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Summary

The scattering of water waves by a long array of evenly spaced, rigid, vertical circular cylinders
is analysed under the usual assumptions of linear theory. These assumptions permit the reduction
of the problem to that of solving the Helmholtz equation in two dimensions, with appropriate
circular boundaries. Our primary goal is to show how solutions obtained for semi-infinite arrays
can be combined to provide accurate and numerically efficient solutions to problems involving
long, but finite, arrays. The particular diffraction problem considered here has been chosen both
for its theoretical interest and for its applicability. The design of offshore structures supported by
cylindrical columns is commonplace and understanding how the multiple interactions between
the waves and the supports affect the field is clearly important. The theoretical interest comes
from the fact that, for wavelengths greater than twice the geometric periodicity, the associated
infinite array can support Rayleigh–Bloch surface waves that propagate along the array without
attenuation. For a long finite array, we expect to see these surface waves travelling back and forth
along the array and interacting with the ends. For particular sets of parameters, near-trapping
has previously been observed and we provide a quantitative explanation of this phenomenon
based on the excitation and reflection of surface waves by the ends of the finite array.

1. Introduction

Phenomena associated with scattering by large finite arrays are of practical importance in many
physical contexts. Examples include the design of photonic and phononic band gap materials (1),
the performance of phased array antennas (2) and the hydrodynamic characteristics of structures
supported on an array of columns (3). The relevant scattering problems can often be solved directly,
but the computational cost increases rapidly as the number of elements in the array increases.

In some cases, it may be appropriate to model the large finite array as an infinite array so that
the resulting geometrical periodicity can be used to greatly simplify the necessary analysis. One
might expect that this would lead to solutions that are valid in the interior of the array, far from
any ends or edges. Thus, for example, the claim is made in (4) (in the context of electromagnetic

†〈i.thompson@lboro.ac.uk〉

Q. Jl Mech. Appl. Math, Vol. 61. No. 3 c© The author 2008. Published by Oxford University Press;
all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication 27 May 2008. doi:10.1093/qjmam/hbn006



334 I. THOMPSONet al.

scattering) that ‘finite periodic structures behave like their infinite counterparts’. However, in this
article, we are concerned with a situation where this is manifestly not the case due to the excitation
of surface waves by the array edges; these propagate along the array without decay. Array-guided
surface waves have been observed numerically in arrays of dipoles (5), and microstrip antennas are
designed so as to suppress surface wave production (6), but theoretical techniques for studying the
excitation of such waves by array edges are few and far between. Recently (7), accurate techniques
for the determination of the amplitude of surface waves excited by the end of a semi-infinite array
have been developed and this article builds on that work.

The particular problem that we consider is that of water wave scattering by an array of vertical
circular cylinders which, once the depth dependence has been factored out, is equivalent to two-
dimensional (2D) acoustic scattering by a 1D finite array of circles. The direct computation of the
solution is fairly straightforward in this example but, as we shall demonstrate, the approximation
described below significantly reduces execution time when large numbers of scatterers are involved.
Moreover, we are able to shed considerable light on the phenomenon of near-trapping, first reported
for this type of array in (8). The frequencies at which surface waves (known as Rayleigh–Bloch
waves in this context) propagate along an infinite periodic array of cylinders were computed in
(9, 10); these are a generic phenomenon associated with rigid periodic structures (11, 12).

The idea behind our approximation method is simple. We assume that the array is sufficiently
long that any fields generated at one end that decay along the array do not interact with the other
end. Surface waves that are excited do not decay and so their interactions with the other end of
the array are included. We thus construct the solution to the finite array problem from those to a
number of canonical problems, all formulated on infinite or semi-infinite arrays. Of course, for this
approach to be of use, it is vital that the solutions to these canonical problems can be computed
accurately and efficiently. In this article, the geometry has been chosen to be as simple as possible
so that significant progress can be made using analytic methods. For more general geometries, the
equivalent infinite and semi-infinite array problems have been treated in (13) and (14).

An example of some of the interesting effects that we seek to explain is shown in Fig.1; these
were originally reported in (8). Here, the scattering of a plane wave by a 101-cylinder array is
considered, using the method of Linton and Evans (15). All lengths are scaled so that the distance
between the centres of consecutive elements is unity; according to this scaling, the radius of the
circles is 0∙25. The geometry is the same as that shown in Fig.2, withψ0 = 0, that is, the scatterers
are labelled 0, 1, . . . starting from the left and the incident field propagates from left to right, parallel
to the array (head-on incidence). The two graphs in Fig.1 show the magnitude of the horizontal
forces (that is, the integral of the pressure times the component of the normal to the cylinders along
the array) acting on cylinders 0 (F0

x ) and 50 (F50
x ) compared with those computed for a semi-infinite

array, plotted against the wave numberk (=2π/λ). The forces are normalised so that they would be
unity for a scatterer in isolation. Since there is no direct excitation of the right end by the incident
field, one might naively expect the results to be similar, and this is indeed the case for smallk and
also fork & 2∙8. However, ask increases towards 2∙8, an oscillation builds up in the forces on the
finite array, and the semi-infinite array solution does not exhibit this effect. In particular, there is a
value ofk close to 2∙8 about which the oscillations become so large that the force on scatterer 50 is
around 35 times that on an isolated scatterer.

The structure of the paper is as follows. The problem is formulated in section2 and then reduced
to a series of canonical problems. The accuracy of the approach is discussed in section3 and then
in section4 we show how the excitation of surface waves by the array ends can lead to constructive
interference and a near-trapping phenomenon.
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Fig. 1 Horizontal force exerted on scattererp (p = 0 upper,p = 50 lower) at head-on incidence for a
101-cylinder array plotted against wave number

Fig. 2 Schematic diagram showing a plan view of the finite array

2. Formulation

We consider the scattering of time-harmonic water waves by vertical circular cylinders in water
of constant depth under the usual assumptions of linear theory. The cylinders extend throughout
the fluid depth, and the motion is governed by a velocity potential8 that satisfies the 3D Laplace
equation, but this can be reduced to a 2D boundary-value problem by writing

8(x, y, z) = Re[φ(x, y) coshk(z + h)e−iωt ]. (1)

Here,h is the quiescent water depth andω is the angular frequency. The functionφ satisfies the
2D Helmholtz equation(∇2 + k2)φ = 0 in the region exterior to the scatterers, and these are
now circles in the(x, y)-plane. The wave numberk is the positive solution to the dispersion relation
k tanhkh = ω2/g, whereg is the acceleration due to gravity. With a different definition ofk, exactly
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the same problem governs 2D scattering of acoustic waves by an array of circles. The scatterers are
assumed to be rigid so that the appropriate boundary condition on their surface is∂φ/∂n = 0, where
∂n is an element of the outgoing normal.

The subject of our investigation is the scattering of a plane wave

φinc = eik(x cosψ0+y sinψ0) (2)

by a long linear array of circular scatterers, each of which has radiusa. All lengths in the problem
are scaled so that the centre of scattererp is located at the point(p, 0), wherep ∈ {0, 1, . . . , P}
(see Fig.2). We treat this problem by assuming thatP is sufficiently large so that the endsx = 0 and
x = P can be treated independently, except in situations where Rayleigh–Bloch surface waves are
excited. Such waves are excited at low frequencies by the end of a semi-infinite array and methods
for accurately determining their amplitude have been developed in (7).

To construct the solution, we must consider several canonical array problems. For brevity, we
introduce the term ‘{p0, p1} array’ to refer to the array that consists of scatterers centred at(p, 0),
wherep ∈ {p0, . . . , p1}. The solution to such a problem can be written in the formφ = φinc + φsc,
where

φsc =
p1∑

p=p0

∞∑

m=−∞

U p
mZm Hm(krp)e

imθp . (3)

Here,Hm ≡ H(1)m is a Hankel function of the first kind,(r p, θp) is a set of polar coordinates with its
origin at the centre of scattererp and the factorsZm = J′

m(ka)/H′
m(ka) have been introduced for

convenience. The coefficientsU p
n satisfy the linear system (15)

U p
m +

∞∑

n=−∞

Zn

p1∑

j =p0
6=p

U j
n X p− j

n−m Hn−m(k| j − p|) = Rp
m, p = p0, . . . , p1, m ∈ Z, (4)

in which X j
n = (sgn j )n. The quantityRp

m appearing on the right-hand side is determined by the
expansion of the incident field about the centre of thepth cylinder, that is,

φinc =
∞∑

m=−∞

Rp
mZm Jm(krp)e

imθp . (5)

For a plane wave incident at angleψ0, we have

Rp
m = −eipk cosψ0i me−imψ0. (6)

The system of equations (4) is obtained by choosing an arbitrary cylinder in the array labelled by
p, re-expanding all fields propagating towards it (that is, the incident wave and the radiation from
all the other cylinders) as a series of the form (5) and then applying the boundary condition. For a
thorough discussion of this method and its history, see (16, Section 4.5).

2.1 The infinite array

We will make explicit the dependence of the unknown coefficients on the angle of incidence; thus
for the{−∞,∞} array, we have

U p
m = Bm(ψ0)e

ipk cosψ0 (7)
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and the coefficientsBm(ψ0) are easily obtained, see (17, 18). Due to the symmetry of the array
aboutx = 0, we have

B−m(π − ψ0) = Bm(ψ0). (8)

We will refer to (7) as the solution to the{−∞,∞} problem. This solution is said to be right (left)
resonant if there exists aj ∈ Z such thatψ j = 0 (ψ j = π ), where

cosψ j = cosψ0 + 2 jπ/k, j ∈ Z. (9)

The finite set of real values forψ j corresponds to the angles at which plane waves are scattered
by the array. Resonance implies that one of these scattered waves propagates exactly parallel to the
array. This is an important special case, which has some bearing on the accuracy of our method.
Note that ifψ0 = 0 (or π ), thenBm = 0 for all m; in this case, the scattered field simply cancels
the incident wave (18).

The{−∞,∞} array can also support periodic homogeneous solutions known as Rayleigh–Bloch
waves. Thus, if we takeRp

m = 0 and write

U p
m = B̃meipβ̃ , (10)

then (4) reduces to

B̃m +
∞∑

n=−∞

B̃nZnσn−m(β̃) = 0, m ∈ Z, (11)

whereσn is the Schl̈omilch series of ordern, that is,

σn(λ) =
∞∑

j =1

[(−1)neiλ j + e−iλ j ] Hn(k j). (12)

These series can be evaluated efficiently using formulae in (19) and (20). The values of̃β for which
(11) possesses a non-trivial solution can easily be determined (the system can in fact be reduced to
one with real coefficients), as can the non-trivial solution itself (see (10)). This is normalised so that

∞∑

m=−∞

|B̃mZm|2 = 1. (13)

Equations (11) and (13) define the coefficients̃Bm up to a common phase factor, which is unimpor-
tant provided that the same value is used consistently. Computations show that for a given frequency
and scatterer radius, up to two values ofβ̃ can exist in the interval(0, π). One of these corresponds
to a Rayleigh–Bloch wave that is symmetric abouty = 0 and the other to an antisymmetric mode.
Both are represented by a potential of the form

φrb(β̃) =
∞∑

p=−∞

∞∑

m=−∞

B̃meipβ̃Zm Hm(krp)e
imθp . (14)

A method based on the use of Green’s theorem was used in (21) to show that these modes transport
energy, and hence propagate, to the right. Now, it follows from (12) that σn(−λ) = (−1)nσn(λ)
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and so if there is a solution to (11) for β̃ > 0, then there is also a solution for−β̃ with B̃m(−β̃) =
(−1)mB̃m(β̃). These represent equivalent left-propagating modes which we will choose to write as

φrb(−β̃) = ±
∞∑

p=−∞

∞∑

m=−∞

(−1)mB̃me−i pβ̃Zm Hm(krp)e
imθp . (15)

Here, the upper and lower signs refer to the symmetric (abouty = 0) and the antisymmetric cases,
respectively. This sign convention is purely for later algebraic convenience and will be used through-
out. Note thatB̃m will always be used to refer to the solution of (11) for β̃ ∈ (0, π). Due to the
periodicity in (10), there are no distinct solutions for other real values ofβ̃.

The mode that is symmetric abouty = 0 exists for all scatterer sizes, but the antisymmetric mode
only exists for 0∙403. a 6 0∙5. For a given value ofa, Rayleigh–Bloch waves exist for a range
of values ofk: symmetric modes in the range 0< k < ks

max < π and antisymmetric modes in
the rangeka

min < k < ka
max < π . It turns out that there are three distinct regimes: fora . 0∙403,

only symmetric modes are possible; for 0∙403 . a . 0∙459, we haveks
max < ka

min and so it is
possible to have symmetric and antisymmetric modes, but not for the same value ofk; finally, when
0∙459 . a < 0∙5, we haveks

max > ka
min and hence it is only in this parameter range that it is

possible to excite both symmetric and antisymmetric modes at the same time. Curves showing how
ks

max, ka
min andka

max vary with scatterer radiusa can be found in (7).
Henceforth, we shall assume that only one Rayleigh–Bloch wave is present; cases in which both

modes are excited can be treated by separating the vertically symmetric and antisymmetric parts of
the problem and solving these individually. For any array solution that has been decomposed in this
way, we have

U p
m = ±(−1)mU p

−m. (16)

2.2 Semi-infinite arrays

Methods for computing the solution for the{0,∞} array have been developed in (7). In this case,
we writeU p

m = Ap
m(ψ0), whereAp

m(ψ0) is composed from a sum of three terms; thus

Ap
m(ψ0) = eipk cosψ0 Bm(ψ0)+ α(ψ0)e

ipβ̃ B̃m + Cp
m(ψ0). (17)

The first contribution on the right-hand side is the equivalent coefficient for the{−∞,∞} array,
and the second is due to a right-propagating Rayleigh–Bloch wave. If we were to make a different
choice for the coefficients̃Bm (recall that these are defined up to a multiplicative phase factor by
(11) and (13)), then the value ofα would also change, so that the productα B̃m remains the same.
The final term,Cp

m(ψ0), decays asp → ∞; its contribution to the field is a circular wave radiating
from the end. Note that decomposing the coefficients in this way is not the same as decomposing
the potentials, since the solutions to problems for different arrays exist on different fluid domains.
The leading-order behaviour of the coefficientsCp

m as p → ∞ is given by

Cp
m(ψ0) ∼ Cm(ψ0)e

ikp p−u, (18)

with u = 3/2 in all cases except that of right resonance, whenu = 1/2 (7). This increase in
the significance of the decaying end effects is the most important consequence of resonance in
the context of the large array approximation. Head-on incidence (ψ0 = 0) always leads to right
resonance, regardless of the value ofk (see (9) and subsequent discussion).
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We also require the solution for the{−∞, P} array under plane-wave excitation. Here, we write
U p

m = Âp
m, and these coefficients can be obtained in terms ofAp

m as follows. In (4), we can take
p1 = P, let p0 → −∞ and then replacej and p with P − j and P − p, respectively. Note that
X(P

′−p)−(P− j )
n = (−1)nX p− j

n and so we also make the transformationsn → −n andm → −m.
The left-hand side of (4) is now identical to that which occurs in the{0,∞} array problem, with
Ap

m(ψ0) replaced byÂP−p
−m (ψ0). From (6), we have

RP−p
−m (ψ0) = −ei (P−p)k cosψ0(−i )meimψ0. (19)

It therefore follows that

Âp
m(ψ0) = ei Pk cosψ0 AP−p

−m (π − ψ0), p = P, P − 1, . . . . (20)

Substituting this into (17) and then making use of (8) and (16) yields

Âp
m(ψ0) = eipk cosψ0 Bm(ψ0)± α̂(ψ0)e

−i pβ̃ (−1)mB̃m + Ĉ p
m(ψ0), (21)

where

α̂(ψ0) = α(π − ψ0)e
i P(k cosψ0+β̃) and Ĉ p

m(ψ0) = ei Pk cosψ0CP−p
−m (π − ψ0). (22)

This is as we should expect;̂Ap
m includes the same term involvingBm as doesAp

m, whereas the
other contributions are determined from the{0,∞} solution with a plane wave incident at angle
π − ψ0 and appropriate phase shifts. From (9), we see that if the angle of incidenceψ0 gives
rise to a right resonance, thenπ − ψ0 leads to a left resonance, and vice versa. Left resonance
affects the coefficientŝCp

m in the same way that right resonance affectsCp
m (see (18) and subsequent

discussion). Where no ambiguity can occur, we will dispense with writing the dependence of the
coefficients onψ0.

Next, we consider the{0,∞} array under excitation of a left-propagating Rayleigh–Bloch wave
incident from the far field, and in this case we setU p

m = Qp
m. SinceU p

m are the coefficients in the
expansion of the scattered potential, each one will include a contribution from a right-propagating
Rayleigh–Bloch wave; therefore, we write

Qp
m = ρeipβ̃ B̃m + T p

m, (23)

whereT p
m ∼ Tmeikp p−3/2 for some set of constantsTm as p → ∞ andρ is the end reflection

coefficient. As before, the contribution from the terms that decay asp is increased represents a
circular wave radiating from the end. The incident field for this problem can be taken, from (15), as

φinc = ±
∞∑

p=0

∞∑

m=−∞

(−1)mB̃me−i pβ̃Zm Hm(krp)e
imθp . (24)

Note that the sum overp could actually start at any non-negative integer; the difference between
the incident fields is simply a finite sum of circular waves that would be absorbed in the coefficients
T p

m . Expanding (24) about the centre of cylinderp using Graf’s addition theorem shows that

Rp
m = ∓(−1)me−i pβ̃ B̃m ∓

∞∑

n=−∞

Zn

∞∑

j =0
6=p

e−i j β̃ (−1)n B̃nX p− j
n−m Hn−m(k| j − p|). (25)
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Since the Rayleigh–Bloch wave is a homogeneous solution to the{−∞,∞} problem, this can be
simplified to yield

Rp
m = ±e−i pβ̃

∞∑

n=−∞

(−1)nZnB̃n

∞∑

j =1+p

ei j β̃ Hn−m(k j). (26)

The slowly convergent sums overj can be calculated efficiently using expressions in (20) and then
ρ and T p

m can be calculated using the filtering methods developed in (7). The cut-off frequency
k = kmax is a special case in which exact values can be deduced. Here, we haveβ̃ = π , so that
the Rayleigh–Bloch wave ceases to propagate and takes the form of a standing wave. Furthermore,
σ2m−1(π) = 0, and this causes the system of equations forB̃m (11) to decouple into two compo-
nents:

B̃2m +
∞∑

n=−∞

Z2n B̃2nσ2(n−m)(π) = 0, (27)

B̃2m+1 +
∞∑

n=−∞

Z2n+1B̃2n+1σ2(n−m)(π) = 0. (28)

Numerical results have shown that, in the vertically symmetric case, (28) has a non-trivial solution,
andB̃2m = 0 for all m whenβ̃ = π . The opposite is true in the antisymmetric case, that is, (27) has
a non-trivial solution, and̃B2m+1 = 0 for all m. For a system decoupled in this way, we have, from
(14) and (15),

φrb(π) = −φrb(−π). (29)

Equation (4) with the right-hand side of (25) can therefore be solved by takingρ = 1 andT p
m = 0;

note that this is the trivial solution, that is, the reflected mode exactly cancels the incident field. This
cancellation is only possible when the Rayleigh–Bloch modes are standing waves (that is, when
β̃ = π ).

Finally, we consider excitation of the{−∞, P} array by a right-propagating Rayleigh–Bloch
wave; in this case, we denote the unknown coefficients byQ̂p

m. The right-hand side can be deter-
mined as in the previous case, and after rewriting (4) so thatp ranges from 0 to∞, we find that

Q̂p
m = ei Pβ̃QP−p

−m . (30)

Substituting this into (23) yields

Q̂p
m = ±ρ̂e−i pβ̃ (−1)mB̃m + T̂ p

m (31)

with

ρ̂ = ρe2i Pβ̃ and T̂ p
m = ei Pβ̃T P−p

−m . (32)

Again, this is as we should expect; the amplitude of the Rayleigh–Bloch wave is precisely that
which occurs in the{0,∞} array, with an appropriate phase shift.
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2.3 Long finite arrays

We now construct the solution for the{0, P} array in the form (3) according to the large array
approximation. Thus, we writeU p

m = F p
m, where

F p
m = eipk cosψ0 Bm + χReipβ̃ B̃m ± χLe−i pβ̃ (−1)mB̃m + Gp

m + Ĝp
m. (33)

The coefficients are thus composed from the solution of the{−∞,∞} problem, Rayleigh–Bloch
waves travelling to the right and left with amplitudesχR andχL, respectively, and extra terms
representing the local effects of the two ends (as usual the hatted coefficients refer to the end atx =
P). The large array approximation is now obtained by assuming that the total amplitude of the right-
propagating Rayleigh–Bloch wave is due to interactions of the incident plane wave and the left-
propagating Rayleigh–Bloch mode with the left end. Similarly, the left-propagating Rayleigh–Bloch
mode comes from the interactions of the incident plane wave and the right-propagating Rayleigh–
Bloch mode with the right end. This yields a pair of equations forχL andχR; thus

χR = α + ρχL, χL = α̂ + ρ̂χR, (34)

and from these we obtain

χR =
α + ρα̂

1 − ρρ̂
, χL =

α̂ + ρ̂α

1 − ρρ̂
. (35)

Likewise, for the circular waves that are excited, we have

Gp
m = Cp

m + χLT p
m, Ĝp

m = Ĉ p
m + χRT̂ p

m . (36)

The finite array problem has thus been reduced to solving the infinite array problem and determin-
ing the appropriate Rayleigh–Bloch mode, then findingα andρ using the methods from (7). The
quantitiesα̂ andρ̂ follow from (22) and (32), respectively. Finally,Gp

m andĜp
m are determined from

(36) and the unknownsF p
m constructed via (33).

3. Accuracy and performance

At the time of writing, exact results for semi-infinite arrays are not available, except in the case of
isotropic point scatterers (22). For the finitely large scatterers that are of interest here, we must use
the filtering methods developed in (7). These are approximate in that some decaying end effects are
always discarded. The filtering methods yield approximate values forCp

m (alsoT p
m) for p 6 Pc,

wherePc is a parameter known as the spatial truncation. IncreasingPc leads to improved accuracy
at the cost of greater execution time. For an individual calculation, gains in terms of performance
are lost if Pc is chosen to be equal to the size of the long finite arrayP, although solutions to the
canonical problems can of course be reused for different array sizes. On the other hand, ifPc < P,
then we must introduce a further approximation so as to obtain values forCp

m whenPc < p 6 P. A
simple means of achieving this is to assume thatCPc

m has reached its asymptotic limit so as to obtain
approximate values for the coefficientsCm appearing in (18); thus

Cm = CPc
m e−ik Pc Pu

c . (37)

The coefficientsT p
m can be treated in exactly the same way. Clearly, the use of (37) in those resonant

cases whereu = 1/2 will introduce greater errors than it does whenu = 3/2, which is more
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Table 1 Order truncationN for numericalcomputations

ka <0∙001 <0∙35 <0∙5 <0∙8 <1∙5 <2∙0 >2∙0

N 2 3 5 8 10 12 15

usual. The sums over order must also be truncated, that is, we must use a finite number of modes
−N, . . . , N to represent the field radiating from each individual scatterer. The truncation parameter
N must be chosen to be large enough to yield accurate results, but not so large as to unnecessarily
increase program execution time or generate near-singular linear systems. The values shown in
Table1 have been found to satisfy these criteria.

If we define the percentage error on scattererp via

Ep = 100×

∑N
n=−N |Zn(F

p
n − D p

n )|
∑N

n=−N |ZnD p
n |

, (38)

whereD p
n is the coefficient that occurs when the{0, P} array problem is solved directly by inverting

(4), then this gives a stringent measure of the accuracy achieved by the large array approximation.
Figures3 and4 show logarithmic plots ofEp againstp for a 101-scatterer array with various param-
eters. The canonical problems are solved using the filtering methods developed in (7), with spatial
truncationPc = 50. Results calculated using the{−∞,∞} array solution (that is, by replacing
F p

n with eikp cosψ0 Bn in (38)) are included for comparison with those obtained via the large array
approximation. No such results are available ifψ0 = 0; excitation of an infinite array at head-on
incidence is not possible. In Fig.3, square data points have been used to indicate percentage errors
for a = 0∙25,k = 5∙0 andψ0 = π/4. Close to the centre of the array, the solution to the{−∞,∞}
problem exhibits an error around the 1% level; however, this rises to around 10% near the ends.
As there are no Rayleigh–Bloch waves in this case, the large array approximation improves on this
by simply including decaying effects due to each end. The agreement is now very good, with the
error falling to around 0∙1% close to the ends and lower elsewhere. It was noted in (18) that in a
resonant case, the solution to the{−∞,∞} problem bears less resemblance to the large finite array.
This is now understood to be caused by the slower rate of decay exhibited by the end effects in
such cases. Round data points have been used in Fig.3 to indicate percentage errors fora = 0∙25,
andψ0 = π/4 with k chosen so as to create a left resonance withj = −1 in (9); thusk ≈ 3∙681.
The errors in the{−∞,∞} solution are indeed considerably larger than those in the previous case,
around 10% at best, rising to over 100% close to the right end. The large array approximation again
offers a significant improvement, in particular forp > 50, where the errors are around 0∙3%. There
are two important points to note here. First, the errors are greater than those in the previous case
because the large array approximation discards more significant effects in a resonant case. Secondly,
the errors are greater on the left half of the array because forp < 50, Ĉ p

m must be calculated by
approximatingCp

m in (22) via (37), with u = 1/2. Triangular points have been used to indicate
errors for the casea = 0∙25, k = 3∙0 andψ0 = 0. Since head-on incidence is a type of right
resonance, an increase inEp occurs forp > 50. Forp < 50, the errors are negligible, whereas for
p > 50, the actual coefficientsF p

m are small, but the most significant effect is caused by the fact
that the array does not extend to infinity on the right side, and this is neglected by the large array
approximation. Consequently, the errors are relatively large.
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Fig. 3 Percentage errors; shaded points are calculated using the{−∞,∞} array and unshaded points using
the large array approximation.ψ0 = π/4, a = 0∙25 andk = 5∙0 (�); ψ0 = π/4, a = 0∙25 andk ≈ 3∙681 (◦)
andψ0 = 0, a = 0∙25 andk = 3∙0 (4)

Fig. 4 Percentage errors; shaded points are calculated using the{−∞,∞} array and unshaded points using
the large array approximation.ψ0 = 0, a = 0∙25 andk = 2 (4); ψ0 = π/10,a = 0∙25 andk = 2∙5 (◦) and
ψ0 = π/10,a = 0∙49 andk = 2∙97 (�)
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Table 2 Computation times (in seconds) and maximum percentage errors for various array sizes
usinga = 0∙25, k = 2∙5 andψ0 = π/10. Symmetric Rayleigh–Bloch waves are present in the
solution

(Pc = 50) (Pc = 100)

P Tex(s) Tla (s) Emax (%) Tla (s) Emax (%)

100 7∙2 4∙1 1∙3 25∙8 0∙38
200 48∙4 4∙1 1∙9 25∙8 0∙51
300 179∙8 4∙2 1∙8 25∙9 0∙59

Figure4 shows some examples where Rayleigh–Bloch waves are present. The triangular data
points correspond to the parametersa = 0∙25,k = 2∙0 andψ0 = 0, for which symmetric Rayleigh–
Bloch waves are present, and the error is seen to be around the 1% level. Round data points were
computed usinga = 0∙25, k = 2∙5 andψ0 = π/10. Symmetric Rayleigh–Bloch waves are again
present, causing large errors to occur on all scatterers when the solution is approximated using
the infinite array. This is corrected by the large array approximation, where the errors are now
around 1%, at worst. Interestingly, the pattern of oscillations inEp is similar to that which occurs
in the infinite array solution, indicating that the remaining error is primarily due to inaccuracies in
computing the Rayleigh–Bloch wave amplitudesα(ψ0) andα(π − ψ0) and reflection coefficient
ρ. Finally, square data points have been used to represent the case wherea = 0∙49, k = 2∙97 and
ψ0 = π/10. Antisymmetric Rayleigh–Bloch modes now occur and large errors are evident when
the infinite array solution is used. Again, these are corrected by the large array approximation where
the error reaches around 3% at the right end and is lower elsewhere.

The time required to construct the large array approximation is generally much shorter than that
required to solve the{0, P} array problem directly by inverting (4). Table2 shows computation
times (using Fortran 2003 on a 2∙5-GHz Macintosh running OS X) with a typical set of parameters,
for various array sizes. Symmetric Rayleigh–Bloch waves are present in the solution. The compu-
tation time for the direct solution,Tex, increases rapidly with the array size,P. In contrast, solving
the canonical problems is the most expensive procedure required for the construction of the large
array approximation;Tla is largely unaffected by the actual array size. The maximum percentage
error, defined as

Emax = max{Ep : p ∈ {0, P}},

is also shown. This is reduced by increasingPc from 50 to 100, at the expense of increasing com-
putation time. ForPc = 50, we haveEmax < 2% for all the array sizes shown; this is sufficiently
accurate for many purposes.

4. Near-trapping

One of the motivations behind this present article is the association between trapped modes for
cylinders in channels and large responses in the scattering by a long finite array in the open sea,
first discovered by Maniar and Newman (8). The trapped modes that they studied were for a sin-
gle cylinder in a channel, but subsequently it was shown numerically (23, 24) (and later proved
analytically (25)) that a number of different modes exist when the{0, P} array (with P > 0) is
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situated in a channel with walls located atx = −1/2 andx = P + 1/2. For either Dirichlet or
Neumann boundary conditions on the channel walls, the frequencies at which these modes can
occur are given by

β̃ = [1 − q/(P + 1)]π, q ∈ {0, 1, . . . , P}; (39)

this is an exact result. It has been noted that the frequencies at which large responses can occur in the
problem of scattering by a long array in the open sea (10) are predicted by (39), with 0< q � P+1.
In this case, it is an (albeit very accurate) approximation, as we shall see.

Now, the large responses observed by Maniar and Newman in (8) do not occur in the case of
scattering by an infinite or semi-infinite array. Furthermore, these effects have only been observed
when the wave numberk is such that Rayleigh–Bloch waves can exist. It therefore follows that a
key role is played by interactions between the ends of the finite array, and in particular the reflection
coefficientρ. Figure5 shows values of|ρ| for different scatterer sizes and varyingk, in both the
symmetric and the antisymmetric cases. In all cases,|ρ| remains small, untilk approacheskmax, and
then the magnitude increases sharply towards the limiting value|ρ| = 1. The fact that|ρ| → 1 as
k → kmax shows that as the cut-off for Rayleigh–Bloch waves is approached, the amount of energy
scattered away from the array by reflections decreases. Coupled to this is the observation from (7)
that |α| increases to its maximum value ask → kmax. Hence, in the long finite array problem, we
should expect that large responses can only occur at or neark = kmax.

In fact, takingk = kmax exactly (and thereforẽβ = π ) does not produce a large response.
Although the denominator 1−ρρ̂ in (35) vanishes in the limit̃β → π , cancellation effects due to the
standing wave nature of the Rayleigh–Bloch waves (see section2.2) cause their total contribution to
(33) (that is,χR exp(i pβ̃)B̃m ± χL exp(−i pβ̃)(−1)mB̃m) to remain finite. Ifk is slightly less than
kmax, so that|ρ| ≈ 1, then we must consider the effect of interference between the left- and right-
propagating Rayleigh–Bloch waves and their respective multiple reflections. Thus, a large response
is expected to occur when the interference is purely constructive, and this corresponds to situations
where the phase of the Rayleigh–Bloch wave is unchanged after traversing the array once in each
direction, and so undergoing a single reflection by each end. That is, the quantity

ρρ̂ = ρ2e2i Pβ̃ (40)

Fig. 5 Modulus of the reflection coefficientρ for (a) symmetric and (b) antisymmetric Rayleigh–Bloch waves



346 I. THOMPSONet al.

must be positive real. Given thatρ = 1 whenk = kmax (see section2.2), an approximate formula for
the values of̃β near the cut-off at which pure constructive interference occurs is obtained by simply
assuming that Im[ρ] = 0. However, in many cases of physical interest, including that investigated
by Maniar and Newman (a = 0∙25 in our notation), a better approximation is achieved by assuming
that Im[c] = 0, wherec = ρe−i β̃ ; in fact, this yields precisely (39). That is, pure constructive
interference occurs at or very close to those frequencies for which the Rayleigh–Bloch wave is
2(P + 1) periodic. Since 2(P + 1) periodicity of the Rayleigh–Bloch wave is a necessary and
sufficient condition for the existence of a trapped mode in a channel containing the{0, P} array,
the connection between these phenomena and near-trapping on arrays in the open sea is now clear.
However, we reiterate that 2(P + 1) periodicity is not a sufficient condition for near-trapping; we
must also have|ρ| ≈ 1, which in turn requires thatk ≈ kmax. The imaginary parts ofρ andc
for symmetric and antisymmetric Rayleigh–Bloch waves are shown in Fig.6. The magnitude of
the imaginary parts of bothρ andc is always relatively small, but for symmetric Rayleigh–Bloch
waves on arrays of small scatterers, we have| Im(c)| � | Im(ρ)| for k close tokmax, the difference
decreasing as the scatterer radius is increased. Whena = 0∙45, we have| Im(c)| ≈ | Im(ρ)| and for
larger values| Im(c)| can exceed| Im(ρ)|. Accurate values for antisymmetric waves are difficult to
obtain. This is due to a combination of two factors. First, the size of the scatterers means that a large
number of modes must be used in order to accurately represent the field. Secondly, the ratio of Re[ρ]
to Im[ρ] is greater in this case, and, given that the filtering method in (7) can achieve only a limited
number of significant figures, we should expect some numerical inaccuracies. Indeed, it is likely
that these are responsible for the cusp in the curve fora = 0∙45 in Fig.6(b), despite the use of a
large spatial truncation (Pc = 300) in generating the data. Nevertheless, it is evident from the figure
that| Im(c)| < | Im(ρ)| whenk is close tokmax, but the difference is small. Whatever approximation
we use, that is, Im[c] = 0 (which leads to (39)) or Im[ρ] = 0 (which leads to the same formula but
with P + 1 replaced byP), it is clear that increasingP allows constructive interference to occur
closer to the cut-off and hence with an increased value for|ρ|. That is, near-trapping is enhanced on
larger arrays.

One of the most significant effects of near-trapping is the possibility that large forces may
be exerted on certain elements of the array, as in Fig.1. Now, the force exerted in thex-
and y-directions on scattererp, normalised using the force on a cylinder in isolation, is

Fig. 6 Imaginary parts ofρ andc for (a) symmetric and (b) antisymmetric Rayleigh–Bloch waves
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given by

F p
x = 1

2|U p
1 − U p

−1| and F p
y = 1

2|U p
1 + U p

−1|, (41)

respectively (15, Section 3). Thus, as we should expect,F p
x = 0 for a field that is antisymmetric

abouty = 0, whereasF p
y = 0 for a symmetric field (see (16)). It turns out that near-trapping of

the symmetric Rayleigh–Bloch mode has the greater physical significance in this context. There are
two reasons for this. First, as discussed in section2.2, for an antisymmetric wavẽB1 = B̃−1 → 0
ask → ka

max. Furthermore, results in (7) show that the largest value forα(ψ0) occurs at head-on
incidence, when there is no antisymmetric field. In fact, the peak value ofα is sufficiently large that
the strongest near-trapping effects generally occur forψ0 = 0, despite the fact thatα(π − ψ0) = 0
in this case.

Figure7 shows logarithmic plots of the force on the centre cylinder of a 101-scatterer array at
head-on incidence, witha = 0∙25 and varyingk. The forces are calculated from (41) using either
U p

n = F p
n for the large array approximation orU p

n = D p
n , where as beforeD p

n is the coefficient

Fig. 7 Force on cylinder 50 of a 101-scatterer array, at head-on incidence witha = 0∙25 and varyingk. ×,
cut-off for symmetric Rayleigh–Bloch modes;• (�), peak (minimum) predicted by (39) and (42). The dotted
line is the full linear solution calculated by inversion of (4), and the data for the solid line are obtained using
the large array approximation. The lower plot is an expanded version of the upper plot near tok = ks

max
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obtained when the{0, P} array problem is solved directly. The accuracy achieved by the large array
approximation is very good, and the plots are almost indistinguishable, except whenk is slightly
larger than the cut-off valueks

max. Here, there is a small discrepancy caused by the fact thatβ̃ moves
off the real line ask increases beyond the cut-off. Thus, in place of the Rayleigh–Bloch wave there
is now a mode which is evanescent inx, and this can still cause interactions between the ends when
the imaginary part of̃β is small. The locations at which peaks and troughs occur in the force plots
can be predicted by the following considerations. From (33), (35) and (41), it can be seen that the
forces due to the left- and right-propagating Rayleigh–Bloch waves act in the same direction when
the quantity 1−ρ exp(2i (P− p)β̃) is maximised, whereas they act directly against each other when
it is minimised. Retaining the assumption that, to a good approximation,c = ρe−i β̃ is negative real
and applying (39) (so as to achieve near-trapping), we find that

1 − ρe2i (P−p)β̃ ≈ 1 − |ρ|eiqπ(2p+1)/(P+1). (42)

If, as is the case here, we are concerned with the force at the centre of the array, then, sincep = P/2,
odd and even values forq cause the forces to act in support of and against each other, respectively.
The corresponding frequencies are shown in Fig.7 and the agreement is excellent.

Figure8 shows the forces along the array for fixed values ofk. Shaded data points are obtained
by solving the{0, 100} problem directly; unshaded points use the large array approximation. The
maxima and minima evident in the plots can be interpreted according to (42). Thus, data plotted with
square points have been obtained by takingψ0 = 0 and settingq = 1 in (39), so thatk ≈ 2∙781
as in Maniar and Newman (8, Fig. 2b). Here, (42) predicts that the forces due to the left and right
Rayleigh–Bloch waves act in the same direction at centre of the array and largely cancel each

Fig. 8 Normalised force on a 101-scatterer array, witha = 0∙25. Shaded data points are obtained by solving
(4) directly, unshaded points are calculated using the large array approximation.k ≈ 2∙781,ψ0 = 0 (�),
ψ0 = π/10 (4); k ≈ 2∙800,ψ0 = 0 (◦).



SCATTERING BY LONG FINITE ARRAYS 349

Fig. 9 Force on cylinder 50 of a 101-scatterer array, at head-on incidence witha = 0∙49 and varyingk. ×,
cut-off for symmetric Rayleigh–Bloch modes;• (�), peak (minimum) predicted by (39) and (42). The dotted
line is the full linear solution calculated by inversion of (4), and the data for the solid line are obtained using
the large array approximation

other at the ends. This behaviour is clearly evident in the plot. For comparison, data using the same
parameters, but withψ0 = π/10, have been plotted using triangular data points. Here, the agreement
between the directly obtained solution and the large array approximation is such that the two sets
of points are indistinguishable. The forces exhibit qualitatively similar behaviour to the head-on
incident case, except that their magnitudes have been reduced, and the excitation of Rayleigh–Bloch
waves by the incident field at the right end (which does not occur at head-on incidence) causes some
interference. Similarly, the data plotted using circular points are also obtained at head-on incidence,
but now settingq = 2 in (39), so thatk ≈ 2∙800. In this case, (42) predicts maximum forces at
p = 25 andp = 75 and a minimum atp = 50. Again, this behaviour is clearly evident in the plot.

As noted above, (39) is an approximation that is less good for larger scatterers. Figure9 shows
the horizontal force on cylinder 50 of a 101-scatterer array, witha = 0∙49 at head-on incidence with
varyingk. As before, the agreement between the large array approximation and the direct inversion
of (4) is excellent, except for a small discrepancy that occurs whenk is slightly greater thanks

max, so
that the Rayleigh–Bloch wave is replaced by a mode that is weakly evanescent inx. The predictions
made by (39) for the frequencies at which maximum and minimum forces occur are less accurate
than fora = 0∙25, though the errors are small.

Somewhat remarkably, both the near-trapping effect and the accuracy of the large array approxi-
mation persist for small (P ≈ 10) arrays. Figure10 shows two such examples, using the{0, 6} and
{0, 20} arrays, witha = 0∙25,ψ0 = 0 andPc = 50. As before, normalised force on the centre cylin-
der is shown as a function of wave number. In both cases, there is very good qualitative agreement
between the directly obtained solution and the large array approximation fork < ks

max ≈ 2∙783. In
particular, the peaks that occur atk ≈ 2∙645 in (a) andk ≈ 2∙753 in (b) are correctly predicted,
and the amplification is much smaller than that in previous cases; again this is consistent with the
theory. It should be noted that (39) fails in the former case; settingq = 1 leads to a predicted peak
atk ≈ 2∙526. The fact that the quantitative agreement is less good than that for larger arrays is to be
expected. Fork > ks

max, the large array approximation fails for the seven-cylinder array and, in par-
ticular, there is an erroneous peak in the force slightly above the cut-off value. As discussed above,
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Fig. 10 Force on the centre cylinder witha = 0∙25,ψ0 = 0 and varyingk. (a) Seven-cylinder array and (b)
21-cylinder array

in this regime, the Rayleigh–Bloch wave is replaced by a mode that is evanescent inx, and this has
not been included in the large array approximation. Since the array is now small, this evanescent
mode can cause significant interaction effects between the ends.

5. Conclusion

We have shown in this article how the response of a long finite array to an incident plane wave can be
modelled accurately and efficiently by decomposing it into a set of canonical problems formulated
on infinite and semi-infinite arrays. This can lead to considerable computational savings. Moreover,
the decomposition provides a powerful explanation of the near-trapping phenomenon that has been
observed for this type of array and shows that Rayleigh–Bloch surface waves are the principal cause.
At a certain wave number that depends on the size of the scatterers, these Rayleigh–Bloch waves
cut off and are replaced by an evanescent mode. Inaccuracies that were observed in our numerical
results for wave numbers just above the cut-off could be corrected by locating this mode in complex
plane; it is then straightforward to incorporate it into the theory.

We have formulated the problem as a water wave scattering problem involving an array of ver-
tical circular cylinders, but exactly the same mathematical problem arises in certain applications
in acoustics, electromagnetism and elasticity involving circular scatterers. The same theory can be
applied to arrays made up of more general shapes of scatterer, provided the canonical problems for
these scatterers can be solved.
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