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Summary

The scattering of water waves by a long array of evenly spaced, rigid, vertical circular cylinders
is analysed under the usual assumptions of linear theory. These assumptions permit the reduction
of the problem to that of solving the Helmholtz equation in two dimensions, with appropriate
circular boundaries. Our primary goal is to show how solutions obtained for semi-infinite arrays
can be combined to provide accurate and numerically efficient solutions to problems involving
long, but finite, arrays. The particular diffraction problem considered here has been chosen both
for its theoretical interest and for its applicability. The design of offshore structures supported by
cylindrical columns is commonplace and understanding how the multiple interactions between
the waves and the supports affect the field is clearly important. The theoretical interest comes
from the fact that, for wavelengths greater than twice the geometric periodicity, the associated
infinite array can support Rayleigh—Bloch surface waves that propagate along the array without
attenuation. For a long finite array, we expect to see these surface waves travelling back and forth
along the array and interacting with the ends. For particular sets of parameters, near-trapping
has previously been observed and we provide a quantitative explanation of this phenomenon
based on the excitation and reflection of surface waves by the ends of the finite array.

1. Introduction

Phenomena associated with scattering by large finite arrays are of practical importance in many
physical contexts. Examples include the design of photonic and phononic band gap mdtgrials (

the performance of phased array antenr@sa(id the hydrodynamic characteristics of structures

supported on an array of columrg(The relevant scattering problems can often be solved directly,

but the computational cost increases rapidly as the number of elements in the array increases.

In some cases, it may be appropriate to model the large finite array as an infinite array so that
the resulting geometrical periodicity can be used to greatly simplify the necessary analysis. One
might expect that this would lead to solutions that are valid in the interior of the array, far from

any ends or edges. Thus, for example, the claim is madé) iin( the context of electromagnetic
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scattering) that ‘finite periodic structures behave like their infinite counterparts’. However, in this
article, we are concerned with a situation where this is manifestly not the case due to the excitation
of surface waves by the array edges; these propagate along the array without decay. Array-guided
surface waves have been observed numerically in arrays of difg)les¢l microstrip antennas are
designed so as to suppress surface wave produ@)pbu(t theoretical techniques for studying the
excitation of such waves by array edges are few and far between. Re@@n#gdurate techniques

for the determination of the amplitude of surface waves excited by the end of a semi-infinite array
have been developed and this article builds on that work.

The particular problem that we consider is that of water wave scattering by an array of vertical
circular cylinders which, once the depth dependence has been factored out, is equivalent to two-
dimensional (2D) acoustic scattering by a 1D finite array of circles. The direct computation of the
solution is fairly straightforward in this example but, as we shall demonstrate, the approximation
described below significantly reduces execution time when large numbers of scatterers are involved.
Moreover, we are able to shed considerable light on the phenomenon of near-trapping, first reported
for this type of array in §). The frequencies at which surface waves (known as Rayleigh—Bloch
waves in this context) propagate along an infinite periodic array of cylinders were computed in
(9, 10); these are a generic phenomenon associated with rigid periodic strudtiyrég)(

The idea behind our approximation method is simple. We assume that the array is sufficiently
long that any fields generated at one end that decay along the array do not interact with the other
end. Surface waves that are excited do not decay and so their interactions with the other end of
the array are included. We thus construct the solution to the finite array problem from those to a
number of canonical problems, all formulated on infinite or semi-infinite arrays. Of course, for this
approach to be of use, it is vital that the solutions to these canonical problems can be computed
accurately and efficiently. In this article, the geometry has been chosen to be as simple as possible
so that significant progress can be made using analytic methods. For more general geometries, the
equivalent infinite and semi-infinite array problems have been treatd@)imgd (L4).

An example of some of the interesting effects that we seek to explain is shown ib; figse
were originally reported in§). Here, the scattering of a plane wave by a 101-cylinder array is
considered, using the method of Linton and Evals).(All lengths are scaled so that the distance
between the centres of consecutive elements is unity; according to this scaling, the radius of the
circles is 025. The geometry is the same as that shown in Eigith o = 0, that is, the scatterers
are labelled 01, . .. starting from the left and the incident field propagates from left to right, parallel
to the array (head-on incidence). The two graphs in Eighow the magnitude of the horizontal
forces (that is, the integral of the pressure times the component of the normal to the cylinders along
the array) acting on cylinders (’FQ) and 50 Q—';f’o) compared with those computed for a semi-infinite
array, plotted against the wave numbde=2xz /). The forces are normalised so that they would be
unity for a scatterer in isolation. Since there is no direct excitation of the right end by the incident
field, one might naively expect the results to be similar, and this is indeed the case fok small
also fork = 2.8. However, ak increases towards&, an oscillation builds up in the forces on the
finite array, and the semi-infinite array solution does not exhibit this effect. In particular, there is a
value ofk close to 28 about which the oscillations become so large that the force on scatterer 50 is
around 35 times that on an isolated scatterer.

The structure of the paper is as follows. The problem is formulated in seztod then reduced
to a series of canonical problems. The accuracy of the approach is discussed in3agiibtinen
in sectiond we show how the excitation of surface waves by the array ends can lead to constructive
interference and a near-trapping phenomenon.
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Fig. 1 Horizontal force exerted on scatterpr(p = O upper,p = 50 lower) at head-on incidence for a
101-cylinder array plotted against wave number
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Fig. 2 Schematic diagram showing a plan view of the finite array

2. Formulation

We consider the scattering of time-harmonic water waves by vertical circular cylinders in water
of constant depth under the usual assumptions of linear theory. The cylinders extend throughout
the fluid depth, and the motion is governed by a velocity potendtithat satisfies the 3D Laplace
equation, but this can be reduced to a 2D boundary-value problem by writing

(X, Y, Z) = Re[p(x, y) coshk(z + hye™'!]. 1)

Here,h is the quiescent water depth aads the angular frequency. The functignsatisfies the

2D Helmholtz equation(V? + k?)¢ = 0 in the region exterior to the scatterers, and these are
now circles in thgx, y)-plane. The wave numbéris the positive solution to the dispersion relation
ktanhkh = »?/g, whereg is the acceleration due to gravity. With a different definitiolk géxactly
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the same problem governs 2D scattering of acoustic waves by an array of circles. The scatterers are
assumed to be rigid so that the appropriate boundary condition on their surégg®is= 0, where
on is an element of the outgoing normal.

The subject of our investigation is the scattering of a plane wave

iK .
¢inc - (X cosyo+Yysinyg) (2)

by a long linear array of circular scatterers, each of which has radia lengths in the problem
are scaled so that the centre of scatterés located at the poingp, 0), wherep € {0,1,..., P}
(see Fig2). We treat this problem by assuming thats sufficiently large so that the engs= 0 and
x = P can be treated independently, except in situations where Rayleigh—Bloch surface waves are
excited. Such waves are excited at low frequencies by the end of a semi-infinite array and methods
for accurately determining their amplitude have been developéed.in (

To construct the solution, we must consider several canonical array problems. For brevity, we
introduce the term{po, p1} array’ to refer to the array that consists of scatterers centrep, &,

wherep € {po, ..., p1}. The solution to such a problem can be written in the fgrea ¢inc + ¢sc,
where
P1 %) )
$sc = Z Z UhZm Hm(krp)elmgp- 3)

P=po M=—co

Here,Hy = H,(%) is a Hankel function of the first kindr p, 0p) is a set of polar coordinates with its
origin at the centre of scattergrand the factorZm, = J;,(ka)/ Hy,(ka) have been introduced for
convenience. The coefficiert% satisfy the linear systeni$)

0 P1 )
U+ > Zn Y X Hnomklj —p) =RE, p=po,....p, MmeZ, (4

N=-00 i=po
p

in which X} = (sgnj)". The quantityR» appearing on the right-hand side is determined by the
expansion of the incident field about the centre of pie cylinder, that is,

o
$nc = REZmIm(krpe™. (5)

m=—o0
For a plane wave incident at anglg, we have
,Rr;])1 — _eipkcosw()ime—iml//(). (6)
The system of equationd)(is obtained by choosing an arbitrary cylinder in the array labelled by
p, re-expanding all fields propagating towards it (that is, the incident wave and the radiation from

all the other cylinders) as a series of the folsh dnd then applying the boundary condition. For a
thorough discussion of this method and its history, 4&ée%ection 4.5).

2.1 The infinite array

We will make explicit the dependence of the unknown coefficients on the angle of incidence; thus
for the{—o0, oo} array, we have

U = Br(po)eP oo (7)
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and the coefficient8y,(wo) are easily obtained, se&? 18). Due to the symmetry of the array
aboutx = 0, we have

B_m(7 — wo) = Bm(yo). 8

We will refer to (7) as the solution to thé—oo, oo} problem. This solution is said to be right (left)
resonant if there existsjae Z such thaty; = 0 (v = «), where

cosyj =cosyo + 2jr /K, | eZ. 9)

The finite set of real values fap; corresponds to the angles at which plane waves are scattered
by the array. Resonance implies that one of these scattered waves propagates exactly parallel to the
array. This is an important special case, which has some bearing on the accuracy of our method.
Note that ifyg = O (or ), thenBy, = O for all m; in this case, the scattered field simply cancels
the incident waveX8).

The{—o00, oo} array can also support periodic homogeneous solutions known as Rayleigh—Bloch
waves. Thus, if we tak&}, = 0 and write

UP = BrneP?, (10)
then @) reduces to

o
ém + Z gnznﬁn—m(g) =0, meZ, (11)

N=—00

whereo, is the Schbmilch series of orden, that is,

on(2) = > [(=D"" + e T Hn(kj). (12)
j=1

These series can be evaluated efficiently using formulat9nand @0). The values ofs for which
(112) possesses a non-trivial solution can easily be determined (the system can in fact be reduced to
one with real coefficients), as can the non-trivial solution itself (46p.(This is normalised so that

o0

> IBnZml® =1 (13)

Mm=—0o0

Equations {1) and (L3) define the coefficientBm up to a common phase factor, which is unimpor-

tant provided that the same value is used consistently. Computations show that for a given frequency
and scatterer radius, up to two valuegiatan exist in the intervalo, = ). One of these corresponds

to a Rayleigh—Bloch wave that is symmetric abgut 0 and the other to an antisymmetric mode.

Both are represented by a potential of the form

oo oo

goB = > > BueP ZnHmkrpe™s. (14)

p=—00 M=—00

A method based on the use of Green’s theorem was used)ino show that these modes transport
energy, and hence propagate, to the right. Now, it follows fr@g) thaton(—1) = (—1)"on(4)
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and so if there is a solution td.{) for 5 > 0, then there is also a solution fetf with By(—f) =
(—=1)™Bm(B). These represent equivalent left-propagating modes which we will choose to write as

g =% > 3 (~)™Bre PP Zy Hn(kr )™, (15)

p=—00 M=—00

Here, the upper and lower signs refer to the symmetric (apesit0) and the antisymmetric cases,
respectively. This sign convention is purely for later algebraic convenience and will be used through-
out. Note thatBy, will always be used to refer to the solution dflf for # e (0, z). Due to the
periodicity in (L0), there are no distinct solutions for other real valueg of

The mode that is symmetric abopt= 0 exists for all scatterer sizes, but the antisymmetric mode
only exists for 403 < a < 0-5. For a given value of, Rayleigh—Bloch waves exist for a range
of values ofk: symmetrlc modes in the range ® k < k5.« < = and antisymmetric modes in
the rangek?,, < k < ki, < m. It turns out that there are three distinct regimes:aaf 0-403,
only symmetric modes are possible; fod03 < a < 0-459, we havek;,,, < k&, and so it is
possible to have symmetric and antisymmetric modes, but not for the same va|dmafly, when
0459 < a < 0.5, we havek;,, > k3, and hence it is only in this parameter range that it is
possmle to excite both symmetric and antisymmetric modes at the same time. Curves showing how
Kmax K&in andkda, vary with scatterer radius can be found in®).

Henceforth, we shall assume that only one Rayleigh—Bloch wave is present; cases in which both
modes are excited can be treated by separating the vertically symmetric and antisymmetric parts of
the problem and solving these individually. For any array solution that has been decomposed in this
way, we have

UP = +(=1)™uP,. (16)

2.2 Semi-infinite arrays

Methods for computing the solution for th8, oo} array have been developed if).(In this case,
we writelUh = AR (wo), where AR (o) is composed from a sum of three terms; thus

AR (o) = &PKEOSVOB (10) + a(10)ePP By + CR(wo). (17)

The first contribution on the right-hand side is the equivalent coefficient fof-the, oo} array,

and the second is due to a right-propagating Rayleigh—Bloch wave. If we were to make a different
choice for the coefficient8n, (recall that these are defined up to a multiplicative phase factor by
(12) and @3)), then the value of would also change, so that the produ®&;, remains the same.

The final termCh(w0), decays ap — oo; its contribution to the field is a circular wave radiating

from the end. Note that decomposing the coefficients in this way is not the same as decomposing
the potentials, since the solutions to problems for different arrays exist on different fluid domains.
The leading-order behaviour of the coefficieB% asp — oo is given by

CP(w0) ~ Cm(po)e PpY, (18)

with u = 3/2 in all cases except that of right resonance, whes 1/2 (7). This increase in

the significance of the decaying end effects is the most important consequence of resonance in
the context of the large array approximation. Head-on incidepge=£ 0) always leads to right
resonance, regardless of the valu& ¢dee 0) and subsequent discussion).
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We also require the solution for the-co, P} array under plane-wave excitation. Here, we write
uh = Ah, and these coefficients can be obtained in terma/hfas follows. In @), we can take
p1 = P, let pp = —oo and then replacg and p with P — j and P — p, respectively. Note that
xP'=P=(P=D _ (_1)nx P~ and so we also make the transformations> —n andm — —m.
The left-hand side of4) is now identical to that which occurs in tH8, oo} array problem, with
AP (wo) replaced byA” -P (o). From @), we have

RELP(po) = —& (P-Pkeosio(_jymeimvo, (19)
It therefore follows that
AR (yo) = &Pk AP P ) p=P,P—1,.... (20)
Substituting this intoX7) and then making use o8 and (L6) yields
Ab (o) = POV Br (o) £ u(yo)e PP (—1)™ B + CR(o), (21)
where
a(yo) = a(x — yo)dP*oD) and Ch(yo) = €POCE Pz — yo).  (22)

This is as we should expecs includes the same term involvinB, as doesAR, whereas the
other contributions are determined from g co} solution with a plane wave incident at angle

© — wo and appropriate phase shifts. Frof),(we see that if the angle of incidengg gives

rise to a right resonance, then— yo leads to a left resonance, and vice versa. Left resonance
affects the coefficientS in the same way that right resonance affé@¥s(see (8) and subsequent
discussion). Where no ambiguity can occur, we will dispense with writing the dependence of the
coefficients onyg.

Next, we consider th¢0, oo} array under excitation of a left-propagating Rayleigh—Bloch wave
incident from the far field, and in this case we &t = QR Sincel4h are the coefficients in the
expansion of the scattered potential, each one will include a contribution from a right-propagating
Rayleigh—Bloch wave; therefore, we write

QP = &P B + TP, (23)

where T ~ T,,,ékP p—3/2 for some set of constanfg, asp — oo andp is the end reflection
coefficient. As before, the contribution from the terms that decap &sincreased represents a
circular wave radiating from the end. The incident field for this problem can be taken, If)raé

o0 o0 - .
Pinc =+ Z Z (_1)m§me—ipﬂ Zm Hm(krp)elmgp' (24)
p:O m=—o0
Note that the sum ovep could actually start at any non-negative integer; the difference between
the incident fields is simply a finite sum of circular waves that would be absorbed in the coefficients
Th. Expanding 24) about the centre of cylindey using Graf's addition theorem shows that

~ o] e8] s N . -
RE=FDMe ™ BnF Y Zn) eV (=) BaXiZnHo-mKlj — p).  (25)
Nn=—00 j:O

#p
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Since the Rayleigh—Bloch wave is a homogeneous solution tg-the, co} problem, this can be
simplified to yield

. _ oo o~
Rb =26 3" (-1)"ZaBn Y €/ Hom(k)). (26)
n=—oo j=1+p

The slowly convergent sums ovgrcan be calculated efficiently using expression2i®) énd then

p and T can be calculated using the filtering methods developed)inThe cut-off frequency

k = kmax is @ special case in which exact values can be deduced. Here, we have, so that

the Rayleigh—Bloch wave ceases to propagate and takes the form of a standing wave. Furthermore,
oom—1() = 0, and this causes the system of equationsqr(11) to decouple into two compo-

nents:

o0
Bam+ Y ZonBanoon-m)(x) =0, @27)
Nn=-—00
o~ 0 ~
Bomt+1 + Z Zont+1Bony102(n—m)(7) = 0. (28)
Nn=—o0

Numerical results have shown that, in the vertically symmetric ca8gh@s a non-trivial solution,
andBzm = 0 for allmwheng = z. The opposite is true in the antisymmetric case, thaRig, lfas
a non-trivial solution, andym1 = O for allm. For a system decoupled in this way, we have, from

(14) and (L9),
Pro(m) = —¢m(=7). (29)

Equation 4) with the right-hand side of25) can therefore be solved by takipg= 1 andTh = 0;
note that this is the trivial solution, that is, the reflected mode exactly cancels the incident field. This
cancellation is only possible when the Rayleigh—-Bloch modes are standing waves (that is, when
p=m).

Finally, we consider excitation of thg-oco, P} array by a right-propagating Rayleigh—Bloch
wave; in this case, we denote the unknown coefficientQBy The right-hand side can be deter-
mined as in the previous case, and after rewrité)gsp thatp ranges from 0 tao, we find that

Qh =¢7Q%". (30)
Substituting this intoZ3) yields
Qh = +pe P (—1)"Bm + T (31)
with
p=pePP and TP=ePATP-P. (32)

Again, this is as we should expect; the amplitude of the Rayleigh—Bloch wave is precisely that
which occurs in thg0, oo} array, with an appropriate phase shift.
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2.3 Long finite arrays

We now construct the solution for tH®, P} array in the form ) according to the large array
approximation. Thus, we writdh = Fh, where

FP = gPkeosvop | /RPAB 4+ 4 Le PB(—1)MB, + GP + GP. (33)

The coefficients are thus composed from the solution of{theo, co} problem, Rayleigh—Bloch
waves travelling to the right and left with amplitudg® and x-, respectively, and extra terms
representing the local effects of the two ends (as usual the hatted coefficients refer to the end at

P). The large array approximation is now obtained by assuming that the total amplitude of the right-
propagating Rayleigh—Bloch wave is due to interactions of the incident plane wave and the left-
propagating Rayleigh—Bloch mode with the left end. Similarly, the left-propagating Rayleigh—Bloch
mode comes from the interactions of the incident plane wave and the right-propagating Rayleigh—
Bloch mode with the right end. This yields a pair of equationsforand x R; thus

aR=a+ppt, st=a+pxR, (34)

and from these we obtain
R_ O+ pd L a+pa

- A X - A (35)
1-pp 1—pp
Likewise, for the circular waves that are excited, we have
GP =CP+ ‘TP, GP=CP+ ,RTP. (36)

The finite array problem has thus been reduced to solving the infinite array problem and determin-
ing the appropriate Rayleigh—Bloch mode, then findingnd p using the methods fronv). The
quantitiesz andp follow from (22) and B2), respectively. Finallyah andG} are determined from

(36) and the unknown§;h constructed via33).

3. Accuracy and performance

At the time of writing, exact results for semi-infinite arrays are not available, except in the case of
isotropic point scatterer2®). For the finitely large scatterers that are of interest here, we must use
the filtering methods developed in)( These are approximate in that some decaying end effects are
always discarded. The filtering methods yield approximate value€$ofalsoT) for p < P,
whereP. is a parameter known as the spatial truncation. IncreaRingads to improved accuracy

at the cost of greater execution time. For an individual calculation, gains in terms of performance
are lost if P; is chosen to be equal to the size of the long finite afPaglthough solutions to the
canonical problems can of course be reused for different array sizes. On the other Fand, K,

then we must introduce a further approximation so as to obtain valu€pfarhenP, < p < P. A
simple means of achieving this is to assume @f&thas reached its asymptotic limit so as to obtain
approximate values for the coefficiertg, appearing in18); thus

Cm = CPeekPepy. (37)

The coefficientd,} can be treated in exactly the same way. Clearly, the use?fr{ those resonant
cases wherel = 1/2 will introduce greater errors than it does when= 3/2, which is more
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Table 1 Order truncatiorN for numericalcomputations

ka <0001 <035 <05 <08 <15 <20 >20
N 2 3 5 8 10 12 15

usual. The sums over order must also be truncated, that is, we must use a finite number of modes
—N, ..., N to represent the field radiating from each individual scatterer. The truncation parameter
N must be chosen to be large enough to yield accurate results, but not so large as to unnecessarily
increase program execution time or generate near-singular linear systems. The values shown in
Tablel have been found to satisfy these criteria.

If we define the percentage error on scatterera

SN 1Za(FY = D)
SN _n1ZaDE)

whereD}} is the coefficient that occurs when t{@& P} array problem is solved directly by inverting

(4), then this gives a stringent measure of the accuracy achieved by the large array approximation.
Figures3 and4 show logarithmic plots oE, againstp for a 101-scatterer array with various param-
eters. The canonical problems are solved using the filtering methods develo@gdniti{ spatial
truncationP. = 50. Results calculated using theoco, oo} array solution (that is, by replacing

FY with ekpcosvo B in (38)) are included for comparison with those obtained via the large array
approximation. No such results are available/f = 0; excitation of an infinite array at head-on
incidence is not possible. In Fi§, square data points have been used to indicate percentage errors
fora = 0-25,k = 5-:0 andyo = = /4. Close to the centre of the array, the solution to{theo, co}
problem exhibits an error around the 1% level; however, this rises to around 10% near the ends.
As there are no Rayleigh—Bloch waves in this case, the large array approximation improves on this
by simply including decaying effects due to each end. The agreement is now very good, with the
error falling to around A% close to the ends and lower elsewhere. It was notedi@ntlat in a
resonant case, the solution to fheoco, oo} problem bears less resemblance to the large finite array.
This is now understood to be caused by the slower rate of decay exhibited by the end effects in
such cases. Round data points have been used i3 Fagndicate percentage errors far= 0-25,

andwo = = /4 with k chosen so as to create a left resonance With —1 in (9); thusk ~ 3.-681.

The errors in thg—o0, 0o} solution are indeed considerably larger than those in the previous case,
around 10% at best, rising to over 100% close to the right end. The large array approximation again
offers a significant improvement, in particular for> 50, where the errors are aroun®%. There

are two important points to note here. First, the errors are greater than those in the previous case
because the large array approximation discards more significant effects in a resonant case. Secondly,
the errors are greater on the left half of the array because fer 50, C must be calculated by
approximatingCh in (22) via (37), with u = 1/2. Triangular points have been used to indicate
errors for the casa = 0-25,k = 3.0 andyg = 0. Since head-on incidence is a type of right
resonance, an increasefp occurs forp > 50. Forp < 50, the errors are negligible, whereas for

p > 50, the actual coefficients} are small, but the most significant effect is caused by the fact
that the array does not extend to infinity on the right side, and this is neglected by the large array
approximation. Consequently, the errors are relatively large.

Ep = 100x (38)
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logyo Ep

100

Fig. 3 Percentage errors; shaded points are calculated using-tie oo} array and unshaded points using

the large array approximatiopg = 7 /4,a = 0-25 andk = 5-0 (O); wo = #/4,a = 0-25 andk ~ 3-681 (o)
andyg =0,a=0-25andk = 3.0 (»)

100

Fig. 4 Percentage errors; shaded points are calculated using-tike co} array and unshaded points using

the large array approximatiogg = 0,a = 0-25 andk = 2 (»); yg = #/10,a = 0-25 andk = 2.5 (o) and
wo = n/10,a = 0-49 andk = 2.97 Q)
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Table 2 Computation times (in seconds) and maximum percentage errors for various array sizes
usinga = 0-25,k = 2.5 andyg = z/10. Symmetric Rayleigh—Bloch waves are present in the
solution

P Tex(S)  Tia(S)  Emax (%) Tia ()  Emax (%)
100 72 41 1.3 258 038
200 484 41 19 258 051
300 1798 4.2 18 259 059

Figure 4 shows some examples where Rayleigh—Bloch waves are present. The triangular data
points correspond to the parametars 0-25,k = 2.0 andy = 0, for which symmetric Rayleigh—
Bloch waves are present, and the error is seen to be around the 1% level. Round data points were
computed using = 0-25,k = 2.5 andyg = 7/10. Symmetric Rayleigh—Bloch waves are again
present, causing large errors to occur on all scatterers when the solution is approximated using
the infinite array. This is corrected by the large array approximation, where the errors are now
around 1%, at worst. Interestingly, the pattern of oscillationg jnis similar to that which occurs
in the infinite array solution, indicating that the remaining error is primarily due to inaccuracies in
computing the Rayleigh—Bloch wave amplitude@yo) anda(r — wo) and reflection coefficient
p. Finally, square data points have been used to represent the caseawhddd9, k = 2.97 and
wo = m/10. Antisymmetric Rayleigh—Bloch modes now occur and large errors are evident when
the infinite array solution is used. Again, these are corrected by the large array approximation where
the error reaches around 3% at the right end and is lower elsewhere.

The time required to construct the large array approximation is generally much shorter than that
required to solve th¢0, P} array problem directly by invertingdj. Table2 shows computation
times (using Fortran 2003 on a&&2GHz Macintosh running OS X) with a typical set of parameters,
for various array sizes. Symmetric Rayleigh—Bloch waves are present in the solution. The compu-
tation time for the direct solutioney, increases rapidly with the array siZe, In contrast, solving
the canonical problems is the most expensive procedure required for the construction of the large
array approximationTj, is largely unaffected by the actual array size. The maximum percentage
error, defined as

Emax=maxEp : p € {0, P}},

is also shown. This is reduced by increasigfrom 50 to 100, at the expense of increasing com-
putation time. FoP; = 50, we haveEmax < 2% for all the array sizes shown; this is sufficiently
accurate for many purposes.

4. Near-trapping

One of the motivations behind this present article is the association between trapped modes for
cylinders in channels and large responses in the scattering by a long finite array in the open sea,
first discovered by Maniar and Newma®).(The trapped modes that they studied were for a sin-

gle cylinder in a channel, but subsequently it was shown numeric2By24) (and later proved
analytically @5)) that a number of different modes exist when {BeP} array (withP > 0) is
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situated in a channel with walls locatedxat= —1/2 andx = P + 1/2. For either Dirichlet or
Neumann boundary conditions on the channel walls, the frequencies at which these modes can

occur are given by
f=[1-d/(P+Dlzr, qe{0,1,...,P} (39)

this is an exact result. It has been noted that the frequencies at which large responses can occur in the
problem of scattering by a long array in the open d4€hdre predicted by39), with0 < q <« P+1.
In this case, it is an (albeit very accurate) approximation, as we shall see.

Now, the large responses observed by Maniar and Newma8) ido( not occur in the case of
scattering by an infinite or semi-infinite array. Furthermore, these effects have only been observed
when the wave numbde is such that Rayleigh—Bloch waves can exist. It therefore follows that a
key role is played by interactions between the ends of the finite array, and in particular the reflection
coefficientp. Figure5 shows values ofp| for different scatterer sizes and varyikgin both the
symmetric and the antisymmetric cases. In all caggsemains small, untk approachekmax, and
then the magnitude increases sharply towards the limiting Jalue: 1. The fact thatp| — 1 as
k — kmax Shows that as the cut-off for Rayleigh—Bloch waves is approached, the amount of energy
scattered away from the array by reflections decreases. Coupled to this is the observatiaf) from (
that|a| increases to its maximum value ks> kmax. Hence, in the long finite array problem, we
should expect that large responses can only occur at oknedgmax.

In fact, takingk = kmax exactly (and thereforg@ = =) does not produce a large response.
Although the denominatorpp in (35) vanishes in the limig — =, cancellation effects due to the
standing wave nature of the Rayleigh—Bloch waves (see sez@poause their total contribution to
(33) (that is, yRexp(ipf) Bm £ x" exp(—ipS)(—1)MBy) to remain finite. Ik is slightly less than
kmax, SO that|p| ~ 1, then we must consider the effect of interference between the left- and right-
propagating Rayleigh—Bloch waves and their respective multiple reflections. Thus, a large response
is expected to occur when the interference is purely constructive, and this corresponds to situations
where the phase of the Rayleigh—Bloch wave is unchanged after traversing the array once in each
direction, and so undergoing a single reflection by each end. That is, the quantity

A 2. 2iPf
ph = p*e?’ (40)

1 . 1 . —
(2) a=010 — | (b) a=045 — !
a=025--- a =047 --- i
075 | @ =049 ---oene 075l @=049 e i
< 05 S 05 :

0-25 0-25 /

0 gt e 0 e .-
0 1 2 2 25 3
k k

Fig. 5 Modulus of the reflection coefficieptfor (a) symmetric and (b) antisymmetric Rayleigh—Bloch waves
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must be positive real. Given that= 1 whenk = kmax (See sectio@.2), an approximate formula for
the values of8 near the cut-off at which pure constructive interference occurs is obtained by simply
assuming that Imf] = 0. However, in many cases of physical interest, including that investigated
by Maniar and Newmara(= 0-25 in our notation), a better approximation is achieved by assuming
that Im[c] = 0, wherec = pe~'/: in fact, this yields precisely39). That is, pure constructive
interference occurs at or very close to those frequencies for which the Rayleigh—Bloch wave is
2(P + 1) periodic. Since 2P + 1) periodicity of the Rayleigh—Bloch wave is a necessary and
sufficient condition for the existence of a trapped mode in a channel containir{@,tRé array,
the connection between these phenomena and near-trapping on arrays in the open sea is now clear.
However, we reiterate that R + 1) periodicity is not a sufficient condition for near-trapping; we
must also havép| &~ 1, which in turn requires that ~ kmax. The imaginary parts op andc
for symmetric and antisymmetric Rayleigh—Bloch waves are shown in@rifjhe magnitude of
the imaginary parts of both andc is always relatively small, but for symmetric Rayleigh—Bloch
waves on arrays of small scatterers, we hidwe(c)| < | Im(p)| for k close tokmay, the difference
decreasing as the scatterer radius is increased. Whef-45, we have Im(c)| =~ | Im(p)| and for
larger valueg Im(c)| can exceedIm(p)|. Accurate values for antisymmetric waves are difficult to
obtain. This is due to a combination of two factors. First, the size of the scatterers means that a large
number of modes must be used in order to accurately represent the field. Secondly, the rajid of Re[
to Im[p] is greater in this case, and, given that the filtering metho@)icgn achieve only a limited
number of significant figures, we should expect some numerical inaccuracies. Indeed, it is likely
that these are responsible for the cusp in the curvafer 0-45 in Fig.6(b), despite the use of a
large spatial truncatior?; = 300) in generating the data. Nevertheless, it is evident from the figure
that| Im(c)| < |Im(p)| whenk is close tdkmax, but the difference is small. Whatever approximation
we use, that is, Ind] = 0 (which leads to9)) or Im[p] = 0 (which leads to the same formula but
with P + 1 replaced byP), it is clear that increasin® allows constructive interference to occur
closer to the cut-off and hence with an increased valugfoiThat is, near-trapping is enhanced on
larger arrays.

One of the most significant effects of near-trapping is the possibility that large forces may
be exerted on certain elements of the array, as in EigNow, the force exerted in th&-
and y-directions on scatterep, normalised using the force on a cylinder in isolation, is

a b 0-03 v
( ) 0.1 ( ) a=045: Im[p] —
Im[c] ---
a=049: Im[p] -----
0-075 002} Tm[c] -
0-05
0-01f
0-025 -
0 olZ ",
3 2 2.5
k

Fig. 6 Imaginary parts op andc for (a) symmetric and (b) antisymmetric Rayleigh—Bloch waves
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given by
FP=3uf —uPy| and FP =3 +uPy, (41)

respectively {5, Section 3). Thus, as we should expegf, = 0 for a field that is antisymmetric
abouty = 0, whereaSJ—‘)EJ = 0 for a symmetric field (se€lf)). It turns out that near-trapping of
the symmetric Rayleigh—Bloch mode has the greater physical significance in this context. There are
two reasons for this. First, as discussed in seci@nfor an antisymmetric wav8; = B_; — 0
ask — k&, Furthermore, results ir7] show that the largest value far(yo) occurs at head-on
incidence, when there is no antisymmetric field. In fact, the peak valuésdufficiently large that
the strongest near-trapping effects generally occuptpe 0, despite the fact that(z — ywo) =0
in this case.

Figure 7 shows logarithmic plots of the force on the centre cylinder of a 101-scatterer array at
head-on incidence, wita = 0-25 and varyind. The forces are calculated from1) using either
U = FP for the large array approximation off = D, where as befor®, is the coefficient

logy F; 20

Fig. 7 Force on cylinder 50 of a 101-scatterer array, at head-on incidenceawittD-25 and varyingk. x,
cut-off for symmetric Rayleigh—Bloch modesjm), peak (minimum) predicted by9) and @2). The dotted
line is the full linear solution calculated by inversion @) ,(and the data for the solid line are obtained using
the large array approximation. The lower plot is an expanded version of the upper plot kearkf,y
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obtained when th€d, P} array problem is solved directly. The accuracy achieved by the large array
approximation is very good, and the plots are almost indistinguishable, exceptkibestightly
larger than the cut-off value, ... Here, there is a small discrepancy caused by the facgthaives

off the real line ak increases beyond the cut-off. Thus, in place of the Rayleigh—Bloch wave there
is now a mode which is evanesceniinand this can still cause interactions between the ends when
the imaginary part off is small. The locations at which peaks and troughs occur in the force plots
can be predicted by the following considerations. Fr&3),((35) and @1), it can be seen that the
forces due to the left- and right-propagating Rayleigh—Bloch waves act in the same direction when
the quantity 1- p exp(2i (P — p)f) is maximised, whereas they act directly against each other when
it is minimised. Retaining the assumption that, to a good approximatienpe™'# is negative real

and applying 89) (so as to achieve near-trapping), we find that

1— p?(P=PF ~ 1 |9 @P+D/(P+D), (42)

If, as is the case here, we are concerned with the force at the centre of the array, them-=siRge,
odd and even values foy cause the forces to act in support of and against each other, respectively.
The corresponding frequencies are shown in Fignd the agreement is excellent.

Figure8 shows the forces along the array for fixed valueg.dshaded data points are obtained
by solving the{0, 100} problem directly; unshaded points use the large array approximation. The
maxima and minima evident in the plots can be interpreted accordid@)tolthus, data plotted with
square points have been obtained by takjing= 0 and settingy = 1 in (39), so thatk ~ 2.781
as in Maniar and Newmar8( Fig. 2b). Here, 42) predicts that the forces due to the left and right
Rayleigh—Bloch waves act in the same direction at centre of the array and largely cancel each

Fig. 8 Normalised force on a 101-scatterer array, véite= 0-25. Shaded data points are obtained by solving
(4) directly, unshaded points are calculated using the large array approximateen2-781, wg = 0 (O),
wo = 7 /10 (»); k & 2.800, wg = 0 (o).
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275 2-8 2-85
k p=2>50

Fig. 9 Force on cylinder 50 of a 101-scatterer array, at head-on incidenceawittD-49 and varyingk. x,
cut-off for symmetric Rayleigh—Bloch modes(m), peak (minimum) predicted by89) and @2). The dotted
line is the full linear solution calculated by inversion @) ,(and the data for the solid line are obtained using
the large array approximation

other at the ends. This behaviour is clearly evident in the plot. For comparison, data using the same
parameters, but witlrg = 7 /10, have been plotted using triangular data points. Here, the agreement
between the directly obtained solution and the large array approximation is such that the two sets
of points are indistinguishable. The forces exhibit qualitatively similar behaviour to the head-on
incident case, except that their magnitudes have been reduced, and the excitation of Rayleigh—Bloch
waves by the incident field at the right end (which does not occur at head-on incidence) causes some
interference. Similarly, the data plotted using circular points are also obtained at head-on incidence,
but now settingy = 2 in (39), so thatk ~ 2-800. In this case 4@) predicts maximum forces at
p = 25 andp = 75 and a minimum ap = 50. Again, this behaviour is clearly evident in the plot.

As noted above,39) is an approximation that is less good for larger scatterers. F@gat®ws
the horizontal force on cylinder 50 of a 101-scatterer array, avith0-49 at head-on incidence with
varyingk. As before, the agreement between the large array approximation and the direct inversion
of (4) is excellent, except for a small discrepancy that occurs Wheslightly greater thak?,,,, so
that the Rayleigh—Bloch wave is replaced by a mode that is weakly evanesgeiitia predictions
made by 89) for the frequencies at which maximum and minimum forces occur are less accurate
than fora = 0.25, though the errors are small.

Somewhat remarkably, both the near-trapping effect and the accuracy of the large array approxi-
mation persist for smallR ~ 10) arrays. Figurd0 shows two such examples, using {lde6} and
{0, 20} arrays, witha = 0-25, o = 0 andP; = 50. As before, normalised force on the centre cylin-
der is shown as a function of wave number. In both cases, there is very good qualitative agreement
between the directly obtained solution and the large array approximatidn<dks,,, ~ 2-783. In
particular, the peaks that occurlate 2-645 in (a) andk ~ 2-753 in (b) are correctly predicted,
and the amplification is much smaller than that in previous cases; again this is consistent with the
theory. It should be noted tha@9) fails in the former case; settirgg= 1 leads to a predicted peak
atk ~ 2.526. The fact that the quantitative agreement is less good than that for larger arrays is to be
expected. Fok > k3., the large array approximation fails for the seven-cylinder array and, in par-

max:
ticular, there is an erroneous peak in the force slightly above the cut-off value. As discussed above,
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Fig. 10 Force on the centre cylinder with= 0-25, wg = 0 and varying. (a) Seven-cylinder array and (b)
21-cylinder array

in this regime, the Rayleigh—Bloch wave is replaced by a mode that is evanesgeanihthis has
not been included in the large array approximation. Since the array is now small, this evanescent
mode can cause significant interaction effects between the ends.

5. Conclusion

We have shown in this article how the response of a long finite array to an incident plane wave can be
modelled accurately and efficiently by decomposing it into a set of canonical problems formulated
on infinite and semi-infinite arrays. This can lead to considerable computational savings. Moreover,
the decomposition provides a powerful explanation of the near-trapping phenomenon that has been
observed for this type of array and shows that Rayleigh—Bloch surface waves are the principal cause.
At a certain wave number that depends on the size of the scatterers, these Rayleigh-Bloch waves
cut off and are replaced by an evanescent mode. Inaccuracies that were observed in our numerical
results for wave numbers just above the cut-off could be corrected by locating this mode in complex
plane; it is then straightforward to incorporate it into the theory.

We have formulated the problem as a water wave scattering problem involving an array of ver-
tical circular cylinders, but exactly the same mathematical problem arises in certain applications
in acoustics, electromagnetism and elasticity involving circular scatterers. The same theory can be
applied to arrays made up of more general shapes of scatterer, provided the canonical problems for
these scatterers can be solved.
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