the Riemann–Lebesgue lemma and we can
write the second as

I = − 2

π
Re
∫ 1

2π

0
− cosβ(d − y)

cosβd
eiκx sinu cos(2n+ 1)udu. (5.12)

Now cosβd = 0 when cosu = (2n + 1)π/2κd, n = 0,±1, . . .. But 1
3 < π/2κd < 1 if

π/2d < κ < 3π/2d so that there is just one root,u = u0, say, whenn = 0, on the path of
integration. Thus

β0 = κ cosu0 = π/2d.

If we now close the integral forI by a small semi-circle aboutu = u0 in the upperu-plane, the
resulting complex integral is easily seen, by deforming the path slightly upwards, to vanish at
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x →∞, leaving a term arising from the integral around the small circle. Thus, evaluating the
(half) residue, we have

I ∼ − 2

π
Reπ i

cosβ0(d − y)eiκx sinu0

κd sinβ0d sinu0
cos(2n+ 1)u0, asx →∞. (5.13)

For x → −∞, the integral path is closed by a semi-circle in the lower half-plane with the
final result, sinceI is even inx,

ψ2n+1(r, θ) ∼ 2 sinβ0y sin(κ|x| sinu0)

κd sinu0
cos(2n+ 1)u0, |x| → ∞. (5.14)

If 0 < κ < π/2d thenψ2n+1(r, θ) → 0 as|x| → ∞. We now seek a trapped mode in the
form

φ(r, θ) =
∞∑
n=0

κ−1an(Y
′
2n+1(κa))

−1ψ2n+1(r, θ) (5.15)

and application of the condition (5.3) yields

am +
∞∑
n=0

Bmnan = 0, m = 0,1,2, . . . (5.16)

whereBmn = AmnJ ′2m+1(κa)/Y
′
2n+1(κa). Here

Amn = − 4

π
(−1)m+n

∫ ∞
0

e−γ d

coshγ d
sinh(2n+ 1)v sinh(2m+ 1)v dv

− 4

π

∫ 1
2π

0
− tanβd cos(2n+ 1)u cos(2m+ 1)udu, (5.17)

where the principal value is not necessary if 0< κ < π/2d. Also, from (5.14), (5.15) if
π/2d < κ < 3π/2d we require

S =
∞∑
n=0

an cos(2n+ 1)u0

Y ′2n+1(κa)
= 0 (5.18)

ensuring that

φ(r, θ) ∼ 2S sinβ0y

κ2d sinu0
sin(κ|x| sinu0), |x| → ∞ (5.19)

satisfies condition (5.4).

5.1. RESULTS

The computation of the real zeros of the real determinant of the system (5.16) is straightfor-
ward for 0< κd < 1

2π when the principal value interpretation in (5.17) is not needed and
S = 0. It is found that a unique value of trapped mode wavenumberκd exists for each value
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of a/d. This is illustrated in Figure 12(a) by the solid curve and are just those results to be
found in Callanet al. [7]. For 1

2π < κd <
3
2π we need to consider the principal-value integral

in (5.17) in computing the values ofκd for which the determinant of (5.16) vanishes as a
function ofa/d. Just as for values ofκd < π/2, there is a unique value ofκd for eacha/d,
and a single curve ofκd versusa/d can be drawn. At each point on this curve a non-trivial
vectora = {a0, a1, . . .} is defined allowingS to be computed from (5.18). Then any points
on the curve of vanishing determinant for whichS also vanishes corresponds to a trapped
mode. This provides a method for determining the values ofκd anda/d for which trapped
modes occur. Instead, however, we choose to proceed slightly differently. The advantage of
the method below will become clear later.

Let the eigenvalues of the matrixδmn + Bmn, m,n = 0,1,2, . . . in the system (5.16) be
{λr}, eachλr having a corresponding eigenvectorer = {er0, er1, . . .}. Let λm = min

r
{|λr |} and

define

S̃ =
∞∑
n=0

emn cos(2n+ 1)u0

Y ′2n+1(κa)
(5.20)

Unlike S in (5.18), S̃ is defined over all parametersκd anda/d and not just on the curve of
vanishing determinant. However, the values ofS and S̃ do coincide on the curve of det= 0
whereλm = 0, and the corresponding eigenvectorem is equal toa. Thus, if in addition to
the curve det= 0, the curveS̃ = 0 is also sketched, then any points of intersection of these
two curves correspond to a trapped mode. The advantage of this method is that a trapped
mode is clearly seen to correspond to the crossing of two lines and that the values ofκd and
a/d for which a trapped mode occurs can easily be read off the graph. Moreover, as series
are computed numerically by truncation and curves are not exact, it is more convincing for
us to have two independently computed curves intersecting rather than using the information
from an ‘approximate’ curve in a further condition that must also be satisfied. For values of
κd ∈ (π/2,3π/2) we plot points wherẽS, given by (5.20) vanishes. Again this provides a
unique curve ofκd againsta/d. The curves are shown in Figure 13(a), where it can be seen
that there is just one intersection indicating a trapped mode.

Increasingly refined calculations give the values at which this embedded Neumann trapped
mode occurs as

κd = 4·677467= 1·488884π and a/d = 0·3520905.

The procedure for determining the embedded DS trapped mode follows that outlined above
for the Neumann modes with only minor changes arising from the replacement of (5.2)
by (5.8) in the governing equations. Fundamentally this affects the form of the multipoles
defined in the Neumann case by (5.10). Thus, the changes for the Dirichlet case involve the
replacement of coshγ d by sinhγ d in the denominator of the first integral in (5.10) and of
tanβd by− cotβd in the second. Working through with these altered expressions still gives
the two Equations (5.16) and (5.18) (and therefore (5.20)), but in (5.17), coshγ d is replaced
with − sinhγ d and tanβd is replaced with− cotβd. Note also that now the principal value
occurs at the valueu = u0 whereβ0 = κ cosu0 = π/d.

Results for the Dirichlet mode are also shown in Figure 13(b) as the intersection of two
curves. Precise values for this new embedded modes are

κd = 6·257636= 1·991867π and a/d = 0·2670474.
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For the Dirichlet mode when 0< κd < π the principal value is not required andS = 0
and the computation of the zeros of the determinant show that there exists a unique Dirichlet
trapped-mode wavenumberκd for each value ofa/d . 0·6788. A curve showing the variation
of κd againsta/d in this case is given in Figure 12(b).

Possible NA modes (Neumann conditions on the channel walls and an antisymmetric
about the line through the centre of the cylinder perpendicular to the channel walls) can be
constructed in a manner similar to before, starting with a modification of the Callanet al. [7]
multipoles to enforce the antisymmetry condition, the resulting homogeneous system again
being (5.16), but withBmn = AmnJ ′2m(κa)/Y ′2n(κa) andAmn replaced by

Amn = − 4

π
(−1)m+n

∫ ∞
0

e−γ d

coshγ d
sinh 2mv sinh 2nv dv

− 4

π

∫ 1
2π

0
− tanβd sin 2mu sin 2nudu (5.21)

whereγ = κ sinhv, β = κ cosu as before. If 0< κd < 1
2π , a real zero of the infinite

determinant of (5.16) exists for all values ofa/d & 0·81. The NA trapped modes are shown
in Figure 12(a) by the dashed curve.

Computations suggest that no DA trapped modes exist for 0< κd < 2π and the same is
true for NA modes if12π < κd < 3

2π . Further details can be found in Evans and Porter [18].
See also Evans and Porter [17].

6. Trapped modes about multiple cylinders in a channel

In this section, we describe the results of extending the theory of Callanet al. [7] to multiple
cylinders centred on the centre-plane of a channel and determine the corresponding Neumann
and Dirichlet trapped modes. We omit the details which can be found in Evans and Porter [17].
In brief, for each cylinder a general multipole expansion satisfying all conditions except on
the cylinders themselves can be constructed and Grafs addition theorem for Bessel functions
used in applying the Neumann condition on each cylinder. This produces a homogeneous real
infinite system of equations for the Fourier coefficients associated with each cylinder.

The number of possible configurations of cylinders we could consider is of course limitless,
but we shall concentrate here on the case of two identical cylinders because of its connection
with finitedouble arrays of cylinders which occur in offshore floating structures as discussed in
the Introduction. The nondimensional trapped-mode wavenumberκd is in this case a function
of two dimensionless parametersµ andλ describing the size and spacing of the centres of the
cylinders. We chooseµ = a/d and let the centres of the cylinders be located at(±λa,0), so
thatλ is a spacing parameter being the ratio of cylinder separation to cylinder diameter. When
λ = 1, the cylinders are touching and, asλ → ∞, we would expect results for the trapped
modes to approach the single cylinder results as the interaction between them diminishes.
In fact, since the trapped modes are a localised phenomenon, we might expect the single
cylinder results to be approached for relatively small values ofλ. This proves to be the case as
Figure 14 illustrates. Here, Neumann and Dirichlet trapped mode wavenumbersκd obtained
by computing the real zeros of the determinant in the homogeneous real infinite system for the
Fourier coefficients are plotted againstµ for differentλ. Also shown is the unique wavenum-
ber for both the Neumann and Dirichlet trapped modes for an isolated cylinder which we label
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Figure 16. Maximum exciting force against non-dimensional wavenumberκd in the case of head seas interacting
with a double array of 2× 9 cylinders all of radiusa. The two rows are 4a apart and in each row the centres are
2d apart. (a)a/d = 1

2, (b) a/d = 1
4.

λ = ∞. We consider the Neumann modes first, all of whose wavenumbers satisfyκd < π/2.
The solid curves are symmetric Neumann trapped modes whilst the dashed curves above the
λ = ∞ curve are all antisymmetric Neumann trapped modes, the symmetries measured across
the mid-plane between the two cylinders. We can draw the following conclusions about the
Neumann modes from Figure 14.

For sufficiently largeµ andλ there exist four Neumann trapped modes, two symmetric
and two antisymmetric about the mid-plane between the two cylinders. Asλ increases one
of each type converges to the unique value of the Neumann mode NS, for a single cylinder
for thatµ, whilst the other pair converge to the Neumann mode NA for a single cylinder. See
the beginning of Section 5 for the definition of these abbreviations. These single cylinders
results are labelled byλ = ∞ in Figure 15(a). However, for fixedλ asµ decreases, eventually
only a single symmetric curve remains. The behaviour is made clearer in Figure 15(a) which,
for a fixed value ofµ = 0·9, shows how the trapped mode wavenumbers vary with spacing
parameter,λ. The Dirichlet modes are shown in Figure 15(b). Whilst a maximum of only
two modes can exist for the Dirichlet modes, the general behaviour of the Dirichlet modes
is more complicated than the Neumann modes. Maniar and Newman [6] showed that, for an
isolated cylinder, Dirichlet modes only exist for 0< µ . 0·6788 and this is confirmed in
Figure 15(b) by theλ = ∞ curve (also illustrated in Figure 12). The presence of a second
identical cylinder widens the range ofµ for which (symmetric) Dirichlet modes exist and this
range increases slowly as the gap between the cylinders is reduced. Thus, even forλ = 1·05
when the fluid gap is only 5% of a cylinder diameter, the range of existence has only increased
up toµ ≈ 0·772. However, computations right down toλ = 1 corresponding to touching,
suggest that a symmetric Dirichlet mode exists forall µ ∈ (0,1). Note that atλ = µ = 1
each of the two exterior fluid regions is the same as the region exterior to a single cylinder
with µ = 1 for which Figure 12 shows there is no solution. One explanation is that in this
limit the trapped-mode frequency coincides with a sloshing frequency in the two identical
bounded cusped interior regions. In addition to this complicated behaviour forλ ≈ 1, the
antisymmetric Dirichlet modes, just as for the Neumann modes, also manifest a cut-off below
certain values ofµ for eachλ so that the overall picture is one of existence of antisymmetric
Dirichlet modes in intervals ofµ for givenλ which increase in length with increasingλ up to
0 < µ . 0·6788 and the existence of symmetric Dirichlet modes for allµ for λ sufficiently
close to unity, or a cut-off above some valueµ0 with 0·6788. µ0 6 1 for eachλ.
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It is possible to remove the channel walls and regard both types of trapped modes as
oscillations between adjacent pairs of cylinders in a doubly-infinite row, the Neumann modes
having an antinode at each mid-plane between pairs of cylinders and the Dirichlet modes a
node. Following the discussion of Maniar and Newman [6] that afinite single row containing
many cylinders could experience large forces and free-surface motions at frequencies close to
the Neumann and Dirichlet trapped modes for a single cylinder in a channel, or its equivalent
infinite row of cylinders, we should expect that the peaks in Figures 16(a) and 16(b) which
give the maximum in-line exciting force on the middle pair of cylinders in a double row of
2×9 cylinders due to head seas to be close to the corresponding symmetric trapped modes. In
Figures 16(a), 16(b) the distance between two cylinders in a pair is 4a so that in both figures
the corresponding doubly-infinite row requiresλ = 2. It is clear from Figure 14 atλ = 2 that
this is indeed the case. Thus, the computed values of the symmetric Neumann and Dirichlet
trapped-mode wavenumbers forµ = 1

2 areκd = 1·29771 andκd = 3·02157, respectively,
compared to the peaks at 1·256 and 3·024 in Figure 16(a), whilst forµ = 1

4 the trapped
modes atκd = 1·46567 and 2·90894 compare to the peaks at 1·400 and 2·856 respectively in
Figure 16(b). The other peaks in Figures 16(a),(b) are believed to correspond to nearly-trapped
waves. Notice how the dominant mode in Figure 16(a) whenµ = 1

2 is a symmetric Neumann
mode, whereas in Figure 16(b) whenµ = 1

4 the symmetric Dirichlet mode dominates. The
same behaviour was found by Maniar and Newman [6, Figure 1] in considering a single row
of cylinders.

Because Figure 16 describes the exciting forces in head seas, it shows no evidence of the
antisymmetric Neumann trapped modes atµ = 1

2 shown in Figure 14(b) forλ = 2. Computa-
tions for a double row of nine cylinders in obliquely-incident waves having an antisymmetric
component again provide little indication of the antisymmetric mode whilst the peak for the
symmetric mode is reduced. It appears to be difficult for us to generate a significant peak close
to the antisymmetric trapped modes in a finite double row by using a physically realistic wave
train. However, it proves possible, using equal and opposite obliquely-incident waves which
are antisymmetric about the mid-line between the two rows of cylinders, for us to create a
similar amplification to that shown in Figure 16 in the wave forces on the middle cylinders
close to the antisymmetric Neumann mode forµ = 1

2.
If we consider two unequal cylinders, the two trapping-mode curves againstλ approach

corresponding values for each cylinder in isolation asλ increases. Similar considerations apply
as the number of cylinders is increased. Further examples are provided in Evans and Porter
[17].

7. Conclusion

A variety of problems concerned with the trapping or near-trapping of waves by arrays of
bottom-mounted identical vertical cylinders has been considered, reflecting the latest results
in this rapidly-developing area. The connection between the possibility of large exciting forces
and corresponding trapped-mode configurations will ensure that the fascinating subject of
trapped modes will continue to attract interest for practical as well as theoretical reasons.
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Appendix. The Schlömilch series

According to Twersky (1961), forn > 1,

H2n = (−1)n

κd

m+∑
m=−m−

cos 2nθm
cosθm

− i(−1)n

κd

(
m+∑
m=0

−
−m−∑
m=−1

)
sin 2nθm
sinθm

+ i(−1)n

nπ

+ i

π

n∑
m=1

(−1)m−n(n+m− 1)!B2m(βd/π)

(2m)!(n−m)!(κd/2π)2m

− i

κd

 ∞∑
m=m++1

e−2nl+m

sinhl+m
+

∞∑
m=m−+1

e−2nl−m

sinhl−m

 (A.1)

and forn > 0,

H2n+1 = − i(−1)n

κd

m+∑
m=−m−

sin(2n+ 1)θm
cosθm

+ i(−1)n

κd

(
m+∑
m=0

−
−m−∑
m=−1

)
cos(2n+ 1)θm

cosθm

+ i

π

n∑
m=0

(−1)m−n(n+m)!B2m+1(βd/π)

(2m+ 1)!(n−m)!(κd/2π)2m+1

− i

κd

 ∞∑
m=m++1

e−(2n+1)l+m

sinhl+m
−

∞∑
m=m−+1

e−(2n+1)l−m

sinhl−m

 (A.2)

and finally,

H0 = −1+
m+∑

m=−m−

1

κd cosθm
− 2i

π

(
γ + log

κd

2π

)
+ i

(
m+∑
m=1

+
m−∑
m=1

)
1

mπ

−2i
∞∑

m=m++1

[
1

κd sinhl−m
− 1

mπ

]
− 2i

∞∑
m=m−+1

[
1

κd sinhl−m
− 1

mπ

]
(A.3)

whereBm(x) is the Bernoulli polynomial andm± = [(∓βd + κd)/π ] and[x] denotes the
integer part ofx. Also

sinθm = (βd +mπ)/κd, −m− 6 m 6 m+ (A.4)

and

coshl±m = (±βd +mπ)/κd, m > m+ + 1, andm 6 −m− − 1 (A.5)

such that allθm, l±m are real. Here,γ = 0·577. . . is Eulers constant.
When 06 κd < βd < π − κd, it is found thatm+ = −1, m− = 0 and all terms in

(A.1)–(A.3) containingθm’s vanish.
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