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Abstract. In this paper, some recent developments and new results concerning the trapping of waves by arrays of
vertical circular cylinders is presented. In particular, the cases are examined when there is a circular arrangement
of cylinders and both finite and infinite periodic linear arrays of identical cylinders. Only for the infinite array

is there pure trapping of waves — known as Rayleigh—Bloch or edge waves — which, for particular dominant
wavenumbers, reduce to the well-known trapped-mode solutions for a cylinder between two parallel walls having
either Neumann or Dirichlet conditions upon them. This latter case is considered separately and some new results
are presented. In the circular array and finite linear array the concept of near-trapping is introduced where large
resonant motions are found to occur at certain frequencies of the incident wave field. In the case of the finite linear
array, these near-trapping frequencies are related to the Rayleigh—Bloch trapped-wave frequencies for the infinite
array. Finally, the case when there are two or more lines of cylinders in the linear array is examined.

Keywords: trapping, water waves, cylinders, wavemaker, Rayleigh—Bloch.

1. Introduction

The classical linear theory of water waves has proved extremely successful in predicting the
forces on fixed or moving structures in low amplitude waves and forms the basis for such
considerations in ocean engineering and related fields.

The simplest, and the only explicit solution, in three dimensions, involving a fixed structure
is the solution derived by McCamy and Fuchs [1] for the total wave field due to a long-
crested wave in water of finite depth incident upon a bottom-mounted surface-piercing
fixed rigid circular cylinder, extending Havelock’s (1929) infinite-depth wavemaker theory.
The solution, for example, for the first-order exciting forces on the cylinder turns out to be an
infinite series of Hankel functions. See Mei [3, pp. 312—-315] for details. The reasons why this
problem permits an explicit solution are two-fold. First, since the cross-section of the cylinder
is constant with depth and the cylinder is fixed, the dependence on dejfitthe velocity
potential describing the flow can be extracted via a multiplicative term @sh- z) where
« is the positive root ofv?> = gk tanhk i, thereby reducing the problem to a solution of the
Helmholtz equation in two-dimensions with a Neumann condition on the cirelea (we
have assumed the circle, of radiwshas its centre at the origin of Cartesian co-ordinates
with x = r cosf, y = r sind). The second reason is that the incident wave potential can be
expressed in polar co-ordinates as an infinite sum of a product of Bessel and trigonometric
functions enabling the Neumann condition to be satisfied ena explicitly.

It is natural to consider how this solution can be extended. Clearly, the depth dependence
can be extracted for any number of fixed vertical cylinders of arbitrary cross-section extending
throughout the depth. Also, if they are circular, the Graf addition theorem for Bessel func-
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tions can be used to shift co-ordinates between cylinders. This device enables the problem
of the scattering by arbitrary arrays of circular cylinders to be reduced to the solution of a
rapidly-converging infinite system of equations for certain Fourier coefficiéhtelated to

the expansion of the field in the vicinity of, say, theéh cylinder. This idea was used by
Twersky [4], whilst Linton and Evans [5], unaware of Twersky’s work, re-derived the theory
and also showed how the potential on any cylinder could be expressed simply in terms of an
infinite series involving thet, whilst the exciting forces depended only ahand A* ;.

The Linton and Evans [5] theory is the starting point for the present paper and is summa-
rized in Section 2. In Section 3 we consider a circular configuration of cylinders and consider
how the exciting forces on each cylinder differs from the force on a single cylinder predicted
by the McCamy and Fuchs [1] results. The relevance to the wave forces on the supporting
columns of an offshore drilling platform is clear, but there are undoubtedly other industrial
applications involving the solution of the Helmholtz equation in the domain exterior to a
circular array of circular cylinders.

It is shown that the exciting force increases dramatically as the spacing between each of
four identical circular cylinders, placed at the four corners of a square, is reduced. We term
this phenomenon near-trapping and show that it arises because of the existence of standing
waves trapped in the interior region bounded by the cylinders whose energy slowly leaks
away to infinity. A general consideration of this effect is presented. In particular, we show, by
destroying the symmetry of the circular arrangement, whilst not increasing the gaps between
adjacent cylinders, that the effect disappears showing that this phenomenon is not simply a
manifestation of the large resonant oscillations which can occur within a harbour connected
to the open sea by a narrow entrance when excited by an incident wave field of appropriate
frequency.

In Section 4 the theory is applied to a linear periodic array of cylinders in a manner similar
to Maniar and Newman [4] and this part of the paper has much in common with their work.
They showed how the forces on the centre cylinders in a large linear array of identical cylinders
became large at certain frequencies of the incident wave field which correspond to the trapped
modes which can exist in the vicinity of a circular cylinder confined between two parallel
walls on which either a Neumann or a Dirichlet condition is applied. Such trapped modes in
the Neumann case were first discovered by Cataal.[7]. In the present paper we show how,
by increasing indefinitely the number of cylinders, dropping the incident wave, and assuming
a Bloch or Floquet-type expansion for the wave field, an infinite system is obtained whose
solution describes Rayleigh—Bloch waves which are confined to the vicinity of the line of
cylinders and decay to zero in a direction normal to this line. For a discussion of Rayleigh—
Bloch waves in the context of diffraction gratings, see Wilcox [8].

When the dominant wavenumbgrin the Rayleigh—Bloch expansion takes particular val-
ues, the solution reduces to standing waves along the infinite array which, just as in Maniar
and Newman [6], can be interpreted as trapped modes of either Neumann or Dirichlet type
around a single cylinder confined between parallel walls.

For other values o8 we demonstrate that the Rayleigh—Bloch solution is connected to the
near-trapping of waves arising in a corresponding finite periodic linear array of cylinders as
shown by Maniar and Newman [6]. This conclusion is important in enabling the prediction of
large forces on finite arrays of cylinders to be made on the basis of results for infinite arrays
which are usually easier to determine. The results of Section 4 are new.

We return, in Section 5, to the original formulation of Cal&ral.[7], but we now allow the
possibility of both Dirichlet and Neumann modes above the lowest point of the corresponding
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continuous spectrum and also allow the possibility of modes which can be either symmetric
or antisymmetric about a plane through the centre of the cylinder normal to the channel walls.
We find new antisymmetric Neumann modes below the cut-off and a single Dirichlet and
Neumann mode above the cut-off at a precise value unique cylinder to channel width ratio.

It is clear that knowledge of the trapped modes which can exist near a single cylinder
in a channel is important in predicting the large forces on cylinders near the centre of a
long single linear array of cylinders. However, in many applications at least a double linear
array of cylinders would be needed as, for example, the supports of an offshore runway. It
is therefore important to predict the corresponding trapped mode frequencies for two or even
more cylinders on the channel centreplane. This is considered in Section 6 where results for
the special case of two identical cylinders are discussed.

2. Formulation
We use classical linear water-wave theory in which we seek a harmonic velocity poten-
tial ®(x, y, z,t). The formulation follows that of Linton and Evans [5] where the velocity
potential® is expressed as

®(x,y,z,1) = Re{p(x, y) coshi(z + h) e}, (2.1)
wherew /27 is the wave frequency, the depth of water and is the positive root of

w? = gk tanhkh. (2.2)
Theng satisfies

(V2 +«2)p(x,y) =0 (2.3)
exterior to the cylinders and

9 _

=0 (2.4)

on each cylinder.
We assume there aié circular cylinders having arbitrary position and radius and write

N
¢ (x,y) = dinc(x, y) + Y _ ¢l (x, y), (2.5)
j=1
where
¢inc(X, y) — ékr oS0 —0binc) — Ik él(rk oS0 —binc) (26)
and

Ik — ei’((xk COSBinc+yk SiNfinc) . (27)
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Figure 1. The co-ordinate system of Linton and Evans [5] and for the cylindrical array.

Thus, the incident wave makes an anglg with the x-direction and cylindek has centre
(xx, yo). The general form for the scattered potential from cylinfles

¢l = > AJZ]H,(cr;)e", (2.8)

n=—0oo

where
Z! = J/(ka;)/H,(ka;)

andq; is the radius of cylindey. HereH, = J, +1Y, is the Hankel function of the first kind.
By using Graf’s addition formula, Linton and Evans [5] showed that to satisfy (2.4) then the
coefficientsA* must satisfy

j=1 n=—00

N 00
A; + Z Z A{; Zy], é(nim)ajk Hy (K Rjk) = —I eim(n/ZﬂQinC)
#k

k=1 ...,N, —o0o<m< 0. (2.9)

HereR j; is the distance between the centres of cylingemadk, and j« is the angle between
the line from the centre of cylindet to the centre of cylindet and the positivec-direction.
Notice that the effect of the incident wave is included through the tnon the right-hand
side.

It was shown in Linton and Evans [5] that the total potential may be expressed in the
coordinates of cylindey, say, as simply

¢ 0))= Y AJF(cr) e, rj <Ry Vk, (2.10)

n=—0oo

where

Fy(krj) = Z] Hy(krj) — Ju(kr;) (2.11)
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and where;, 6; are polar coordinates measured from the centre of cylifderthe positive
x-direction. From the above equation, the first-order exciting force orjttheylinder can be
derived. Thus

SRR

whereF/ is the first-order exciting force on a isolated cylinder, radiysn the direction of
the incident wave and the upper (lower) elements refer to the force i the) direction.

The development up to now is entirely general and Equation (2.12) withthéound by
solving (2.9) gives the forces on any of the cylinders in an arbitrary arrangement, in a given
incident wave train.

We now assume th& cylinders are identicala; = a, j = 1,..., N) and are equally-
spaced around a circle of radi®s It is convenient to exploit the symmetry of the cylindrical
array and choose local polar coordinates at each cylinder measured from the line joining the
centre of that cylinder to the centre of the array as shown in Figure 1. It follows by elementary
geometry that

T T
OlijN(k'i‘j)‘i‘ESgr(k—j), (2.13)

where we have chosen cylindgto make an angles2j/N with the positivex-direction(j =
1,2,...,N)and to have its centre at

x; = Rcog2mj/N), yj = Rsin(2rj/N). (2.14)

Substitution of (2.13), (2.14) in (2.9) gives

J=1 n=—00

N 00
. .1 o .
B}’; 4 Z Z Br]l Z:i H,_n(k Rjk) g z(n—mymsgrk—j) g (n+m)m (k—j)/N
#h

= — [, @n@/2F2k/N=0nc) -} =1 . N, —o0o<m <00, (2.15)
where now
I, = grReos2rk/N—binc) (2.16)

from (2.7), (2.14) and

. k—j
Rjx = 2R smu‘ (2.17)
and we have also written
Ak exgfmkni/N — gk, (2.18)

Note that we can obtain the same result by using local polar co-ordinates from the outset in
(2.8) with A}, replaced byB; .
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Figure 2. Arrangement, dimensions and cylinder labels for a circular arrays of four cylinders.

It is easily shown that the forces in the radial/tangential directions are

SFS IR

normalised with respect to the force on an isolated cylinder of radiusthe direction of

the incident wave. Either (2.9) and (2.12) or (2.15) and (2.18) can be used to determine the
forces on cylindrical arrays of circular cylinders and as expected they give identical results. In
particular, they confirm the corrected results of Linton and Evans for the first-order exciting
force on four cylinders (Linton and Evans corrigendum [9]).

3. Forces on a circular array of four identical cylinders

In this section we shall be concerned with the forces on a circular arrays of 4 cylinders
arranged as shown in Figure 2. For simplicity we will only consider an incident wave pro-
gressing in the positive-direction @j,c = 0) such that the cylinder labelled as one is the
lead cylinder and so that the results for the forces are symmetrical. Note that this labelling
is different from that used in Figure 1 and throughout the rest of the section in developing
the analysis. The cylinders have diametemith 24 the distance between adjacent cylinders.
It is illuminating to define a gap to diameter rag2a = d/a — 1 being the ratio of the
gap between adjacent cylinders to a cylinder diameter. The circled numbers against the peaks
in the curves that follow will be referred to later in the section. We derived the results by
computing (2.19) using, calculated from (2.15).

Results for thetotal maximum force on each of four cylinders in a circular array with
finc = 0 against the nondimensional wavenumberas the ratiaz/d varies are presented
in Figures 3(a)—(d). In Figure 3(ag/d = 0-5 as in Linton and Evans [9]. Notice the peak
in the force on each cylinder at roughly the same value®f~ 1.66. Figures 3(b) to (d)
show the effect of bringing the cylinders closer together and it can be seen that the peaks
increase markedly as/d increases (0g/2a decreases) to such an extent thatdgd = 0-8
(g/2a = 0-25) in Figure 3(d) the peak force @l four cylinders is some 54 times the force on
an isolated cylinder. This can only be due to a near-trapped wave at the wavenumber given by
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"~54.1,
54.2,
54.1

Figure 3 Resultant force on four cylinders against wavenumbker,0jnc = 0, a/d = 0.5 (a), 06 (b), 07 (c),
0-8 (d).

ka = 4-08482. Results for four, five and six equally-spaced cylinders can be found in Evans
and Porter [10].

We shall see later that these large forces are accompanied by large motions in the vicinity
of the cylinders. In a sense this is to be expected since as the gag fatialecreases the
enclosed water region resembles more closely a harbour with a narrow entrance and large
motions can be expected at frequencies close to the ‘resonant’ frequencies of the internal fluid
region. This is confirmed in Figure 4 which plots, the maximum force on the lead cylinder
against the gap ratio, and shows how the force increases with decrgda&mngOne has to
take care when numerically computing the forces gg2a smaller than @, since a larger
truncation parameter is needed in the infinite system of equations. That the large force is
not simply a narrow entrance harbour effect can be seen from Figure 5 where the forces on
four cylinders witha/d = 0.8 are computed when the diameter of one of the cylinders is
increased by just 2%. Despite the narrowing of the gap between it and its neighbours we see
by comparison with Figure 3(d) that the maximum force has reduced to less-thancé the
symmetry has been broken.

It is clear that the large forces and amplitudes of motion in the vicinity of the cylinders at
frequencies and spacings corresponding to near-trapping are related to the near-vanishing of
the determinant of the infinite system (2.15). It is also clear that this determinant is indepen-
dent of the incident wave, which only appears on the right-hand side of (2.15) and that a more
direct approach to near-trapping is to assume thathare related purely through a phase
factor describing the angle between cylindeand cylinder;.
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Figure 4. The variation of non-dimensional peak force,(left scale) and wavenumbeiz at which it occurs
(— — —, right scale) on the lead cylinder in a circular array of four cylinders #jth = 0 as the gap ratig/2a

varies.
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Figure 5. Resultant force on unsymmetric arrangement of four cylinders against wavenumbép,c = O,
ai/d =0.82,a;/d = 08,i = 2,3, 4.

Following the approach of Maniar and Newman [6] for the linear array, we shall seek
near-trapped modes directly from (2.15) by putting the RHS equal to zero and assuming a
relation between thé*. Thus it might be expected that, for a near-trapped mageayould
only differ from B} by a phase factor reflecting the angle(2 — j)/N between the cylinders.

More generally, whilst preserving single-valuedness, we may write

BX = dk=n2mp/N i paninteger j,k=1,...,N, (3.1)
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whence substitution in (2.15) gives

B, + Z B, K, = 0, (32)

n=—oo

whereB, = B? and the superscript zero indicates a cylinder in the ‘zero-th’ position on the
positive x-axis. Hereafter we drop the superscript zero throughout for ease of notation. Here
we have

k—N .
K,y = Z, Z H, (ZKR sin %) e 2rpii/N é%("—m)ﬁsgf(j) g(m+mmj/N (3.3)
j=k—1
#0

after redefining the summation variable. This is easily seen to be independenthein we
show, in an obvious notation, that

It follows that, in particular, we may choo%e= N in which caseX,,, reduces to

N-1 .
. ;g . .
K = Z, 8" 23" H, _, <2/<R sin W]) glmtn=2p)wj/N (3.5)
j=1

and we have reduced (2.15) to the single infinite system (3.2) Kyjthas above.
Now, from (3.3), we first replace the summation varialleby —j and then substitute,
without loss of generality, the value bf= 1 to give

N-1 .
. T ; ; .
K pn(P)Zy Y Hyp (ch sin %) g1 3n—m)m ntm+2p)i/N (3.6)
Jj=1

in an obvious notation, but different to that used in (3.4), and comparison with (3.5) gives us
K_pp—n(p) = (=1)""Kya(N — p) (3.7)
whilst, it is clear from (3.5) that
Knn(0) = Ky (N). (3.8)

It follows from using (3.7) in (3.2), that—1)"B_,,(N — p) satisfies the same homogeneous
equation asB,(p) and the two systems share the same determinant. This immediately gives
us that the values afd at which the determinant vanishes for a particular valug afe the
same as those fav¥ — p. Moreover,

Bn(p) = C(_l)nB—n(N - P)
and so

B,(N — p) = C(=1)"B_,(p), (3.9)
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which implies thatC? = 1 or C = +1. In particular, choosing = N/2, N even, gives
B,(N/2) = +(—1)"B_,(N/2). (3.10)

We can also use the information in (3.8) to deduce from (3.2) Baé&d) = C B, (N), which,
used in (3.9) withp = 0 gives

B,(0) = C(—1)"B_,(0). (3.11)

It remains for us to look at the radial and tangential forces due to these two modes of reso-
nance. Thus, from (2.19) with = N/2 in (3.1) to relate cylindey to cylinder 0,

XI(N/2) = —3i(~1) (B_1(N/2) — By(N/2) = { A E¥)
J 0, c=1
XJ(N/2) = 5~/ (B_i(N/2) + By(N/2) —{ VBN, €1 @19

In other words, the force is either radial or tangential, but never a combination of the two and
switches in sign from one cylinder to the next. Likewise, wite= O (or N),

X/(0) = ~3i(B_1(0) — By(0)) = { O, =1 (3.14)
X}(0) = —5(B_1(0) + B1(0)) = { % h0, Cot1 (3.15)

giving the previous result, namely that the force can only ever be either totally radial or totally
tangential, but here the sense in which the force acts is the same for all the cylinders in the
array. This mode therefore corresponds to either a tangential torque on the array or a radial
pull on the array. These four cases are illustrated in Figure 6. For other valpethefe does

not appear to be a simple way of predicting the direction of the force on the cylinders in the
array.

The four possible resonant modes summarised in Figure 6 can each be shown to possess
symmetries of motion about lines joining the centre of the array to the centres of the cylinders
and those from the centre passing midway between adjacent cylinders. For example, in case
(a)(i) in Figure 6, using the expression for the potential close to cylikgee find

; (3.16)

3,0 3 [ = "
F @(n_Z B, F,(icr)€"* .
=—00 =

whereF, = (—1)"F_, is defined in (2.10). Then

M _ Z inBLF, = 3i(-1* > nF,(B,(N/2) — (-1)"B_,(N/2)), (3.17)

n=—0oo n=—oo
sincep = N/2,

=0, forC =1, orcaseg@)(i) (3.18)
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Figure 6. An illustration of the two possible forces in the resonant modes corresponding po£ayV /2, (b)
p=0,N.
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Figure 7. Location of zeros of determinant in complex wavenumbespace forN = 4 cylinders as:/d varies
from05t008: p=2(—), p=1=—-), p=0(----- )i a/d = 0-5([), 0-6(x), 0-7(x), 0-8(+).

and therefore there is symmetry about the lines joining the centre of the array to the centres of
the cylinders. Similarly, it is trivial to show that there is antisymmetry about the lines passes
midway between adjacent cylinders in this case.

It appears from our computations that all four near-trapped mode types associated with
p = 0, N/2 and illustrated in Figure 6 exist and this can be seen more clearly by looking at
the free surface plots.

3.1. FURTHER RESULTS FOR A CIRCULAR ARRAY OF FOUR IDENTICAL CYLINDERS

It is reasonable to ask whether the assumption for a near-trapped mode given in (3.1) provides
all the possible resonances. Numerical experiments performed on a range of array sizes and
wave parameters suggest that no others exist. In other words all resonances correspond to a
value of p in the determinant system (3.2), (3.5) which has assumed (3.1) expressing only a
change in phase from one cylinder to the next for the occurrence of a near trapped mode. An
alternative approach would be to appeal to symmetries of the problem as was done by Gaspard
and Rice [11] in their consideration of the resonances of a three disc system on which a ‘soft’
condition was applied.

It is the determinant system (3.2) that we turn our attention to next. Given that all reso-
nances are accounted for by a valueppthe determinant system, in much the same way as
for the infinite line of cylinders discussed earlier, provides a far more efficient way of locating
the frequency at which near-trapped modes occur. Not only this, but we can also identity by,
means of the value op, the behaviour of the type of mode. The reader is reminded that
choosingN — p gives the same results as choosjnfthis comes from equation (3.7)) and so
we need only restrict ourselves to considering values af [N /2].
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Figure 8. (a) Re{¢} and (b)|¢| for N = 4,a/d = 0-8, ka = 4-08482 Ojnc = 0°.
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Figure 9. (a) Re{¢} and ()| for N = 4, a/d = 0-8, ka = 5797, fjnc = 121

For the purpose of locating the frequency at which a near-trapped mode occurs, and hence
where we may expect to find large first and second order forces acting on the array, it is
sufficient to scan through the nondimensional wavenumberas a real parameter and mon-
itor the modulus of the value of the complex determinant. Then, whenever the modulus of
the determinant dips close to zero, one would expect to find a resonant motion in the forcing
problem. But itis perhaps more enlightening for us to seek the precise zeros of the determinant
by regardingca as a complex variable. This extra dimension adds to the computational effort
in locating trapped modes, requiring the use of Newton’s Method in two dimensions, but in
essence is straightforward.

The zeros of the complex determinant in the cylinder array are found in the following
way. For each value op, we perform a search of the complex space close to the real
line for a value ofa/d = 0-8 using Newton’s Method and pick out the complex values of
xa corresponding to a zero of the determinant in this region. For each of these yalliss
then varied from @ to 05 in small steps, so as to trace the path of the zero as the cylinders
are separated. This provides us with the most compact way of illustrating the influence of
near-trapping for any geometry consistingMfcylinders in a circular array. For example in
Figure 7, it can be seen how the peak in Linton and Evans [9] is due to the real-walued
passing ‘close’ to the pole in the complex plane at approximateédy 4 0-1i and, asa/d
is increased to @, this pole moves to within-001 of the real line. Furthermore, the mode
corresponds tp = 2 (= N/2). Thus, in the plots of maximum force against presented
in Figures 3(a)—(d), the peak in the forces can be associated with the occurrence of a pole in
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the complex plane close to the real axis. Clearly, as the pole moves closer to the real axis one
would expect the response in the forced problem to increase. We are also able to use Figure 7
to identify the types of modes responsible for the peaks in the forces, and these are represented
in Figures 3(a)—(d) by the circled values next to each of the peaks.

In order to assist our understanding of the various resonant motions due to near-trapping
that have become apparent in the force plots, and whose frequencies can be predicted from
the determinant system (3.2), we can also use plots of the free surface. The elevation of the
free surfaceH (x, y, t) = Re{n(x, y) €'} non-dimensionalised with respect to an incident
wave of unit amplitude is given by

nx,y) =¢(x,y). (3.19)

In the two free surface plots presented in this section, we will use two plots: one showing
Re{¢}, the other|¢|. The former of these two corresponds to the free surface elevation at a
particular instant in time during the cycle, namelyrat nn/w, n = 0,1, ... (this can be
seen by considering equation (2.1)), and allows us to observe the relative position of peaks
and troughs. Alternatively, we could have presented plots ¢p}rwhich corresponds to the
free surface elevation at= (n + %)n/w, n=20,1,.... Instead, we choose to pl@t| which
corresponds the maximum free surface elevation attained over a cycle. The circular array of
cylinders are arranged as in Figure 2 in such a way that the distance between consecutive
centres is unity (2 = 1), and attention is focused on the interior domain, since the motion
outside the array is relatively insignificant and of little interest. Also, since it is near-trapped
resonant modes that we seek, we plot the free surface due to the scattered potential only
by discarding the influence of the incident wave rather than using the total potential. In the
vicinity of cylinder j, say, we may use the computationally efficient method of calculating the
potential given by the expression in (2.13).

Figure 8 shows the free-surface elevationg@e|¢| at the closest real values of: for
a/d = 0-8. It can be seen that the maximum wave amplitude fouthe= 0.8 near-trapped
case is predicted at over 150 times the incident wave amplitude and is responsible for the peak
in the first-order force of 54 times that on an isolated cylinder. The motion in between the
cylinders resembles a floppy saddle: where there is a wave peak on one cylinder, there is a
trough on a neighbouring cylinder. From Figure 7 we see that this mode is associated with a
value p = 2 and this ties in with the prediction made by the analysis earlier jor=a N /2
mode where the force alternates in sign from one cylinder to the next.

The only other pole in the complex plane that comes near to the real linejsth@ mode
as the cylinders are moved close together. Again, the free-surface plot in Figure 9 shows that
this rather weak near-trapped mode contributes to a tangential force on the array as predicted
by the theory. Note that in order to excite this mode we would need to use an incident wave
that destroys the geometric symmetric of the array and we have cﬁ@csenlz%lo in Figure 9
(there is nothing special about this value). However, in Figures 3(a)—(d) an incident wave with
Binc = 0 was used that preserved the symmetry and so no peaks correspondingpte-tis
mode are observed.

For a discussion of the surface plots at near-trapping frequencies for a circular array of
four, five and six identical cylinders see Evans and Porter [10].
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4. Rayleigh—-Bloch waves along linear arrays of cylinders

We can use similar ideas to those used in the circular arrays of the previous section to obtain
solutions describing pure trapping in the case of an infinite periodic linear array of identical
cylinders spaced a distancé apart along the-axis. Such trapped waves are often termed
Rayleigh—Bloch waves or edge waves and are well known from the theory of diffraction
gratings. They describe localised time-periodic motions along the grating and can exist in the
absence of a source of excitation such as an incident wave field. In the present case, because
of symmetry of the geometry abowt = 0, the grating is described by a periodic array of
semi-circles on which a Neumann condition is satisfied protruding from a wall having either

a Neumann or a Dirichlet condition imposed upon it. Rayleigh—-Bloch waves along a grating
with periodicity 2/ are described by

d(x,y+2jd) = PVp(x,y), janinteger (4.1)

and a decaying-variation is sought such that the motion remains confined to the periodic line
of cylinders.

What follows is very similar to the procedure used by Maniar and Newman [6] in showing
the connection between the large forces on finite linear arrays of equally spaced identical
cylinders and the trapped waves which occur in the case of an infinite periodic linear array of
cylinders.

Thus we return to the general system (2.9) and apply it to an infinite line of identical
cylinders spaced a distancd 2part along they-axis. Now the only effect in going from
cylinder j to cylinderk is the change in the phase of the incident wave inytiaérection,
k= say, whergd = « sinéj,. in accordance with (4.1). It follows from the local potential
near a particular cylinder given by (2.8) that

Ak = @PIE=D AT _00 < jk < 00 (4.2)

and that allAﬁ can be referred to&f’l = A,, say, where the cylinders are labelled such that
cylinder j has centr€0, 2dj), —oo < j < oo.

In seeking a trapped-mode solution, we discard the incident wave and seek valiigs of
satisfying the homogeneous system with: 8 in general to ensure no radiation of waves for
large|x|. By making use of (4.2), writing’ = j — k and then dropping the prime, we obtain

Am + Z AnKmn = 0, —xo<m<oo, (43)
where
Kn = Zn Y Hyo(26d|j|) @94 e120-mmsaD) — 7, 3¢, (4.4)
]':#*000
say, where
Hon = 2(=1)" Y Hp,(2cdj) cos Bdj, (4.5)

j=1
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Hons1 = 2(=1)" ) Hzyy1(2cdj) sin 28d;. (4.6)
j=1

In Maniar and Newman [6} is used instead @#d and their cylinders are positioned on= 0
rather tharx = 0 to derive a system that is similar to (4.3), (4.4).

Clearly from (4.2) or from (4.4), we need only restrict our attention tec08d < .
Furthermore, replacingd by = — Bd in (4.4), we havek,,,,(7x — Bd) = (—1)" " K,,,,(Bd)
and so(—1)"A,,(r — Bd) satisfies the same homogeneous equatioA,g$d). It follows
that

kd(m — Bd) = kd(Bd)

and so we need only consider the rangg ©d < d < %n.
Note that from (4.4X_,, ., = K., and so from (4.3, satisfies the same homogeneous
equation asi_,,. It follows that

A, =CA_, (4.7)

for some constanf. Replacing: by —»n we may show that? = 1 and substitutiom = 0
shows thalC = 1 providedA, # O.

Twersky [12], in considering the scattering of waves by an infinite array of circular cylin-
ders, shows how to rewrit#, in a form which is rapidly convergent and his expressions for
J, are repeated using our notation in the Appendix. In particular, it can be seen from the
Appendix that, when & «d < Bd < 7 — kd, thenm, = —1,m_ = 0 such that all terms in
(A.1)—(A.3) containing),,’s vanish and it follows tha#¢, = —§,0 + 1Y, where¥y,, are real.
Thus, from (4.4)

Kmn = Zn(_(smn + iyn—m)

and substitution in (4.3) gives

o]

J) (ka) , _
Vi tea) ; (1AuZy)Ynm = 0. (4.8)

Hence, the task of finding zeros of the complex determinant in (4.3) has been reduced to
finding zeros of the real determinant in (4.8) provided @d < Bd < m — kd

It is also possible to reduce the generally complex system (4.3) to a real system provided
Bd = m, with kd < 7 in a manner similar to Maniar and Newman [6]. It follows from (4.6)
and the Appendix witt8d = =, that

—00

(="

Kkd
Thus, only the even values af— m occur in (4.3) and this implies that (4.3) decouples into
n, m both even and, m both odd. Now if we choos€ = 1in (4.7) such thai, = A_, then
only the oddA, can occur. This point is justified later in this section. Then we may rewrite
(4.3) as

ﬂZn—&-l =0, and Ho, = —6,0 + + iyzn. (49)

o0
Agpi1 + Z A1 Komi1.0041 = 0, —oco<m<oo (4.10)

n=—oo
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and from (4.4), (4.9)

K2m+l,2n+l - ZZn+l(_8mn + (_1)m7n/Kd + iy2n172n)‘
Substituting this in (4.10) gives

J2/m+l(Ka)

iA V4 +
(1A2n+1Z2m+1) Yj,. (<)

o0
[ Z (1A2041Z2n1+1) Yom—2n
n=—00

o]

+ é nzoo(—l)m"Aszrlzan} =0
and the final sum vanishes sinég = Z_, and we have assumey, = A_,. We are therefore
left with a real determinant system as before. It is emphasized that this reduction to a real
system only occurs ofid = m, kd < 7. Note that it is also possible for us to obtain a real
system whergd = xz for the evenA, by choosingC = —1in (4.7) to gived, = —A_,,
although the resulting homogeneous system does not have any solutions.

For any value ofgd for which (4.3) has a solution, the potential in the vicinity of cylinder
j is given by (2.10), which after using (4.2) is

¢! (r;,0;) = P4 i A, Fy(crj) €. (4.11)
Thus _
3¢’ = eAhdi i inA,F,(xr;)e""/?
a6 0j=m/2 00
= lie?hd i nF,(kr;) € 2(A, — A_,) (4.12)
and similarly, _
¢'lo;=nj2 = 3 PV i nF,(cr;) @A, + Ay, (4.13)

where the resulf’_, = (—1)"F,, has been used. By virtue of (4.7) the right-hand side of either
(4.12) or (4.13) vanishes and so the Rayleigh—Bloch wave is either symméjrie- (A_,)

or antisymmetric 4,, = —A_,) about the linex = 0 for all values of8d as expected by the
symmetry in the geometry.

We are therefore able to identify the type of mode by monitoring the sigh,pA_,,. The
results are shown in Figure 10, where valueséftcorresponding t@d < %n are plotted for
various values ofi/d. The solutions described by Figure 10 satisfy Neumann conditions on
each cylinder and in 10(a) they also satisfy a Neumann condition on the plane containing the
centre of every cylinder, whilst in 10(b) a Dirichlet condition is satisfied on this plane. Notice
that in the symmetric case, Rayleigh—Bloch waves exist for all cylinder sizesd¥ < 1)
and for all values ofBd (we have concentrated on the rangg < [;1171, %n] here; the full
picture can be found in Mclveat al.[13]). However, the situation for the antisymmetric mode
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Figure 10. Rayleigh—Bloch wavenumbet vs. 8d along a cylindrical grating for various/d. (a) The symmetric
modea/d =  (-), 4 (---), 3 (---), (b) the antisymmetric mode;/d = 0-85 (—), 09 (- - -), 095 (- - ).

is more complicated. Our numerical work suggests thatfet < 0-81, no antisymmetric
mode exists for all values g8d and for values ofz/d greater than @1, antisymmetric
Rayleigh—Bloch modes only appear to exist for a limited inteeak [Bod, %n], say.

An alternative approach to obtaining these localised surface waves has been given by
Mclver et al. [13] using appropriate periodic multipoles as in Linton and Evans [14]. This
approach has the advantage of showing clearly that the modes decay to zero in a direction away
from the line of cylinders, something that is not evident from the expression (4.11) derived
here. Similar results for Rayleigh—Bloch modes near identical periodically-spaced cylinders
of rectangularcross-section have been given by Evans and Fernyhough [15]. In both cases
only modes symmetric about = 0 are produced; the antisymmetric modes described by
10(b) are believed to be new.

In general, with time-harmonic variation re-introduced, such modes are not periodic in
v, unless Bd is a rational multiple ofr, so that the modes carry energy in one direction or
another along the infinite periodic array. In some cases, such as the circular cylinder array, itis
possible to deduce further information from the particular form of the solution. For example,
we can show that wherng? is an integer multiple of, the solutions reduce to standing modes
and the energy remains localised near each cylinder.

Thus, it is clear from (4.6) that, wheneveB@ is an integer multiple ofr, the system
decouples into systems fdr,,; andA,,. Then from (4.11)

¢/ (r;, 0) £ ¢l (r;, —0;) = P Z (A, F, &% + A, F, e ")

n=—oo

= &P 3" F, (A, £ (-D)"A,)

= &P N [Fo € (Agw £ A )

n=—0oo

+Fpy1 €@V (Mg, 1 T A_2011)], (4.14)
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We now return to our Rayleigh—Bloch waves along an infinite array and consider a value
of Bd close to the standing wave solutiggal = %n, by choosing8d = %n(l —¢). Then,
from (4.1)

P(x,y +2jd) = g (x, y) = e (=1 p(x, )]. (4.18)

The standing-wave component of the solution is contained in the square brackets, whilst the
exponential term represents a modulation with one wavelength givgi by 2. Matching

this modulation to the finite array, whefe= 2N corresponds to one wavelength gives simply
thatNe = 1 and so

pd = 3 (1—1/N) (4.19)

and the corresponding wavenumhei(8d) may be computed by means of (4.8). This value

of xd provides an estimate of the frequency at which the trapped mode occurs in a finite array,
and the comparison between these predicted wavenumbers and those at which there is a peak
force in afinite array oV cylinders witha/d = % (computed from (2.9)) is shown in Table 1.

It can be seen that the agreement is excellendvigs 25, and even foN = 10 the agreement

is within 1%.

More recently, J. N. Newman (personal communication) has analysed the smaller peak in
the forces that occurs at a value «f slightly lower than that for the largest peak. It was
found that this value otd corresponded to the value at which taegestpeak occurred for
an array of half the size, and that the distribution of forces along the array was now such that
the cylinders a quarter and three-quarters of the way along the array experienced the largest
forces, whilst the centre cylinders, in addition to the end cylinders, experiencedgt)y
forces. This is consistent with our analysis, since we may regard this case as either an array of
N cylinders modulated by a whole wavelength, in which case we chidese 2 from (4.18),
or that of two arrays with half the number of elements joined together, each undergoing a
half-wavelength modulation, when we Wrige\/e = 1. Either way results in the same value
of Bd and henced at which we expect the peak force to occur.

To add further weight to the argument connecting the Rayleigh—Bloch waves with near-
trapping we compare free-surface elevations along the lines of cylinders in the two cases.
Thus in Figure 11(a), we have sketched the free-surface elevation Aloeg25 cylinders
placed aty/d = 2j, j = 0,1,...,24 whena/d = % due to head seas at the near-trapping
frequency. The vertical axis represents{®&@, y/d)}, which is the free-surface elevation in
the plane touching the outside of all cylinders at time- n7/w, n = 0,1, ... where the
amplitude of the incident wave is unity. As previously noted, the motion resembles that of a
standing mode in each cell containing a cylinder along the array modulated in amplitude by a
cosine-type variation. By way of comparison, in Figure 11(b) we have plotted, using the solid
line, Rg¢(a, y/d)} againsty/d in the case of a Rayleigh—Bloch wave travelling along an
infinite array. The surface-profile here is periodicyifd with period 50 wheresd is defined
by (4.19) withN = 25, and the corresponding valuexef given in Table 1. It can be seen that
the wave profile betweenq y/d < 50 is remarkably close to that in Figure 11(a) (overlayed
with dots on Figure 11(b)) for the near-trapping case. Note that the Rayleigh—Bloch solution
is homogeneous and has been scaled to match the amplitudes in Figure 11(a).

As a final remark, we notice that the earlier analysis for predicting the near-trapping fre-
guencies is independent of the geometry and so (4.19) is applicable to a finite linear array
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whilst
¢/ (rj, 0) F ¢/ i1, 054D 0s—0))

oo
— eZiﬂdj Z (An Fn ein9_,' ¥ eZiﬂdAn Fn efil’l({)j)

n=—0oo

— eZiﬁdj Z Fn ein9j (An ¥ ezwd(—l)”A,,,)

n=—oo

= &P Y [F € (A F €A y)

n=—0oo
+F1 €@V (Mg, £ PIA_ 5,010 (4.15)

Let us first consider the case when the modgyimmetricabout the line joining the cylinder
centresx = 0. From earlier, we showed that in this cagde, = A_,. Let us assume that

Ay, # 0,andAy,; = 0, for all n. Then, taking (4.14) with the lower sign, we render the
right-hand side zero and therefogé symmetric acrosg; = 0 for all j. In other words,

the solution is symmetric with respect to the plaes 2jd, Vj. Similar consideration of
(4.15) with the appropriate sign reveals the solution is either antisymmetgd (i %n) or
symmetric (ifBd = 7) across the planes= (2j+1)d, V. In both of these cases, Mclver and
Linton [16] have shown that no such solution exists and so we have a contradiction. We must
therefore havel,, = 0, andA,, 1 # 0. This argument provides the justification for choosing
the system (4.10). Returning to (4.14) and (4.15) with these values, we may show that the
solution is antisymmetric about the plangs= 2;jd and either symmetric (iBd = %n) or
antisymmetric (if8d = m) about the planes = (2 + 1)d.

Similarly, we can analyse the case when the moa@aisymmetri@boutx = 0, where we
have shown thati,, = —A_,. First assume that,, = 0 andA,, 1 # 0O for all n. Then from
(4.14) with the upper sign shows that is symmetric about; = 0 and hence the solution is
symmetric about all planes= 2;jd. From (4.15) with the appropriate signs, we find that the
solution is once again either antisymmetric §f = %n) or symmetric (if3d = =) across
the planesy = (2 + 1)d, V. From Mclver and Linton [16], such conditions cannot give
rise to trapped modes. Thus, we must hagg # 0 andA,,,; = 0 in the case of a mode
antisymmetric about = 0 thoughAy = 0 is also required so as not to contradict (4.7).
Consequently, the solution is antisymmetric about the planes2;d and either symmetric
(if Bd = %n) or antisymmetric (if8d = m) about the planeg = (2 + 1)d as in the previous
case.

Thus, in each case the motion reduces to a standing wave mode in each nterfalj —

1)d, (2j + 1)d]. We can replace the entire configuration using images by a single cylinder on
the mid-planey = 0, of a channe|y| < d, —o0 < x < oo for which

¢=0, ony=0,|x|>a
and either ¢, =0, ony=|d|, (Bd=in), (4.16)
or ¢=0, ony=1\d|, (Bd=m). (4.17)

Wheng¢, = 0 onx = 0 and (4.16) is chosen gives precisely the condition for trapped modes
discovered by Callaat al.[7], whilst (4.17) completes the conditions satisfied by the Dirichlet
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Table 1. Table showing the values afd at which large forces occur in a
linear array ofN cylinders,a/d = % and the wavenumbers predicted using
Rayleigh—Bloch theory.

N (no. of cylinders) Bd = %rr(l— 1/N) «d(Bd) «d (peak force)

100 15550 13907 13907
50 15394 13889 13889
25 1.5080 13818 13820
20 14923 13767 13775
15 14661 13659 13680
10 14137 13376 13470

trapped modes described by Maniar and Newman [6]. The antisymmetric modesgwhdre
onx = 0, are described briefly in Evans and Porter [17] in the note added in proof. We return
to these trapped modes in Section 5.

4.1. APPLICATION OFRAYLEIGH—BLOCH THEORY TO NEARTRAPPING BY FINITE
LINEAR ARRAYS OF CYLINDERS

In the final part of this section we make a connection between Rayleigh—Bloch waves and
the near-trapping of waves by large Hirtite linear periodic arrays of vertical cylinders as
described in Maniar and Newman [6]. They showed that when an incident wave of a certain
frequency interacts with a large array of evenly spaced cylinders in a line, large forces are
experienced by the cylinders near the centre of the array corresponding to large near-resonant
motions of the surrounding fluid. The frequencies at which these large responses occurred
were found to be close to those trapped mode frequencies for a single cylinder between two
walls having Neumann or Dirichlet conditions imposed upon them described at the end of the
previous section. The former case is obtained by tajifg= %n, and it is possible to make

a stronger connection between near-trapping by finite arrays and trapped modes about infinite
arrays of cylinders by considering the Rayleigh—Bloch solutions for gepgéral

In what follows we are motivated by Figure 2(b) in Maniar and Newman [2] in which the
distribution of forces along a finite array of 100 cylinders at the ‘near-trapping’ frequency
is plotted as a function of distance along the array and shows that the maximum force (of
approximately 34 times the isolated cylinder force) is experienced by the centre cylinder, with
the forces falling off toO (1) at the two ends of the array.

Thus, the wave motion at this near-trapping frequency would appear to be a near-standing
mode in each cell containing a cylinder, but modulated in amplitude along the array with one
wavelength equal to twice the length of the array. This is confirmed by Figure 11(a) which
shows the free-surface elevation in the plane touching the outside of all 25 cylinders placed
aty/d =2j,j=0,...,24 in head seas at the near-trapping frequency. Clearly, in each cell
v/d € [2j —1,2j + 1] containing a cylinder, the wave appears to be of the standing-mode
type modulated in amplitude by half a cosine wave along the array.
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Figure 11. (a) The free-surface elevation alohg= 25 cylinders at the near-trapping frequeneyd = %), and
(b) overlayed {- -) on the Rayleigh—Bloch surface profile)(along a corresponding infinite array wigld given
by (4.19).

consisting of elements of any cylinder cross section for which Rayleigh—Bloch waves exist in
the corresponding infinite array. More work is currently being done here.

5. Trapped waves in channels

In this section we describe the method of Caléral. (1991) for predicting trapped modes
near a circular cylinder in a channel, but allow for the possibility of obtaining further solutions
at wavenumbers embedded in the continuous spectrum prompted by the numerical work of
the previous section. Two types of modes will be sought: Neumann(N) modes for which the
normal derivative of the velocity potential vanishes on the channel walls, and Dirichlet(D)
modes for which the solution itself vanishes on the walls. A further sub-division is made into
modes which are symmetric about a plane through the cylinder normal to the channel walls,
NS or DS modes, and modes which are antisymmetric about this plane, designated NA or DA
modes.

The velocity potentiatb is expressed by (2.1) where, for the NS modgs;, y) satisfies

(V24 k%9 =0, inr>a, |y <d, r=(x2+y?)l? (5.1)
¢y =0, |yl=d, —oo<x<o0, (5.2)
¢ =0, r=a, (5.3)
$=0y=0 |x]>a, (5.4)
¢ —0, |x[—>o00, |yl<d, (5.5)

¢r=0 x=0, |y[>a, (5.6)
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and« is given by (2.2). We seek possible solutions of the above equations for values of
satisfying

O<k <3m/2d. (5.7)
In seeking DS trapped modes we replace (5.2) by

¢=0, |y|=d, —0 <X <00 (5.8)
and look for possible solutions for valueskosatisfying

O<k <2r/d. (5.9

For NA or DA modes, we replace (5.6) fy = 0, x = 0, |y| > a. We focus attention on
possible NS modes and indicate at the end the minor the changes needed in considering the
other possible mode types.

It is sufficient to consider X y < d and choose functions odd win order to satisfy
(5.4).

The fundamental singular solutioH. }ﬁrl(/cr) sin(2n +1)0 wherer cosé = x, r siné = y,
satisfying (5.1), (5.4) and (5.6) may be modified by including an integral term, in order to
satisfy (5.2). The resulting multipole turns out to be purely real, and to satisfy (5.5) provided
thatk < /2d. If now 0 < ¥k < 37/2d, the modifying integral term is now indeterminate,
having a pole on the real path of integration. It is normal in such a case, on physical grounds,
to choose a path which passes below the pole so that the now complex-valued integral behaves
like a wave travelling outwards at large distances. If we do this, the total multipole potential
is no longer real and the resulting infinite system is complex and we would be left with the
task of showing that the determinant had a real zero and that the corresponding expansion
coefficients were such as to produce no waves at infinity. Instead, we proceed differently. The
modifying integral term can also be made determinate if we interpret it as a principal-value
integral. This has the advantage that it remains real, whilst its behaviour at large distances is
now a standing wave. Thus, the resulting infinite system is also real and we have a simpler
task of computing any real zeros of the real determinant which simultaneously produce a
combination of standing waves which vanish at large distances.

We find (see Callaet al. (1991)) that we have for the multipoles the expressions

Vont1(r,0) = Youp18iN(2n + 1)0

2(~1y" /O" " Ginhyy cosex coshv) sinh(2a + 1yvd
B v v v
7 Jo coshyd YRR

-1
T Jo

wherey = « sinhv, B = k cosu, or equivalently

NI

tanBd sinBy codk x sinu) cog2n + L)u du, (5.10)

2(=1" [ hy (d —
Yons1(r,0) = — ) / coshy ( Y) sinhyy coqkx coshv) sinh(2n + 1)v dv
T 0 coshyd

2 ][ﬂw coS(kcx Sinu) cos2n + L)u du. (5.11)
0

T cosBd
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Figure 12. (a) The Neumann trapped mode wavenumbers Bd < %rr vs. cylinder sizez/d: (—) symmetric
mode (NS), (- - -) antisymmetric mode (NA). (b) The Dirichlet (DS) trapped mode wavenumbersiO< 7 vs.
a/d.
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Figure 13. Curves showing zeros of determinant and é6r the (a) Neumann and (b) Dirichlet modes as functions
of kd anda/d.

It is clear from (5.10) that (5.4) is satisfied and from (5.11) that (5.2) is satisfied. Note the
single principal value in the integrals if/2d < x < 3m/2d and which is not needed if

0 < xd < w/2d. The behaviour ofi,, 1(r, 0) for large|x| can be determined from (5.11) as
follows. The first integral vanishes for larggl by the Riemann—Lebesgue lemma and we can
write the second as

1

2 o [P COSBUE =) s

I =——Re ———— " cog2n + L)u du. 5.12

b4 ][0 cos Bd S2n + Du du ( )

Now cosfd = 0 when cos = (2n + D)m/2kd, n = 0,£1,.... But < m/2%d < 11if
m/2d < k < 3m/2d so that there is just one root,= ug, say, whem = 0, on the path of
integration. Thus

Bo =k COSug = m/2d.

If we now close the integral faf by a small semi-circle about= ug in the uppet:-plane, the
resulting complex integral is easily seen, by deforming the path slightly upwards, to vanish at
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x — 00, leaving a term arising from the integral around the small circle. Thus, evaluating the
(half) residue, we have

2 _COSﬂo(d _ y)ei/(x sinug

I ~ ——Reri - . coS2n + Dug, asx . 5.13
T kd SinBod Sinug S2n + Duo - ( )

Forx — —o0, the integral path is closed by a semi-circle in the lower half-plane with the
final result, sincd is even inx,

2sinByy sin(x|x| sinug)

co92n + Duo, . 5.14
d Sinitg S2n + Dug, |x| - o0 ( )

Yonta(r, 0) ~

If0 < x < w/2d thenyrp,1(r, ) — 0 as|x| — oco. We now seek a trapped mode in the
form

¢(r,0) = > k7 ta,(Ys, 1 (ka) " Yanya(r, 0) (5.15)
n=0

and application of the condition (5.3) yields

m+ Y Buntn =0, m=0,12,... (5.16)
n=0

whereB,,, = Ay, 1(ka)/Y,, 1(ka). Here

4 ©  gvd
Apn = ——(=1)"*" sinh(2n 4+ v sinh(2m + 1)vd
M /ocoshydlh( + D sinh2m + Do do

1
4 57
—— ][2 tanBd cos2n + 1)u coS2m + 1)u du, (5.17)
T Jo

where the principal value is not necessary ikOx < m/2d. Also, from (5.14), (5.15) if
m/2d < k < 3m/2d we require

2. a,coq2n +1
s=y GCo;t Do _ (5.18)
n=0 Y2”+1(Ka)
ensuring that
25sinBoy . .
~—_— A
o, 0) <2d Sinuig sin(x |x| sinug), |x| = o© (5.19)

satisfies condition (5.4).
5.1. ReEsuLTs

The computation of the real zeros of the real determinant of the system (5.16) is straightfor-
ward for 0 < «kd < %n when the principal value interpretation in (5.17) is not needed and
S = 0. Itis found that a unique value of trapped mode wavenumbesxists for each value
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Figure 14. Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for two cylindersubﬁti%
as the spacing parametgr,varies. Symmetric modes-}, antisymmetric modes (- - -).
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Figure 15. Variation of (a) Neumann and (b) Dirichlet trapped-mode frequencigs \&wies in the case of two
cylinders for different values of the spacing parametgishown against the curves). Symmetric mode} (
antisymmetric modes (- --).
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of a/d. This is illustrated in Figure 12(a) by the solid curve and are just those results to be
found in Callaret al.[7]. For %n < kd < %n we need to consider the principal-value integral
in (5.17) in computing the values afd for which the determinant of (5.16) vanishes as a
function ofa/d. Just as for values afd < /2, there is a unique value efl for eacha/d,
and a single curve ofd versusa/d can be drawn. At each point on this curve a non-trivial
vectora = {ag, a1, ...} is defined allowingsS to be computed from (5.18). Then any points
on the curve of vanishing determinant for whighalso vanishes corresponds to a trapped
mode. This provides a method for determining the valuesdofnda/d for which trapped
modes occur. Instead, however, we choose to proceed slightly differently. The advantage of
the method below will become clear later.

Let the eigenvalues of the matrdy,, + B,.,, m,n = 0,1,2,... in the system (5.16) be
{A,}, eachi, having a corresponding eigenvec®r= {eg, ¢}, ...}. Leti,, = rrlin{|A,|} and

define

. N e"cog2n +1
§=Y & n + Lo (5.20)
n=0 Y2”+1(Ka)

Unlike S in (5.18), S is defined over all parameters! anda/d and not just on the curve of
vanishing determinant. However, the valuesSadnd S do coincide on the curve of det 0
wherea,, = 0, and the corresponding eigenvec#sris equal toa. Thus, if in addition to
the curve det= 0, the curveS = 0 is also sketched, then any points of intersection of these
two curves correspond to a trapped mode. The advantage of this method is that a trapped
mode is clearly seen to correspond to the crossing of two lines and that the valuesuiud
a/d for which a trapped mode occurs can easily be read off the graph. Moreover, as series
are computed numerically by truncation and curves are not exact, it is more convincing for
us to have two independently computed curves intersecting rather than using the information
from an ‘approximate’ curve in a further condition that must also be satisfied. For values of
kd € (m/2,3r/2) we plot points wheres, given by (5.20) vanishes. Again this provides a
unique curve okd againsta/d. The curves are shown in Figure 13(a), where it can be seen
that there is just one intersection indicating a trapped mode.

Increasingly refined calculations give the values at which this embedded Neumann trapped
mode occurs as

kd = 4-677467= 1.488884r and a/d = 0-3520905

The procedure for determining the embedded DS trapped mode follows that outlined above
for the Neumann modes with only minor changes arising from the replacement of (5.2)
by (5.8) in the governing equations. Fundamentally this affects the form of the multipoles
defined in the Neumann case by (5.10). Thus, the changes for the Dirichlet case involve the
replacement of coshd by sinhyd in the denominator of the first integral in (5.10) and of
tanBd by — cotBd in the second. Working through with these altered expressions still gives
the two Equations (5.16) and (5.18) (and therefore (5.20)), but in (5.17),ebshreplaced
with — sinhyd and tangd is replaced with— cotBd. Note also that now the principal value
occurs at the valug = ug wheregy = k cosug = /d.

Results for the Dirichlet mode are also shown in Figure 13(b) as the intersection of two
curves. Precise values for this new embedded modes are

kd = 6:257636= 1.99186% and a/d = 0-2670474
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For the Dirichlet mode when & «d < & the principal value is not required arsd= 0
and the computation of the zeros of the determinant show that there exists a unique Dirichlet
trapped-mode wavenumbe for each value ofi/d < 0-6788. A curve showing the variation
of kd againstu/d in this case is given in Figure 12(b).

Possible NA modes (Neumann conditions on the channel walls and an antisymmetric
about the line through the centre of the cylinder perpendicular to the channel walls) can be
constructed in a manner similar to before, starting with a modification of the Galiain[7]
multipoles to enforce the antisymmetry condition, the resulting homogeneous system again
being (5.16), but withB,,, = A, J;,, (ka)/Y,, (ka) andA,,, replaced by

4 © gvd
Apn = ——(—1)’"*”/ sinh 2nv sinh 21w dv
7 o coshyd

1
4 (2"
——][ tangd sin 2mu sin 2nu du (5.21)
T Jo

wherey = k sinhv, 8 = «cosu as before. If 0< «d < %71, a real zero of the infinite
determinant of (5.16) exists for all values@fd = 0-81. The NA trapped modes are shown
in Figure 12(a) by the dashed curve.

Computations suggest that no DA trapped modes exist farfd < 27 and the same is
true for NA modes if%n < kd < 7. Further details can be found in Evans and Porter [18].

2
See also Evans and Porter [17].

6. Trapped modes about multiple cylinders in a channel

In this section, we describe the results of extending the theory of Catllah[7] to multiple
cylinders centred on the centre-plane of a channel and determine the corresponding Neumann
and Dirichlet trapped modes. We omit the details which can be found in Evans and Porter [17].
In brief, for each cylinder a general multipole expansion satisfying all conditions except on
the cylinders themselves can be constructed and Grafs addition theorem for Bessel functions
used in applying the Neumann condition on each cylinder. This produces a homaogeneous real
infinite system of equations for the Fourier coefficients associated with each cylinder.

The number of possible configurations of cylinders we could consider is of course limitless,
but we shall concentrate here on the case of two identical cylinders because of its connection
with finite double arrays of cylinders which occur in offshore floating structures as discussed in
the Introduction. The nondimensional trapped-mode wavenumberin this case a function
of two dimensionless parametgrsand describing the size and spacing of the centres of the
cylinders. We choosg = a/d and let the centres of the cylinders be locatetsita, 0), so
that is a spacing parameter being the ratio of cylinder separation to cylinder diameter. When
A = 1, the cylinders are touching and, as— oo, we would expect results for the trapped
modes to approach the single cylinder results as the interaction between them diminishes.
In fact, since the trapped modes are a localised phenomenon, we might expect the single
cylinder results to be approached for relatively small valugs @his proves to be the case as
Figure 14 illustrates. Here, Neumann and Dirichlet trapped mode wavenuribelstained
by computing the real zeros of the determinant in the homogeneous real infinite system for the
Fourier coefficients are plotted againsfor differenti. Also shown is the unique wavenum-
ber for both the Neumann and Dirichlet trapped modes for an isolated cylinder which we label
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:
(a) s
.

i is 2 % o :
kd/m kd/m

Figure 16. Maximum exciting force against non-dimensional wavenumiaein the case of head seas interacting
with a double array of Z 9 cylinders all of radiug. The two rows are 4 apart and in each row the centres are
2d apart. (au/d = % (b)a/d = %1.

A = oo. We consider the Neumann modes first, all of whose wavenumbers satistyr /2.
The solid curves are symmetric Neumann trapped modes whilst the dashed curves above the
A = oo curve are all antisymmetric Neumann trapped modes, the symmetries measured across
the mid-plane between the two cylinders. We can draw the following conclusions about the
Neumann modes from Figure 14.

For sufficiently largex and A there exist four Neumann trapped modes, two symmetric
and two antisymmetric about the mid-plane between the two cylinders. iAsreases one
of each type converges to the unique value of the Neumann mode NS, for a single cylinder
for that ., whilst the other pair converge to the Neumann mode NA for a single cylinder. See
the beginning of Section 5 for the definition of these abbreviations. These single cylinders
results are labelled by = oo in Figure 15(a). However, for fixedlasu decreases, eventually
only a single symmetric curve remains. The behaviour is made clearer in Figure 15(a) which,
for a fixed value ofu = 0-9, shows how the trapped mode wavenumbers vary with spacing
parameter). The Dirichlet modes are shown in Figure 15(b). Whilst a maximum of only
two modes can exist for the Dirichlet modes, the general behaviour of the Dirichlet modes
is more complicated than the Neumann modes. Maniar and Newman [6] showed that, for an
isolated cylinder, Dirichlet modes only exist for© p < 0-6788 and this is confirmed in
Figure 15(b) by the. = oo curve (also illustrated in Figure 12). The presence of a second
identical cylinder widens the range pffor which (symmetric) Dirichlet modes exist and this
range increases slowly as the gap between the cylinders is reduced. Thus, even T05
when the fluid gap is only 5% of a cylinder diameter, the range of existence has only increased
up top ~ 0-772. However, computations right down to= 1 corresponding to touching,
suggest that a symmetric Dirichlet mode existsdbri € (0, 1). Note thatath = 4 = 1
each of the two exterior fluid regions is the same as the region exterior to a single cylinder
with u = 1 for which Figure 12 shows there is no solution. One explanation is that in this
limit the trapped-mode frequency coincides with a sloshing frequency in the two identical
bounded cusped interior regions. In addition to this complicated behaviour forl, the
antisymmetric Dirichlet modes, just as for the Neumann modes, also manifest a cut-off below
certain values of. for eachi so that the overall picture is one of existence of antisymmetric
Dirichlet modes in intervals of for givenx which increase in length with increasingup to
0 < n < 0:6788 and the existence of symmetric Dirichlet modes fopédibr A sufficiently
close to unity, or a cut-off above some valugwith 0-6788 < o < 1 for eachh.
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It is possible to remove the channel walls and regard both types of trapped modes as
oscillations between adjacent pairs of cylinders in a doubly-infinite row, the Neumann modes
having an antinode at each mid-plane between pairs of cylinders and the Dirichlet modes a
node. Following the discussion of Maniar and Newman [6] thiige single row containing
many cylinders could experience large forces and free-surface motions at frequencies close to
the Neumann and Dirichlet trapped modes for a single cylinder in a channel, or its equivalent
infinite row of cylinders, we should expect that the peaks in Figures 16(a) and 16(b) which
give the maximum in-line exciting force on the middle pair of cylinders in a double row of
2 x 9 cylinders due to head seas to be close to the corresponding symmetric trapped modes. In
Figures 16(a), 16(b) the distance between two cylinders in a pair $94hat in both figures
the corresponding doubly-infinite row requires= 2. It is clear from Figure 14 at = 2 that
this is indeed the case. Thus, the computed values of the symmetric Neumann and Dirichlet
trapped-mode wavenumbers for= % arexd = 1.29771 andcd = 3-:02157, respectively,
compared to the peaks at2b6 and 3024 in Figure 16(a), whilst fopr = %1 the trapped
modes akd = 1.46567 and 0894 compare to the peaks a400 and 2856 respectively in
Figure 16(b). The other peaks in Figures 16(a),(b) are believed to correspond to nearly-trapped
waves. Notice how the dominant mode in Figure 16(a) whea % is a symmetric Neumann
mode, whereas in Figure 16(b) whan= ;11 the symmetric Dirichlet mode dominates. The
same behaviour was found by Maniar and Newman [6, Figure 1] in considering a single row
of cylinders.

Because Figure 16 describes the exciting forces in head seas, it shows no evidence of the
antisymmetric Neumann trapped modeg. at % shown in Figure 14(b) fox = 2. Computa-
tions for a double row of nine cylinders in obliquely-incident waves having an antisymmetric
component again provide little indication of the antisymmetric mode whilst the peak for the
symmetric mode is reduced. It appears to be difficult for us to generate a significant peak close
to the antisymmetric trapped modes in a finite double row by using a physically realistic wave
train. However, it proves possible, using equal and opposite obliquely-incident waves which
are antisymmetric about the mid-line between the two rows of cylinders, for us to create a
similar amplification to that shown in Figure 16 in the wave forces on the middle cylinders
close to the antisymmetric Neumann mode;ioe %

If we consider two unequal cylinders, the two trapping-mode curves agaiagproach
corresponding values for each cylinder in isolation agreases. Similar considerations apply
as the number of cylinders is increased. Further examples are provided in Evans and Porter
[17].

7. Conclusion

A variety of problems concerned with the trapping or near-trapping of waves by arrays of
bottom-mounted identical vertical cylinders has been considered, reflecting the latest results
in this rapidly-developing area. The connection between the possibility of large exciting forces
and corresponding trapped-mode configurations will ensure that the fascinating subject of
trapped modes will continue to attract interest for practical as well as theoretical reasons.
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Appendix. The Schlémilch series

According to Twersky (1961), for > 1,

(=" < cos b, |( 1) sin 2;19 |(—1)"
Hoy = —
+i Xn: (=)™ " (n +m — 1)!By,(Bd/7)
T = (2m)\(n —m)!(cd/2m)2"
i o e—2nl$ o e—2nl,;
e A.l
kd Z sinhlf sinh/,; (A1)
m=m4+1 m=m_+1
and forn > 0,
=D N sina + 16, |( 1)" cos(2n + 1)6,,
ﬂ2n+l - Kd m=Zm Cosem l;) m—Zl
; i (=D""(n + m)! By 1(Bd /)
= (2m 4 D)!(n — m)!(kd /2m) 2"+
i ° —(2n+ 1)1} > —(2n+1)1,
L B S il *2)
wd | A= sinhiy A=, sinhi;
and finally,
m4 1 | my m_
to= 14 3 - B(rest) i (T4 X)
> 1 1 > 1 1
—2i —_— | =2 _—— A.3
Z+1 [Kd sinhi,, mn] Z+1 [Kd sinhi, mn] (A3
m=md4 m=m_

where B,, (x) is the Bernoulli polynomial aneh. = [(F8d + xd)/7] and[x] denotes the

integer part ofc. Also

sinG,, = (Bd +mm)/kd, —m_<m<my (A.4)
and

coshE = (£Bd + mm)/xd, m>my+1, andm < -m_—1 (A.5)
such that alb,,, I= ~ are real. Herey = 0-577... is Eulers constant.

When 0< «d < Bd < m — kd, itis found thatm, = —1,m_ = 0 and all terms in

(A.1)—(A.3) containing,,’s vanish.
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