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A reduced two-dimensional source distribution method is used for systemalic computa-
tions on wave interaction of twin vertical cylinders with rectangular scctions aligned with
small gap between in order to get a clear fundamental view of small gap influence to the
force responsa on patential very large coastal and marine structures. Strong hydrodynamic
interaction hetween caissons with small gap is observed and sharp peak force responses are
proved in the paper by both numerical evidence and theoretical verification dile ta newly
discovered narrow open channel resonant phenomens. This strong interaction feature has
its own important practical significance for design of links of modules for the large structure
and attentions on terms of work for linking the modules. And moreover, the importance
is also closcly rolated to hydro-clasticity analyscs lor Lhe very large structures, in which
local loads may be as important as integrated loads.

Keywords: Wave-struclure interaction, twin caissuns with small gap, narrow open channel
resonance, very large coastal and marine structures.

1. Introduction

Recently, investigation on very large coastal and marine structures has aroused large
interests in coastal and ocean engineering around the world due to their important
potential usage. For cxample, so-called very large floating structures (Kagemoto
et al., 1997) denote those floating structures with dimension scale of kilometers
and are by this feature distinguished from the conventicnal large ships and ocean
platlorms with dimension scale of several hundred meters. We, moresver, can find
many plans for an cffective using of coastal and occan arca by constructing very
large structures.

Since the very large coastal and marine stricture may be composed of large
amount of modules (unit blocks) in fact, there will be many gaps between them,
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which should be small by comparing with the characteristic dimension of the mod-
ules. In addition to this, during the construction of the structures, we cannot avoid
a term of work for linking the modules, in which each module’s extreme vicinity
happens.

Comprchensive studies on multi-body interaction, however, are mostly limitcd
to cases with larger separation distances between bodies up to now. For example,
in regard to floating bodies, Ohkusu (1976) and Qortmerssen (1979) investigated
hydrodynamic interaction hetween two floating bodies, and showed that interaction
effects in the hydrodynamic rcaction forces conld be quite significant. But the dis-
tance between two floating bodies exceeded half of the typical length of the Hoating
hodies. On the other hand, in regard to bottom mounted cylinders, Linton and Evans
(1990} and Kim (1993) investigated wave scattering interaction with an array of cir-
cular cylinders in a open sea. Kiyokawa and Motyka (1990) developed an analytical
mcthod for the infinite periodic row of eylinders with arbitrary cross sections. Dal-
rymple and Martin (1990), Nakamura (1994) investigated wave directional change
due to an array of breakwaters. Fernyhough and Evans (1995} and Nakamura (1997)
attempted to calenlate in the case of a periodic array of rectangular blocks. More-
over, for the circular cylinders arbitrarily spaced along a centerline of a wave chan-
nel, Evans and Porter (1997) pointed out trapped mode interaction which strongly
depended on the specified relationship between the wave numbcr and the channel
width. But the distances between the cylinders, the cylinder and the channel wall
were not so narrow.

It seemns, therefure, that we still lack of knowledge about the influence of small
gaps duc to cach body’s further vicinity on the wave loading on the structures and
the interaction between them. The present study seems to look at the first attempt
aimed to give an insight into that matter of gap influcnce on the wave forces and
multi-hedy interactions.

if the gap influence could be verified small enough to be neglected for the very
large structures with small gaps, it would be safe to usc an integrated single body
approximation. If the siluation is on the contrary, however, some special attention
should be made to take the gap influcnce into account efficiently, including the
term of work for linking the modules. We may need to find some simplified ways to
overcome the difficnlty appeared in using the boundary element method to trcat the
hydrodynamic problems for the very large structures with extremely large amount
of unit modules and gaps.

As a first step aiming to judge the gap influence to the multi-body hydro-
dynamic interaction, twin boltorn mounted vertical cylinders with rectangular sce-
tions aligned with small gap between will be mastly concern in the paper. Several
reasons can be listed for the choice of the present simplified model. For such special
hody configurations, a reduced two-dimensional source distribution method can be
utilized for systematic computations with various parameter combinations. Isaacson
{1978) among others developed this method for wave forces on a single cylinder of
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arbitrary scction. And later on it was further extended by Miao et al. (1993, 1998) for
both the wave forces and hydrodynamic forces on vibrating cylinders and for multi-
ple cylinder interactions. Moreover, it is helieved that the hydrodynamic interaction
between such bhottom mounted rectangular caissons wounld be much atronger and
clearer to be noticed than that, for example, between floating box-shaped hodics.
There is no principal difficulty to account for hydrodynamic interactions for more
caissong, however, the results For more hodies can be wiilerstood aud explained in
a correct way only when we have had a clear view on the two caissons interaction,

Indeed, in the present study, a strong hydrodynamic interaction between caissons
s obgerved and the sharp peak force on each caisson may reach ten limes the
valuc for the same but well separated caissons or isolated caisson at some special
frequencies. The sharp force responses are proved in the paper due to the newly
discovered narrow open channel resonant phenomena by both numerical cvidence
and theoretical verification. The strong hydrodynamic interaction feature has its
own important practical significance for the design of links (connectors) of modules
for the very large strictures and the attentions on the term of work for linking the
modules. And moreover, the importance is also closely related to the hydro-clasticity
analyses for the verv large coastal and marine structures, in which local loads may
be as important as the indegrated loads.

2. Formulation and Solution of the Problem

Although the following formulation and solution procedure are generally valid for
any number of vertical cylinders in waves, we limit our discussions in the paper to
twin vertical cylinders with reetanguiar section, which is referred to as twin caissons
hereinafter for simplicity. Since the procedure is well-made and verified, only the
outline of the procedure will be given for brevity. One may refer to Miao and Lin
(1990) for more details in numerical treatment.

Suppose we have two aligned caissons of rectangular section in waters of constant
depth k with one end mounted om the sea bottom and the other piercing the free
surface. Both of the caissons arc identical with length of L and breadth of B, B £ L.
There is a small uniform gap of width 2a between them, comparing with the main
dimension of the caisson, i.e. 20 < B. As shown in Fig. 1, a Cartesian coordinate
system ozyz is defined with the origin on the undisturbed free surface and oz axis
pointing vertically upward. The relative position of oz axis to the caissons is not
quite significant. For the convenience of later description. we locate it going through
the middle poiot of the gap al the right-hand side. The ox axis is along the gap
pointing positively out of caissons and the oy axis is then on onc of the side-walls
of caissons. The regular incident wave propagates with an incident angle of & to the
positive ox axis.

We treat the problem in the lincar potential theory regime in the frequency
domain. The fluid motion can be described by the velocity potential ®(z,y, 2,1) =
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Fig. 1. Twin caissons and the coordinate system.

&z, y, 2}~ under the usual assumption of ideal and incompressible fluid and
trrobational flow for time-harmonic motions of frequency w. T'he spatial poten-
tial ¢{x,y, z) can be regarded as the superposition of the incident wave potential
&1(z,y.2) and the diffraction potential ¢p(z, Y, ).

It is well known that the incident wave potential in finite water depth can be
expressed s

coshk(z + h)

cosh kh (1)

ér(zx,u,2) = dr(z,y)

fi’f(l' y) — Aeik(xcosaﬁ-ysina), A - _ﬂ (2)
’ W

where A is lhe wave amplitude, o represents the incident wave angle with respect

to the oz axis, and & is the wave nuiuber governed by the dispersion relation

w? = gk tanh kh . (3)

Duc to the present special body configuration, the diffraction potential
¢$op(x,y, 2} may also be correspondingly written as

cosh k(z + k)
cosh kh )
with 2 dependence separated and free surface and bottom boundary conditions sat-
isfied. The boundary value problem for ¢p(z, y) is then reduced to two-dimensional
and formed by the two-dimensional Helmholtz equation and corresponding bound-

ary conditions as follows, ie.

FPop . ¢p
az? Oy¢

o(2,1,2) = ¢p(z,y)

¢p ~0  in the fluid domain (5)

d¢p _ Odi

B = A on the body surface (6)
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d¢p
im r | —= ~ ik =
T}i}ll{;lo\,?*( or : E;bD ' (7)
where 3/0n is the derivaiive operalor along the inner-pointing unit normal vector
of the body surface. ¢p may be represented by the source and sink distribulion
method as

i(P) = 1= [ AP Qu ®)

where (7 denotes the sectional girth of all the bodies {(C = ¢y = (), and
G(P,Q) = irH (kr) (9)

is the fundamental source solution of Eq. (5), in which P(z,y) and Q(£,n) denote
the field point and source point, respectively, and r = [(z — £)* + (y — 7)%]Y/? is
the distance between them. Hél}(kr) is the first kind ITankel function of the zero-th
order having Inr type singularity as r — 0 and satisfying the radiation condition of
oul-going disturbance waves (7) as » — oo, o(@Q) is the source distribution strength
being determined by imposing the body surface condition (6) to form a Fredholm
integral equation of the second kind
(P}

CTon

The integral equation can be solved by discretization technique. The body sec-
tional girth C may be divided and approximated into N linear segments. The source
distribution strength o(Q) is assumed constant on cach segment and the integral
equation is satisfied at the middle of each segment. Equation (10) is then discretized
into a set of N linear algebraic equations with & unknown source distribution
strengths, i.c.

1 1 aGP.Q) .
57P)+ 3 [l (10)

N
ZEWJE—%;}E?), i=1,2,...,N (11)
i=1
or in malrix lorm as
[EHet = {F} (12)
where
FiSV 1 p oomQ), (13)
= —=dl i#j
7 facg, on

and {F} has its elements shown as the right-hand term of Eq. (10). The source
strength o (€2) is easy to obtain, i.e.

{e} =IE{F} (14)
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Once the source sirength o(Q}) is solved, the velocity potential at any point £ in
the fluid domain can be determined by the discretized form of Eq. (8), which may
also be written in a matrix expression as

¢u(P) = {T}{o} (15)
where
1= [ ewap (16)

By the linearized Bernoulli’s cquation, the wave forces, including the Froude-
krylov force and the diffraction force, exerted on the mth body can be obtained,
i.c.

) ) o
F,e"%" = t:_"‘"l‘piw/ dz/ ¢(Pmdl  for P e Cp(m=1,2) (17)
—h Cm

where n is the inner-pointing normal vector on the surface of the mth body.
As shown above the numerical modcling, the calculation has been directly done
without any assumption for 2 < B in this numecrical analysis.

3. Computational Results and Analysis

Systematic calculations for the wave forces on various twin caissons are carried
out. with the present method, which has been widely validated by comparison to
the results for multi-bodics obtained by analylical solutions and the 3-D source
distribution method (Miao and Liu, 1990, Miao ¢t al., 1993, 1998, Yu et al., 1998).
In order Lo exhibit the interesting interaction feature of twin caissons with small
gap, the length of caissons L varies from 2 to 5 and the breadth I is kept constant
as 2. It is implied that the linear scale of those caissons is made non-dirmensional by
the factor of B/2, as we always use the radius as a non-dimensional factor for the
casc of circular cylinders. For instance, the non-dimensional length of caissons could
be written as L/(B/2), and so for the wave length ete. For simplicity, however, we
still use the original variables as non-dimensional ones later on without confusing.
The width of the gap for all the calculation conditions is 0.02 (1% of the module
breadth). For a real module with breadth of 60 m, the gap width would be 0.6 m.
Gap width will surely give influence to the multi-body interaction feaiures, which
will be reported elsewhere later on.

In our calculations, each cvlinder girth is divided into 40 segments to ensurc the
accuracy in shorter wave casce. The non-dimensional wave nwnber kI varies from
0.5 to 6.4, corresponding to the wavelength from 12.56L to 0.98L in the engineering
interested range. Due to the sensitivity of the hydrodynamic interaction, the incre-
ment of kL is taken as small as 0.05 in order to deiect the sharp resonant response
as denoted below.
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In the following figures, the horizontal axis represents the non-dimensional
wave nuimnber kL, and the vertical axis represents the non-dimensional amplitude
{modulus) of wave forces by the scale factor of 2pyAhD(tanh kh/kh), where D
indicates I and B according to the side length perpendicular to the wave foree Ji-
rection, respectively. This implies the results are transformed to the averaged wave
force distribution in each [orce direction. The water depth kb is taken as 10 in all
the calculations, which actually gives no cffects to the final resnlts with the adopted
non-dimensional factor for wave forces.

Shown in Figs. 2 and 3 are typical examples of the wave forces on each spec-
ified caisson with thc length of 2 and 4 at wave incident angles v = 0° and 90°,
respectively. In the case of o = 90°, the caisson No. 1 denotes the leading onc. As
expecter, only the in-line wave lorces (the force in the same direction as waves) exist
due to the symmetry when o = 90°. And alse due to the symmetry, the wave forees,
including both in-line wave forces and cross wave direction forces, acting on either
of twin caissons arc the same when @ = (I°. The cross wave direction forces on each
of the twin caissons are out of phase. In those figurcs, the results for corresponding
isolated single caisson are also depicted for comparison, which may also be regarded
as examples of the validation Lhal Lhe present method is free of the suffering of
irrcgular frequencics in the frequency range we are interested in.

Sharp peak responses can be observed at some frequencies, which must relate to
some resonant phenomena to which people seems not aware up to now. Indeed, this
ncew resonant phenomenon can be proved to exist in the gap not only in the present
numerical computations but also in the following theoretical verification. as given in
the Appendix by extending the asymptolic matching process used by Mei (1989} for
narrow harbor rcsonance. The resonant wave number can be proved around kL =
nw(n = 1,2,3,...,0c) with a corresponding frequency shift for diffcrent caisson
configuration from kL = nm, which is the asymptotic solution for the gap width
2a — 0, as shown in Eq. (A.30) in the Appendix. In the frequency rauge with
engineering interests, the resonant wave number around n = 1 and 2 would be
important 4s one may notice in Figs. 2 and 3.

Figurc 4 depicts the resonant wave number & detected in the systemalic com-
putations for various caisson length L including o = 0° and 90°, together with the
dotted curves ol & = na/L{n = 1,2), which is the asymptotic solution for the gap
width 2e — 0 as shown in Eq. (A.30) for comparison. In this fignre, the horizontal
axis denotes the length of caisson (gap length} L. and the vertical axis denotes the
resonant wave number k. and the non-dimensional wave number kL is expanded up
to about 8.0 as the maximum value. And moreover, all of resonant points detected
in the systematic computations are shown in the figure. For example, two resonant
wave numbers, k = 1.75 and & = 2.8, for L = 2 correspond to the sharp peak
responses calculated in Fig. 2, while in the case of L = 3.0, three resonant wave
numbers have been detected. Then, cach resonant wave number is distingnished as
n =1 or n = 2, according to the approach of kL against the asymptotic solutions
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Fig. 4. The rcsonanl wave numbers detected in the computation for different twin caissons.

na(n =1,2). As shown from the figure, for the case of 7 = 1, the resonant frequen-
cies will always shift to the higher frequency range. However, the resonant frequency
shifts around n = 2 exhibit a little bit complex nature. Due to the principal effects of
the wave diffraction, the frequency shifts to both higher and lower frequency ranges
may appear simultaneously for some caissun configurations, as shown in the figure.
Since the motion in the gap is similar to the wave motion in a narrow open channel,
such resonaul. phenomena may be called as the “narrow open channel resanance”,
because this phenomena is diflerent, [rom the well know harbor resonance which is
caused by both closed condition and the condition with one end open. Moreover,
this resonant conditions, around kL = nr(n = 1,2,3,. .., ), which depend on the
gap length L. are different lrorn the trapped mode. It seems that the present in-
vestigation is the first time to point out the exislence of the narrow open channel
resonant phenomena. Forces on each caisson near the resonant frequencies may reach
as high as tens of those on the corresponding isolated single caissons. As one may
understand from Eq. (A.31), the small yet finite gap width will also give influence
on the resonant frequency shift and resonant force amplitude, the results of which
will be reported elsewhere.

Besides the resonant phcenomena, the hydrodynamic interaction is also clear as
noticed from the results. In the shorter wave range, we may see [rom Figs. 2(a)
and (b}, 3(a) and (I} that the in-line wave force on the No. 1 caisson is larger
than that on a single caisson and on the contrary for the in-line wave force on the
No. 2 caisson. It shows that, gencrally speaking, the shielding effects of the leading
caisson will become important in the shorter wave range except the frequency bands
ncar the resonant {requencies. In the longer wave range, however, the in-line wave
forces on both the Nos. 1 and 2 caissons are lower than that on a single caisson
and no shielding effects can be detected. We may regard that the reduction of the
wave forces in the longer wave range is mainly caused by the interfercnee between



Water Wave Intevaction of Twin Large Secale Caissons with a Smaoll Gap Between 49

caissons, if we usce the word “interference” in a narrower scnsce by cexcluding the
shielding effects.

There is no doubt that viscosity of fluid and possible vortex shedding around
corners would causc cnergy dissipation of the fluid flow and, hence, reduce the
scverity of resonance. Those effects, however, are usually regarded limiting to local
regions for the hydrodynamic interaction problem between waves and structures of
large scale, especially for the gencral properties of the interaction. For the purpose
of the present study, inclusion of those effects will give no influence to the essence
of the interaction property and resonance.

Tt 15 also meaningful to make further comparison of the integrated wave forces on
twin caissons, which denotes the summation of wave forces on each caisson according
to their phases, with those on the single “two in one”™ body approximation (as if
the gap is also occupied by solid material). Shown in Fig. 5 is the case for the
twin caissons with length of 4 as a typical example, from which it is ynderstood

-
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Fig. i. The integrated wave forces on twin caissons with . — 4 and B — 2 compared with those
for corresponding single “twa in one” calssan for incident wave angle o = 0° and 90°.
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there is not much difference between them. The importance of strong hydrodynamic
interaction feature for multi-bodies is more closely related to the hydro-elasticily
analyses for the very large structures, in which local loads may be as important as
the integrated loads. And yet, the interaction feature has its own important practical
significance for the design of links {(connectors) of modules and the attentions on
the term of work for linking the modulcs.

The resonance phenomena are specially recognized for rectangular caissons
aligned linearly with small gaps in between. It may become clear if we notice dif-
ferent, lealures of the results for twin circular cylinders of unit radius aligned with
the samc gap as for twin caissons, as shown in Fig. 6. Figure 6{a) depicts the in-linc
wave forces in the oy direction when the wave incident angle o = 90° on cylinders
Nos. 1 and 2 respectively. And Fig. 6(b) shows both the in-line wave forces and cross
wave direction forces on cach cylinders for o = 0°. To be consistent. with previous
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Fig. 6. Wave forces on twin circular cylinders with the same gap as twin square caissons for wave

incident wave angle & = 0° and 90°.
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figures, we use L in IFig. 6 to denote the diameter of the circular cylinder of unit
radius, i.e. L = 2. As seen in these figures, while the hydrodynamic interaction ex-
isls, no resonance can he distinguished. Again, we can see, by comparing the resulis
with the isolated single cylinder shown by dotted line in Flig. 6{a), that in longer
waves the interference between cylinders is dominant and in shorter wave range the
shielding effects of the leading cylinder become impaortant.

4. Concluding Remarks

A reduced two-dimensional source distribution method is used for systematic com-
putations cn the wave interaction of twin caissons with rectangular sections aligned
with small gap between in order to get a clear fundamental view of the small gap
influence to the force response on potentially very large coastal and marine struc-
tures. Although the integrated wave forces on twin caissons do not differ much from
those on the corresponding single “two in one” body, strong hydrodynamic interac-
tion between caissons is observed. The sharp peak force response on each caisson
is proved in the paper by both numerical evidence and Lheoretical verification due
lo the newly discovered narrow open channel resonant phenomena. The resomant
wave number is proved around kL = nr{n = 1,2,3,..., ) with a corresponding
frequency shift. The present study for twin caissons may also give an insight into the
complicated hydrodynamic interaction and resonant behavior of more bodies. Due
to the complexity of the phenomena, further experimental study should be strongly
encouraged for the deeper understanding on that subject besides the investigations
in numerical and theoretical ways.

Limiting to very large floating structures, the resonance presented in this study
may become weak. However, care should be made to account for the possible strong
interaction between ruultiple box-shaped bodies. Becanse the strong hydrodynamic
intcraction feature has its own important practical significance for the design of links
(connectors) of modules for the very large structure and the attentions on the term
ol work for linking the modules. And the importance is also closely related to the
hydro-clasticity analyscs of the very large structures, in which local loads may be
as important as the integrated loads,

At last, we would like to note that an accurate and yet efficient methad for the
prediction of the hydrodynamic behavior for the very large structures is still needed
for development. The asymptotic matching method mentioned in the Appendix may
offer an efficient way to tackle that problem. For a general 3-72 very large structure,
however, even more cfforts should be madec.
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Appendix A. The Mechanism of the New Narrow Open Channel
Resonance Phenomena

We will give the mechanism of the resonant phenomena relating to the twin caisson
hydrodynamic interaction. The main idea follows the asymptotic matching process
used by Mei (1989) for narrow harbor resouance,

Being consistent with the method and the body ronfiguration we adopt, it is only
necessary for us to consider the corresponding reduces two-dimensional problem (the
variation in the water depth direction is separated as cosh k(z +A)/ cosh kk by using
the method of separation of variables, as we mentioned abuave).

As shown in Fig. A.1 for the plane view of twin caissons, we may divide the
whole fluid domain into following four regions: (1) the outer far ficld around all the
bodies, (2) two near fields around both the gap ends at © = 0 and z = —L, and
{3) the inner far field (the Auid region in the gap away from two gap ends). We will
indicate the variables relating to the gap ends al @ = 0 and z = —L with subscripts
R and L, respectively.

In the ouler far field, the details of the gap can no longer be detected. The
influcnee of the gap can be regarded as two pulsating sources at the locations Py
and P, of the gap ends on the wall of a single “iwo in one” body as if the two bodies
were attached together, as shown in Fig. A.2.

L 0 w
L B
t 0
o P
{2) 2)
A b B
Wra [y

Fig. A.1. A sketch for the definition of fluid regions.

Fig. A.2. Approximation of How in the outer far ficld.
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The total velocity potential ép{x,y)} at any field point in the outer far field may
be written as

¢o = 91 +Pp +dg (A1)

¢y is the incident, wave polential given in Hq. (2). ¢p is the diflraction potential,
which can be represented by the source and sink distribution method as

o=y | s@cr.Q. (12)
T Jo
Although Eq. (A.2) has the same expression as Eq. (8) with the same fundamental
source as Eq. (9}, two main dillerences shonld be noticed. One is thal the girth
C here denotes the outer girth of the single “two in one” caisson as if they joined
together. And the other is that tu determine the source distribution strength o{(}),
not only the incident wave potential but also the influence of two extra sources
simulating the cxistence of the gap should be taken into account. The potential

caused by those two extra sources may be expressed as
@g = QRHr{)l)(kTR) + Q;‘H((]l}(k?‘r,) (A.3)

where Hél}(krn{ 1y) is the first kind Hankel function of the zero-th order satisfying
the radiation condition ol omt-going disturbance waves, rg,rr represent the distances
of the field point P{z,y) to the right-hand and left-hand source points, at which the
sources have their strengths of Qg and Qf, respectively.

The relationship belween source strenglhs of o(Q), Qg and @1 can be deter-
mined by imposing the body surface condition as we do for Eq. {13), which becomes

[E{e} +{L2r}QR + {Dr}Qr = {F} (A.4)

in which the influence matrix{F] has its elements as shown in (12) and {F} has its
elements shown as the right-hand term of Eq. (10). Notice that the body girth C
now docs not include the boundaries in the gap. {Dgr} and {21} have elements as

BHS" (kr ey (P))
on

respectively, denoting the normal velocity induced at each point F; on the outer
body girth by the extra sources at both the gap ends. Then, the relationship between
source strengths of o{Q}). @r and Q1 can be expressed as

{o} = -[E] {Dr}Qr— [E] {DL}QL+ E '{F}. (A.6)

To actually solve Eq. (A.4), two extra conditions are needed, which will be offered
by the matching process.

. i=1,2,...,N (A.5)
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With the above relationship, the diffraction potential ¢; at any point P in the
fluid domain can be determined by Eq. (8), the discretized form of which may also
be written in a matrix expression as

ou(P) ={T} {o}
= - {TY'E) " DrIQr — (T} [EI DL }Qu + (T [E]HF} (AT

where

1

o=
T A fac,

G(P,Q;)dl. (A.8)

Again, AC; are the divided lincar segments of the outer girth of the single “two in
one” caisson. The inner expansion of the outer solution ¢q when P tends to Pg and
FPr becomes

olp 5y = A— {Tr} [E] " DelQu — {Tr} (B HDL}Qs + {1k} T [E Y F}
N ( 21 ~krp

1+ —In ) Qr+ H M (kLYQ, (A.9)
Golposp, = Ae = ATATIEI Y DRIQR — {Tr}T1E] YD )0

H{TRYTIEYEY + B (L)Qu ~ (1 + %m "};’”L) Qr  (A.1D)

in which Invy = Euler’s constant = 0.5772157...,{Tx( 1T has the elements as
shown in (A.8) but with P changed to Pr or Pr, and ri and r; denote the distances
of a field point to Pg and Py, respectivcely.

For the near lield sulution around the gap ends where the length scale is the gap
width, the governing cquation can be reduced to the 2-D Laplace equation with a
relative error of order O(ka)?. Solutions around each end of gap may be obtained
by the Schwarz-Christoffel transformation as shown in Fig. A.3 {Mei, 1989). For the
right-hand end of the gap, the transformation relation will be

32% [—j(fz—ijuz—}*ln(-r?——lf)l_f?_ﬁ] z=x+jy, j=+—-1 (A1)
which maps the physical inner region around the gap end of = = ( shown in Fig. A.1
onto the upper half of the r plane. The velocity potential in the 7 plane will be the
real part (dencled by Re;) of the complex potential W(r), i.c.

¢ = Re;W(7) = Re;(MInt + ). (A.12)

The coefficients M and C arc real with respect to 5 and will be determined by
matching process. [ts outer expansions will be as follows for different sides, ie. on
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Rert

S A

Fig. A.3. Mapping of the region around gap end from the z plane to the upper half of the r plane.

the gap side where ¢ < 0, large |z|/a corresponds to small |r| and the expansion of
(A.11) becomes

nZ er
— =14In7—In2j 4+ 0% =In — + O(=?%)
2a 23
P (A.13)
27 a= mz €
T=—"¢= and Invr=_—-—-In—.
€ 2a 2y

Substituting it into (A.12), the cuter expansion of the inner solution will be

. nZ e Y e
& ~ Re; (M {% —In 5] f C') = _M% -~ M ln§ + for z <00 (A.14)

And on the sea side where & > 0, large |z|/a corresponds to large || and the
expansion ol (A.11} for || — oc becomes

2a | . 1 . Tz a2 o~
zz?{—jrﬁ-O(;)]‘ =T = %[1+O(;)} forz > 0.

Substituting it into (A.12), the outer expansion of the inner solution will be

& ~ Re; (ﬂ»fln'?z—?:l+ ) =Mln%+0. (A.15)

The inner solution and its outcr expansion around the left-hand end of the gap

can bc obtained in a similar way by translating the coordinate system from z = 0

to £ = —L and rotating for 180°. The expressions of the inner solution and its outer

expansion around the left-hand end of the gap are then the same as Lhose for the

right-hand gap end, but with different coefficients, denoted as M and C hereinafter,
respectively.
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For the solution in the inner far field, the variation in y-direction may be dis-
regarded since the gap width is small compared with the main dimensions of cais-
sons. Indeed, the inclusion of any variation in y-direction would give influence in
the higher frequency range vut of practical significance. A general solution of the
velocity potential ¢,(z) in the inner far field may then be written as

@q = Be “tke | Dett” in the gap (A.16)
with the inner expansion at # = () and 2 = —L, respectively, as
dyle o = (B+ D) +ik(—B + D)z + - + Olkr)? (A.17)

(f”giz , 1= (Bgikr, +De—\f}kL}
+ik(—Be*l + De* M@ 4+ LY+ + Ok{z + T))2.  (A.18)

Matching of (A.9) with (A.15) and {(A.17) with (A.14) for the right-hand gap
end gives the following relations, i.e.

BHJ«:G—M]JJ% (A.19)
oM
B ™ N
ih(=B + D) = = (A.20)
AR+ BrQu+ HpQp=C + Mn 21 (A.21)
[£3
o
ZQr=M. (A.22)
w

For simplicity, use has been made of the following notations in {A.21), i.e.

%k { {T}T[EI"Y{Dr) { Hr
1+ —In— - o =
T 2 (T} E|="(Dy) Ry

T( g1
L) - {{Th:} (B H{De} {HR

{TT1E"Y{Dr) | Hr
A+ {TpY|E) ™ MF} = Ag

Acmteboose 4 (A THEY = AL

Similar ratching of (A.10) and (A.18) (after making coordinate systemn transla-
tion and rotation) with the outer expansions of the near field solution of the left-hand
gap end will give the relations as

Bcfkb . Dﬁ_ikL _ C_: - M ln% (1&23)
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. . 7
ik(Beitl - Demibly = T2 (A.24)
2a
AL+ HiQr+ RiQr=C+ M ;; (A.25)
=11 (A.26)
Fis

Equations (A.19)—(A.26) together with Eq. (A.4) form the complete set of equations
to determine all the coefficients and source strenglhs. Since Lthe present purpose
for us is to exhibit the resonant phenomena, we do not try to recally solve the
set numerically, which will leave as later investigation. After some fundamental
derivations for Eqs. (A.19)-{A.26), the following two cquations can be obtained, 1.e.

[(1 4 kaRR) — kallpe™ | B + [(1 — kaRp) + kallpe **D = Ap  (A.27)

[(1 — kaRp)e*t + kallf]B + |(1+ kaRp)e ™ — kall)D = Ap,  (A.28)
where

e\ _[Re 2 da_) %, Dke [{IR)7IE] {DR)
fn ) B w e E e im0

The resonance will happen when the coeflicient determinant of Egs. (A.27) and
(A.28) equals zero, which means that the amplitude in the inner far field will be
infinity, i.e. when

[+ (ka)*(RrRr — HrHy)|sinkL + ika{Rp + Ry)coskL — ika(Hg + Hy) = 0.

Since the second and third terms will vanish as ke really tends to zero, the first ierm
gives the possible resonant wave numbers, which are

sinklL =0 and kL=nm, n=12... (A.29)

For small but finite kea, the response peak will happen near the roots of the gquation
1+ (ka)Y*Re(Rr By, — HrHi)]sinkL

—kalm(Rp + Ry)coskL + kalm{Hg + Hr) =0 (A.30)

where Re and Tin denole the real and imaginary parts of a complex variable, respec-
tively. The roots of the cquation for £L will near na but with a certain frequency
shift.

The exislence of the new narrow cpen channel resonance is thus prover.
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