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Abstract—In this paper, an exact solution for the diffraction of short-crested waves incident
on a circular cylinder is presented. The pressure distribution and water run-up on the cylinder
was found to be quite different from those of plane incident waves. The total force exerted
on the cylinder in the direction of the wave propagation was found to be smaller compared
to that induced by plane waves with the same wave number in the direction of the wave
propagation. The total wave load increases as the wave number in the direction perpendicular
to the direction of the wave propagation increases, or as the incident waves become shorter.
These results show that if the wave loading is calculated, as a design criterion, according to
plane incident waves, it will be over-estimated when the incident waves are short-crested.
However, from the safety point of view, the wave loading formula derived from a plane incident
wave may still serve as a good engineering design criterion.

1. INTRODUCTION

A commoN problem in offshore engineering is to calculate the wave loading exerted
on a circular cylinder. Wave loads on a large vertical cylinder resting on the ocean
floor and piercing the water surface are evaluated by the formula proposed by MacCamy
and Fuchs (1954), who found an analytical solution for linear plane waves being
diffracted around a large vertical cylinder. Their results have been verified with exper-
iments by many experimentalists (e.g. Chakrabarti and Tam, 1975; Neelamani et al.,
1989) and have also been utlized to verify numerical models (e.g. Tsay et al., 1989;
Bettess and Zienkiewicz, 1976). The experimental results have shown good agreements
between the theory and the experiments for 0.2 < ka < 0.65 (k is the wave number
of the incident waves and a is the radius of the cylinder).

However, waves generated by winds blowing over the water surface in real oceans
are short-crested. Short-crested waves are the waves of finite lateral extent; they have
many different properties compared to a long-crested plane wave. The theory of short-
crested waves was developed by Jeffreys (1924) and extended considerably by Fuchs
(1952). Short-crested waves have attracted much research exploring their kinematic
and dynamic properties (e.g. Roberts, 1982; Hsu et al., 1979). However, no-one seems
to have discussed, to the author’s knowledge, the impact of the short-crested waves
on a cylinder. When the incident waves are short-crested, one can conjecture that the
induced pressure distribution around the cylinder will be different from that induced
by plane waves. It is not so clear, on the other hand, whether or not the total wave
loads exerted on a cylinder should be different when the incident waves are short-
crested, nor it is clear, even if the wave loads are indeed different from those induced
by the plane waves, whether the loads exerted by short-crested waves would be larger
or smaller compared to the wave loads exerted by plane waves. These questions are
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of significant importance to ocean engineering because the current design criterion may
have to be reviewed.

In this paper, an analytical solution for the diffraction of short-crested waves around
a vertical cylinder resting on the ocean floor and piercing the free surface is presented
and the above questions will be addressed as a natural consequence of the results
obtained from the solution.

2. FORMULATION OF THE PROBLEM

Consider that a train of monochromatic short-crested waves of frequency, w, are
propagating in the direction of the positive x-axis in an ocean with uniform depth, d,
and a fixed, vertical cylinder of radius, a, is placed on the floor of the ocean as shown
in Fig. 1. With the origin being placed at the center of the cylinder on the mean
surface level (MSL), a cylindrical coordinate system is adopted with its z-axis pointing
upward. It is assumed that the fluid is incompressible and the flow is irrotational.
Therefore, there exists a velocity potential function ¢ such that the velocity components
in the radial, azimuthal and vertical directions, v,, vs and v, can be expressed in terms
of ¢ as

_ _lad _ 9
ar’ T rae Yt ez

(1)

v,

and ¢ satisfies the Laplace equation

P Lob 10 2y (2)

Ab = o roar  rof? 922

subject to the boundary conditions
%12:0 onz=-—d, (3)
% =0 onr=aqa, (4)
%+g%2:0 onz=0, r=a, (5)

where ¢ is the time variable and g is the gravitational acceleration.
For short-crested incident waves travelling in the positive x-direction, the velocity
potential can be given by the real part of* (Fuchs, 1952)

_igA cosh k(z+d)

d) w cosh kd

el — @D cos kyy (6)

in which A is the amplitude of the incident waves, i = V' —1, k, and k, are the wave

* In the rest of the paper, it is implied that any physical quantity is obtained by taking the real part of the
corresponding complex variable used in the solution.
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F1G. 1. A sketch for the coordinate system.

numbers in the x- and y-directions, respectively, and k is the total wave number which
relates to k, and k, by the equation

2=k k2 (7)

The wave celerity with which the short-crested waves are travelling in the positive x-
direction is

k 1/2
C= [% tanh kd] : (8)
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which is larger than that of long-crested waves of the same wave number in the direction
of the wave propagation with the same water depth. There is no wave propagating in
the y-direction; the amplitude of the short-crested waves varies periodically in the
direction perpendicular to the main direction of wave propagation.

The total potential now can be written as the sum of the potential of the incident
waves, ¢, and the potential of scattered waves, ¢, as

$ =D+ o 9)

The governing equation and boundary conditions for the scattered waves are obtained
by substituting (9) into Equations (2)-(5) as

azd)(S) 184)(5) 132¢(S) 32¢(S) 0
..l_f —— =

S =
Ad ar? ¥ or ¥ 907 922 ’ (10)
b
(gz =0 onz=—d, (11)
(C)] €5
%uz_a_‘gr onr=a, (12)
PP )
W_ F4 9z =0 onz=0. (13)

The scattered waves, which are the disturbances created by the presence of the cylinder,
must behave as outgoing waves at infinity. Sommerfeld (1949) gave the radiation
condition for the scattered waves at infinity as

lim (kr)2 (‘9 - ik) 6O =0, (14)
kr— oo ar

Equations (10)—(14) constitute the governing equation and boundary conditions for
the diffraction of short-crested waves by a circular cylinder.

3. THE SOLUTION OF THE PROBLEM
In cylindrical coordinates, the incident wave potential (6) can be written as (Watson,
1962)

igA coshk(z+d)[ — .
oW = — %W[ D g™kt cos mo

m=0
. { E &.J2.(k,r) cos Zne}e‘i“” , (15)
n=0
where
1 form=0;
Em = (16)
2 form+#0,

and the J,,s are Bessel functions of mth order. To satisfy the boundary condition (5)
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on the free surface, the wave number, k, and the frequency, w, are linked by the
dispersion relation

o = gk tanh kd . (17)

After splitting the product of the two trigonometric functions, the potential of the
incident waves can be written as

_ igA cosh k(z+d)

¢ = 20 cosh kd > 2 BuBum (k) okyr)

m=0 n=0
-[cos (m+2n)6 + cos (m—2n)0]e (18)

The solution for the scattered waves can be constructed by first satisfying the Laplace
equation and the boundary conditions (11) and (13) with two groups of infinitely many
arbitrary constants as

igA coshk(z+d) _. <« < '
(S) o B T77 TNT T it "
d) 20 cosh kd € mE=0 ngo EmEnl [Amn Hm+2n(kr)

«cos (m+2n)0 + B,,, H,,_2, (kr) cos (m—2n)8] , (19)

where H,, ., (kr) and H,,_,, (kr) are the Hankel functions of the first kind that
represent outgoing waves. Since

2\12 2(m +2n) — 1
e o e (20)
and
2\2 2lm—2n|—1
H|m*2,1| (kr) ~ *]é; el kr = 4 ]1—;, kr— o | (21)

the Sommerfeld radiation condition (14) is also satisfied by (19). To determine the
unknown coefficients A,,,, and B,,,, the boundary condition (12) was used. With the
primes denoting the differentiation of the Bessel function, J,,(s), or the Hankel function,
H,(s), with respect to their argument s, the coefficients A,,, and B,,,, were found to
be

— kx'];n(kxa)JZn(kya) + kme(kxa)]IZn(kya)
kH;n+2n (ka)

A

(22)

mn

_ k(b (k) + ke ()5 (ky2)
k Hiyp—sy (ka)

B (23)

Now, all the boundary conditions are satisfied with A,,,, and B, being calculated
from (22) and (23). Thus, all the other physical quantities such as pressure, free surface
elevation, can be obtained thereafter.
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4. DISCUSSION OF THE RESULTS

With the velocity potential for the scattered waves being determined, the total
velocity potential can be readily written as the sum of the potential for the incident
waves and the potential for the scattered waves as

¢ =- 153 @%}f—%}@ et ,Z‘o ,,Zo €€l Qnn(7,0) (24)
where the function Q,,,.(7,0) is defined as
Qunin(7,0) = [kt W kyr) — AppH s 20 (kr)] cos (m + 21)0
+ [Jn(kxr) J2u(kyr) = BruH\ -2y (kr)] cos (m — 2n)8 . (25)
The total free-surface displacement is then given by

nz—ée"”’z Zeelan(rG) (26)

m=0 n=0

The total force, per unit length in the direction of wave propagation, is

dF,
dz

21v
= - aj p(a,8,z)cos 6do , (27)
[¢]

in which p(a,0,z) is the pressure at any point on the surface of the cylinder and is
given by

pgA cosh k(z+d) o .
p(a 0 Z) cosh kd 2: Zo EmEpl an(a9e) . (28)

dF
By the orthogonality of cosines, the final expression of —&;Z consists of a single term,

which was obtained from the first term in Q,,,(a,8) with m = 1, and n = 0, and a
single summation resulted from the second term in Q,,,(a,8) with m = 2rn+1 and m
= 2n—1,

dr, coshk(z+d) ..
dz 2mpga coshkd °© Rike, ky ke, @) (29)
where
( x5 y7 k7 (l) l:RO(kx’ ky, k a) + 2 R ( X9 y, k a) (30)
and

ko Ji(ka)lo(kya) + k,Ji(ka)ly(k,a)
k Hi(ka)
H, (ka) , (31)

RO(kx’ ky: k: a) = Jl(kxa)]o(kya) -
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Rn(kx, ky: k, a) = i2n{[-’2n+](kxa)']2n(kya) - BZn+1,nHl(ka)]
— [Van-1(ksa)2n(kya) = Boy 1 .Hi(ka)]} . (32)

The function R(k,, k,, k, a) determines the water run-up and the pressure distribution
around the cylinder. It also determines the first-order total horizontal force on the
cylinder, F,, which can be readily found by integrating (29) with respect to z,

Y dF, tanhkd _
f 2 dz = — 2mpgAad U= e R(ky, K, K ) (33)

F,=

—d

and the total moment about an axis parallel to the y-axis passing through the bottom
of the cylinder,

0

F .

M, = f (z+d) % dz = — 2wpgAad® e~ R(k,, ky, k, a)
d

kd sinh kd — cosh kd + 1
(kd)? cosh kd

Therefore, only the function R(k,, k,, k, a) needs to be discussed. Other important
physical quantities such as F, and M, are obtained by multiplying the function R(k,,
k,, k, a) with some constants given in the expressions (33) and (34).

For a plane wave with wave number k, the total velocity potential given in (24) as
well as other quantities obtained here reduce to the results obtained by MacCamy and
Fuchs (1954) after letting k, — k and k, — 0. Therefore, the diffraction problem with
plane incident waves can be regarded as a limiting case for the problem presented
here.

Following Mei (1989), the inertia coefficient, C,,, and drag coefficient, Cp, per unit
height can also be derived; they are generally functions of k, and k, (their expressions
arc lengthy and so are included in the Appendix). It is very interesting that both of
these coefficients were found, through numerical calculations, to be invariants if the
product of the total wave number, k, and the radius of the cylinder, a, are kept as a
constant. Although no analytical proof has been obtained at this stage, many numerical
calculations with different combinations of k, and k, have been carried out to show
that the inertia coefficient, C,;, and drag coefficient, Cp, per unit height are indeed
the invariants of ka. Here, we chose, among other numerical results obtained, Figs 2
and 3, in which the variation of C,, and Cp, are plotted against the variation of k,/k,,
for k being taken with four different values, respectively, but ka being kept as a
constant. As can be clearly seen, four curves coincide with each other. However, since
the total force per unit height can be expressed as

dcﬁz N T (35)
the total force changes with the variation of k_; it varies linearly with the wave number
in the direction of the wave propagation, k.. Some special cases have been considered
and the numerical results for the total forces exerted on the cylinder are listed in Table
1. This can be seen also in Fig. 4, in which the total force factor, 2waR(k,, k,, k, a),
is plotted against the ratio of k,/k, for fixed k and a.

(34)
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Fig. 3. The variation of the drag coefficient, Cp,, vs the ratio k,/k,.
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TABLE 1. THE INERTIA, DRAG COEFFICIENTS AND TOTAL FORCES

Cases k. (1/m) k, (I/m) &k (1/m) a (m) Cuy Cp |2waR(k,, k,, k, a)| (m)
1 1.0 1.0 V32 1.0 0.8824 0.2271 2.1421
2 V0.56 1.2 V2 1.0 0.8824 0.2271 2.8626
3 1.2 V0.56 % 1.0 0.8824 0.2271 3.4351
4 V2 0.0 V2 1.0 0.8824 0.2271 4.0483
5 1.0 1.0 V2 2.0 0.8824  —0.2398 3.1601
6 V0.56 1.2 V2 2.0 0.8824  —0.2398 4,2228
7 1.2 V.56 V32 2.0 0.8824  —0.2398 5.0674
8 V2 0.0 V2 2.0 0.8824  —0.2398 5.9720

k=10 mla=10 m.

--------- k=10mla=20 m PPt

<k =20mLa=10 m T

21aR (ks ky, k, @) (m)

kxlk

Ti6. 4. The variation of the total force vs the ratio of k. /k for fixed k and a.

For a fixed wave number, k,, as the wave length in the direction perpendicular to
the wave propagation decreases, that is, as the waves become shorter and shorter, the
total force exerted on the cylinder becomes smaller and smaller. This can be observed
in Fig. 5, in which the total force is plotted against the ratio k,/k,, for k, being held
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Fig. 5. The variation of the total force vs the ratio of k /k, for fixed k, and a.

as four different constants. One can therefore conclude that the maximum wave loading
to a cylinder is achieved when the incident waves are plane waves. If the formula
derived from the plane waves is used as a design criteria for a cylinder in a short-
crested sea, it will be safe always with the wave loads being overestimated. With the
wave crests being slightly shorter than that of plane waves, say for the ratio of k, and
k, being 0.5, the wave load could drop approximately 15%.

The run-up on the cylinder is quite different when the incident waves becomes short-
crested. In Fig. 6, the dimensionless water run-up, w/A, on a cylinder with radius a
= 1 m is plotted against the variable 6/7 for some different combinations of k, and
k, but the same total wave number k. As one can see, for ka = V2, the waves near
the front side of the cylinder, namely 6 = =, have the largest amplitude when the
incident waves have infinite wavelength (k, = 0) in the direction perpendicular to the
wave propagation. The wave amplitude decreases here monotonically as the incident
waves gradually become short-crested. For the other extreme, that is, k, becomes zero
and k, = k, the amplitude of the waves on the front side of the cylinder reduced to
a minimum. On the other hand, there is no such monotonic decrease of the water
run-up on the lee side of the cylinder where 6 = 0. A minimum amplitude seems to
exist between the two extremes of k, = k and k, = k. The same conclusion can be
drawn for a cylinder with radius @ = 2 m as shown in Fig. 7. However, the diffraction
effects become stronger compared with those of a more slender cylinder. With larger
cylinders, the wave amplitude on the front side of the cylinder becomes bigger and
the wave amplitude becomes smaller on the lee side with the incident waves having
the same wave numbers. For larger total wave number, the pattern of the run-up for
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Fic. 7. The water run-up of a cylinder with radius @ = 2.0 m and total incident wave number k = V2 m—1,
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short-crested incident waves becomes more complicated in a manner similar to that
shown by Mei (1989) for plane incident waves. Nevertheless, the above observation
still holds as can be seen from Figs 8 and 9, in which k is increased from V2 to V5.

The change of the water run-up is a natural consequence of the complicated wave
pattern resulting from the short-crested waves impinging on a cylinder. In Figs 10-17,
the co-amplitude and co-phase lines for long- and short-crested incident waves of
amplitude ¢ = 0.01 m diffracting around a circular cylinder with radius of 1.0 m are
plotted. In all the figures, the wave number in the x-direction was fixed to 1.0 m™*,
whereas the wave number in the y-direction was varied from 0 to 1.0 m~?!, that is,
from long-crested plane waves shown in Figs 10 and 11 to short-crested waves shown
in Figs 12-17. The thick lines in all the co-phase plots were due to the sudden change
of the phase values from 3m/2 back to —n/2 when the phase angle was evaluated using
the arctan function. Comparing all the co-amplitude plots, one can readily find that
the amplitude of the diffracted waves in the lee region of the cylinder becomes smaller
as the incident waves become shorter. The region for the large amplitude waves in
front of the cylinder shrinks as well. This is expected because some parts of the incident
waves are of very small amplitude; the wave energy per unit length in the y-direction
for short-crested waves is smaller compared to that of long-crested plane waves. It is,
however, very interesting to note that as wave crests became short, amphidromic points
formed in the co-phase plots (see Figs 13, 15 and 17). These amphidromic points were
closer to each other as the wave crests became shorter. The phases near two adjacent
amphidromic points rotate from —w/2 to 31/2 clockwise and counter-clockwise around
the amphidromic points, respectively. The wave pattern becomes more complex as the

2 T T T T T T T T T
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1.6+ !

=10 mYky=20m",
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Fig. 8. The water run-up of a cylinder with radius @ = 1.0 m and total incident wave number k = V3 m~1.
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F1G. 9. The water run-up of a cylinder with radius ¢ = 2.0 m and total incident wave number k = V3 m~1.

0

FiG. 10. The curves of equal amplitude (co-amplitude with units in meters) for the incident waves with
longitudinal and lateral wave numbers k., = 1.0 m~* and k, = 0.0 m~*, respectively.
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Fic. 11. The curves of equal phase (co-phase) for the incident waves with longitudinal and lateral wave
numbers k, = 1.0 m~! and k, = 0.0 m™, respectively.

-9 -5 0 5 9

F1G. 12. The curves of equal amplitude (co-amplitude with units in meters) for the incident waves with
longitudinal and lateral wave numbers k, = 1.0 m~" and k, = 0.2 m~?, respectively.
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FiG. 13. The curves of equal phase (co-phase) for the incident waves with longitudinal and lateral wave
numbers k., = 1.0 m~' and k, = 0.2 m™?, respectively.
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Fic. 14. The curves of equal amplitude (co-amplitude with units in meters) for the incident waves with
longitudinal and lateral wave numbers k, = 1.0 m~! and k, = 0.5 m~!, respectively.
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Fic. 16. The curves of equal amplitude (co-amplitude with units in meters) for the incident waves with
longitudinal and lateral wave numbers k, = 1.0 m~* and k, = 1.0 m~?, respectively.
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Fic. 17. The curves of equal phase (co-phase) for the incident waves with longitudinal and lateral wave
numbers k, = 1.0 m~! and k, = 1.0 m™?, respectively.

lateral wave number becomes larger; a beautiful amphidromic pattern is shown in Fig.
17 when k, = 1 m~'. However, there is always a region behind the cylinder, where
there are no amphidromic points; the wave crests appear to be parallel again, at least
within some sizeable neighbourhood of a particular spatial point. The waves are
therefore no longer “short-crested” in the lee region of the cylinder. This region of
absent short-crested waves becomes wider as the wavelength in the lateral direction
becomes larger.

5. CONCLUSIONS

An exact solution has been found for the diffraction of short-crested waves incident
on a circular cylinder. The wave loads on the cylinder become larger as the incident
waves become less short-crested. Inertia and drag coefficients can still be defined; they
are constants as long as ka remains the same. However, the total force exerted on a
cylinder is linearly proportional to the wave number in the direction of the wave
propagation for a constant ka. The run-up and the pressure distribution on the cylinder
are quite different from that of plane incident waves; their pattern becomes very
complex as ka becomes very large. Amphidromic points formed up for the diffracted
short-crested waves. The phases near two adjacent amphidromic points rotate clockwise
and counter-clockwise around these amphidromic points, respectively. In the lee region
behind the cylinder, wave amplitude generally becomes smaller as the crests of the
incident waves become shorter. The short-crested waves also seem to have disappeared
in this region.
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APPENDIX

Following Mei (1989), the inertia and drag coefficients per unit height are related to the total
force per unit length as

dF, .
Re< dzx) = pTraz(CMU+ (l)CDU) 5

where U is the velocity of the incident waves at x = 0 in the absence of the cylinder. The inertia
and drag coefficients for the short-crested waves and, Cy and Cp, are thus defined as

1
Cy=——o-
M wa*k,’
and
R
Cp = wack,’

z

dz

where R and [ are the real and imaginary parts of without the constant term:

cosh k(z+d)
coshkd ©

After some simplification, the inertia coefficient, Cy,, and drag coefficient, Cp, per unit height
can be obtained as

—iwt

CM = ’kz? [Jl(kxa)]()(kya) -+ i (—1)"[]2,,+1(kxa) —J2,141(kxa)]]2,1(kya)

_ Ji(ka)Ji(ka) + Y,(ka)Yi(ka)
k[Ji(ka)? + Yi(ka)?]

ko Ji(ka)o(kya) + kT (ka)lo(k,a)
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+ i (kT3 i(kea) — Th,_1(ka)) o (kya)

+ 21 (—1)” y(J2n+1(kxa) _Jz,,_l(kxa)).]én(kya):'} ,

and

4
Cp= {kxfi(kxa)lo(kya) + k,J 1 (ka)i(k,a)
]

wk(k.a)(ka)[Ji(ka)? + Yi(ka)>?

+ i (_1)"[kX(‘Ién+l(kxa) _Jén—l(kxa))JZn(kyll)

+ ky(Jonr1(kea) — Jz,,ﬁl(kxa))fén(kya)]] .



