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As is well known, most off-shore oil platforms are supported by vertical cylinders. Correctly and efficiently
calculating the wave loads on an array of cylinders is of great concern to ocean engineers. It was shown by Au
and Brebbia' that wave loads on vertical cylinders can be calculated by using the boundary element method
(BEM). However, their boundary discretization turns out to be still quite costly when the wave loads on an
array of a large number of cylinders need to be calculated. In this paper, a simple yet effective improvement on
the numerical calculation of wave loads on vertical cylinders using BEM is presented. We shall show a new
algorithm of boundary discretization designed to enhance the numerical efficiency and thereby to reduce the
computational cost when an array of a large number of cylinders are involved in a calculation.

1. Introduction

With the construction of large off-shore structures, such as
oil platforms which consist of a number of legs, the
calculation of wave-induced forces on an array of cylin-
ders has become increasingly important in recent years
since the design of and the operation on such large struc-
tures rely very much on the reliability of predicting the
wave-induced responses of the structures. For example, in
order to avoid excessive structural vibrations, which are
usually very difficult to eliminate completely, reasonably
good vibrational analysis needs to be carried out during the
design phase. The closeness of such vibrational analyses to
reality is crucially dependent on a correct prediction of the
wave-induced forces on each of the legs of an off-shore
structure. Much research works in this area has been
carried out in the past.

For the forces on a single vertical circular cylinder
resting on the ocean floor and piercing the water surface,
an analytical solution was found by MacCamy and Fuchs®
in 1954. For a cylinder of arbitrary cross-section, only
numerical solutions are available so far. The hybrid ele-
ment method used by many researchers in this area®* is a
very powerful and robust method of calculating wave
loads on a vertical cylinder of arbitrary cross-section.
However, adopting this method can be computationally
quite expensive especially for those incident waves with
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short wave lengths, since a large number of elements are
needed in order to resolve waves within a wavelength’. Au
and Brebbia! showed that the BEM is a numerically
efficient alternative to solving the problem.

Wave diffraction around an array of cylinders is much
more complicated than that around a single cylinder. Forces
on each individual cylinder may vary considerably; some
of them may experience larger forces and some may
experience smaller forces compared with the forces they
would have experienced if they were standing alone in an
ocean with the same incident waves. Analytical solutions
are rare for this case and they are very restrictive as far as
the cylinder cross-sectional shapes are concerned. For an
array of circular cylinders, Mingde and Yu® used the
multiple scattering techniques developed by Spring and
Monkmeyer® to study the case of shallow water wave
diffraction of multiple circular cylinders. Chakrabarti'®
extended Spring and Monkmeyer’s analysis to the complex
field, which doubled the numerical efficiency in the final
calculation for the solution. Spring and Monkmeyer’s mul-
tiple scattering technique was further improved by Linton
and Evans'' in 1990. However, their solutions are only
applicable to the case that the solution for a single cylinder
exists, such as the case that only circular cylinders are
involved.

With the advantage of being relatively simple to formu-
late the problem and computationally efficient to carry out
the final calculation for the solution, approximation meth-
ods were proposed to calculate wave forces on an array of
cylinders. Massel'? presented an approximate solution of
an infinite row of equally spaced cylinders at an arbitrary
angle to the incident waves. However, his approximation
theory is valid only for small ka values, where k is the
incident wave number and a is the radius of the equal
cylinders. Based on Simon’s idea'®, Mclver and Evans'
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later proposed another approximation method, in which
scattered waves from one cylinder are replaced by a plane
wave of appropriate amplitude in the neighborhood of
another cylinder. Their results compared favorably with
those of Spring and Monkmeyer®. Although some good
results were also presented using their approximation the-
ory when the spacing between cylinders is small, Mclver
and Evan’s theory was essentially based on the assumption
of large spacing between cylinders and therefore limited
the range of its application.

Numerical solutions to the diffraction of water waves
around an array of cylinders seem to be inevitable and
many works have been published in the past. The hybrid
element method’ is still usable. However, the high compu-
tational cost associated with the method, especially when
the incident wavelength is short, motivated the search for
more efficient methods. Using a vertical line wave source
Green’s function, Isaacson® calculated wave loads on an
array of cylinders. The constant sources he placed are
equivalent to the constant elements in the standard BEM
later used by Au and Brebbia! who showed that most
accurate results were produced by adopting quadratic ele-
ments and that constant elements were indeed superior to
linear elements in calculating wave-induced forces on a
single cylinder. However, the computational cost associ-
ated with adopting quadratic elements is too high when the
number of cylinders is large; constant elements are prefer-
able.

In this paper we shall show a simple yet very effective
new discretization of cylinder boundaries with constant
boundary elements. With this new discretization, fewer
elements are needed to achieve the same numerical accu-
racy. A significant saving in CPU time has been achieved
when the number of cylinders involved in a calculation is
large.

2. Governing differential system

Consider the case that plane incident waves with the wave
potential

—iga, cosh{ k(z+h)}
w cosh( kh)
Xexp{i(k,x+ K,y — wt)} (1)

are diffracted by an array of vertical cylinders resting on
the ocean floor and piercing the water surface as shown in
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Figure 1. Waves incident on vertical cylinders.
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Figure 1. In equation (1), i=vV—1, a, is the wave
amplitude, A is the water depth, @ is the angular fre-
quency, g is the gravitational acceleration, and «,, k,, are
wave numbers in the x, y directions, respectively.

The governing equations and the boundary conditions
for the scattered wave field, with the assumption that sea
water is inviscid and incompressible and flow is irrota-
tional, are

Vi +k%=0 (2)
subject to the following boundary conditions
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where k is the total wave number defined as

K= \KkZ+ Ky2 (5)

and I indicates the boundaries formed by the surfaces of
the cylinders, I, stands for a fictitious boundary at infin-
ity for the time being, as shown in Figure 2, and r is the
coordinate in the direction of the unit outward vector n
normal to I, and I.,. Boundary condition (3) states that
waves are totally reflected on the surface of the cylinders.
Boundary condition (4) is the Sommerfeld radiation condi-
tions,'S which simply states that the energy associated with
the scattered waves will propagate toward infinity without
being reflected back. Notice that the scattered waves are of
the same angular frequency , which is related to the
wavelength, «, from the dispersion relation

w? = gk tanh( xh) (6)

Following Au and Brebbia,' a boundary integral equa-
tion can be formulated based on the Galerkin method.
Since this integral equation as well as its discretized matrix
form with N boundary eclements being placed on the
boundary I, are now very much standard in the BEM
literature, they are not presented here. Once the discretized
integral equation is solved for the N nodal values of the
unknown function ¢, other physical properties such as
water run-up, the total wave induced force, and moment
can be readily calculated. However, when the number of
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cylinders involved in the calculation is large, it would be
of a great advantage computationally if the number of
elements could be kept as low as possible while a certain
numerical accuracy level is maintained. It was through a
new discretization as outlined in the following section that
our improvement on the calculation emerged.

3. Boundary discretization

The boundary element method requires the boundary of
the cross-section of the cylinder to be discretized into a
finite number of elements. Au and Brebbia! showed that
for wave diffraction problems, linear elements resulted in
the worst numerical accuracy. However, although quadratic
elements can yield more accurate results than constant
elements do, they are generally more expensive in terms of
computational time. When the number of cylinders in-
volved in the calculation is large, one really likes to use as
few constant elements as possible and to preserve a certain
numerical accuracy in the mean time.

For constant elements, each element is deemed to be a
straight line with the node placed at the center of the
element. The shape formed by all these constant boundary
elements is a polygon which approximates the cylinder’s
cross-section. The traditional way of positioning these
elements is to place the end points of each element on the
boundary of the cross-sectional shape. As the number of
elements increases, the polygon so formed better approxi-
mates the cylinder cross-section. This is shown in Figure
3.

For a convex cylinder cross-section, such as a circle, the
polygon lies entirely inside the cylinder cross-section. The
perimeter of this polygon associated with the above dis-
cretization is smaller than the perimeter of the circle.
When the wave-induced forces are calculated, the pressure
on the surface of a cylinder is summed up vectorially after
being multiplied by an infinitesimal area and integrated
over the entire boundary surface. Therefore, the total wave
force is directly related to the surface area of the cylinder
exposed to the waves. For a cylinder of uniform cross-sec-
tion, the perimeter of the cross-section determines the total
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Figure 3. Traditional discretization.
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Figure 4. New discretization.

area of the cylinder exposed to the waves. Thus, better
results should be obtained with the BEM if the polygon
formed by the boundary elements has the same perimeter
as that of the original cylinder cross-section.

For a circular cylinder of radius r a regular polygon of
n sides has the same perimeter if it is inscribed in a circle
of radius R, where

rar
R=——7p (7)
n sin—
n
Such a polygon is shown in Figure 4.

This idea can be extended to shapes other than circles.
For a cylinder of arbitrary cross-section, an algorithm is
needed in order for a computer to generate automatically a
polygon that is of the same perimeter as that of the original
cylinder. The radius r in equation (7) now needs to be
replaced by the local radius of curvature, which determines
the distance that an end point is moved along the straight
line passing through the original intersection point of two
elements and in the direction N;, which is obtained by
simply averaging the normals of the two adjacent elements
as shown in Figure 5. A flow chart of the algorithm is
included in the Appendix.

The adoption of such an algorithm in the discretization
of the boundary generates a polygon that is of the same
perimeter as the original boundary contour. The computa-
tional time required for this new discretization process is

Element i+1

Element i

Figure 5. An illustration of the straight line along which the
end point P; is moved.
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Figure 6. Wave-induced forces on a single circular cylinder
with traditional discretization.

much less than the additional computational time required
in the traditional discretization with the extra number of
elements needed to achieve the same numerical accuracy.
In order to test the new algorithm, several numerical tests
were carried out and all the results showed the high
efficiency and reliability of the algorithm in generating a
polygon that is of the same contour length as the original
contour. As a very special case, discretizing a circle only
requires one iteration. With a couple of iterations, the
discretization of the boundary of an ellipse can be finished.
If a sufficient number of elements are used initially, few
iterations are needed for even more complex nonconvex
boundary shapes.

In order to show the numerical efficiency achieved by
adopting the new discretization, wave forces exerted on a
circular cylinder are calculated and compared with the
analytical solution given by MacCamy and Fuchs.? In all
of the following numerical examples, the radius of the
cylinder, a, was taken to be 10 m and the water depth, 4,
was taken to be 50 m.

Figure 6 shows the convergence of the numerical solu-
tion to the analytical solution as the number of boundary
elements increases using the traditional discretization; the
nondimensional total horizontal force, F/{pgayh tanh
(kh) /kh), is plotted against xa. The convergence of the
numerical scheme when the number of elements increases
is evident. As can be clearly seen from Figure 6, the
numerical error is rather large for xa > 1.0, if one tries to
use a small number of elements such as 6. The numerical
accuracy was significantly improved when the new dis-
cretization was adopted. Similar results as those shown in
Figure 6 are now shown in Figure 7 with the new
discretization being used. It is amazing to see that a simple
idea such as demanding that the perimeter of the boundary
elements in a discretization be equal to that of the original
cross-section can lead to a greatly enhanced numerical
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Figure 7. Wave-induced forces on a single circular cylinder
with new discretization.

accuracy. By using as few as six constant boundary ele-
ments the new discretization produces values for the total
horizontal force that are in very good agreement with the
analytical result.

In order to get some quantitative idea of the improve-
ment that the new discretization can generate, the relative
errors in the total horizontal force of the two discretization
methods for the case of ka =1 are tabulated in Table 1.
As can be seen from Table I, the new discretization is
approximately ten times more accurate than the results
obtained using the traditional discretization with the same
number of boundary elements being used.

Higher order boundary elements can be used to produce
more accurate results”'’. However, the adoption of these
higher order elements such as quadratic elements requires
more nodes per element and thereby results in larger
matrices to be solved. Furthermore, more numerical inte-
grations on each node need to be carried out for higher
order elements. Hence the computational time required by
using higher order elements will also be increased, espe-
cially when a large number of elements are required in the
case that the number of cylinders involved in a calculation
is large. In addition, some of the higher order elements
may not necessarily produce better results. Linear elements
were shown, for instance, to produce worse results than
constant elements.! Nevertheless, one still needs to com-
pare the numerical accuracy achieved by adopting higher
order elements such as quadratic elements with that
achieved by adopting constant elements with new dis-
cretization. In Figure 8, the relative numerical errors
resulting from using constant boundary elements with the
traditional and the new discretizations and quadratic ele-
ments are plotted against the total CPU time required for
different numbers of elements. As the number of elements
increases, for all three cases, the numerical accuracy im-

Table 1. Computed forces and relative errors versus the number of elements used
Elements Traditional discretization New discretization
Force % Error Force % Error
6 4.009 7 4.276 0.8
8 4.141 4 4,294 0.3
12 4,234 2 4.302 0.2
24 4.290 0.4 4.307 0.04
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Figure 8. Relative errors vs. CPU time for different elements.

proved while the total CPU time increases, which is ex-
pected. However, not only is the new discretization far
superior to the traditional discretization, but also the results
obtained by adopting the new discretization is surprisingly
much better than those obtained by adopting quadratic
elements.

The next question one may naturally raise is whether or
not choosing equal perimeter for the discretized polygon
yields the optimum results in terms of numerical accuracy.
Figure 9 shows the variation of the relative error with the
ratio of the perimeter of the discretized polygon to that of
the original circle. The relative error for each perimeter is
calculated as the average relative error for five different
wave numbers, varying up to ka equal to 1. The relative
error at the vertical axis represents the error of the tradi-
tional discretization. From this graph it can be seen that the
point where the perimeters are equal (indicated by a little
solid square) is very close to the point of minimum error.
Therefore by making the perimeter of the polygon formed
by the constant elements equal to that of the cross-sec-
tional boundary of the cylinder, the relative error is re-
duced to a value very close to its minimum value for a
particular number of elements. In doing so, the error is
reduced by a factor of ten, which has also been demon-
strated in Table 1. This is quite significant since the CPU
time is roughly proportional to the square of the number of
elements used; for a desired accuracy the new discretiza-
tion can lead to the same results in significantly less time.

% Error

T li T
0.96 0.98 1.00 1.02 1.04
Polygun perimsied/Tirgle perfmster

Figure 9. The variation of relative errors with polygon perime-
ter.
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Figure 10. Plane waves incident on an elliptical cylinder using
the traditional discretization.

Some quantitative measurement on the numerical effi-
ciency can also be obtained from analyzing data present in
Figure 9 and Table 1. For a given accuracy it takes about
one third the number of elements using the new discretiza-
tion and approximately one ninth of the computational
time is saved.

To further test the robustness of the new algorithm used
in the discretization of the boundary of a noncircular
cylinder, wave force exerted on an elliptical cylinder with
the minor axis half the length of the major axis (a = 10 m)
is now calculated and compared with the analytical solu-
tions given by Goda and Yoshimura.” The discretization
was again completed after one iteration. The total forces
are calculated with different numbers of elements and the
results are shown in Figure 10 with the traditional dis-
cretization being utilised and in Figure 11 with the new
discretisation being utilized. Clearly, the new discretization
converges faster than the traditional method in a similar
fashion to the case of a circular cylinder shown in Figures
6 and 7.

The relative errors using 16 elements of both the tradi-
tional and new discretization for the wave-induced forces
on an elliptical cylinder are shown in Figure 12. It can be
seen that the new discretization again produces fewer
numerical errors than the traditional discretization does.
Figure 13 shows the numerical results for wave-induced
forces on an elliptical cylinder by using 8 elements with
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Figure 11. Plane waves incident on an elliptical cylinder using
the new discretization.
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Figure 12. Relative errors with 16 constant elements used for
plane waves incident on an elliptical cylinder.

the new discretization versus using 16 elements with the
traditional discretization. Doubling the number of elements
with the traditional discretization produces results that are
of nearly the same accuracy as the new discretization, but
this takes about four times the CPU time to compute.
Hence the results of the same accuracy level can be
obtained by using the new discretization while only requir-
ing a quarter of the CPU time used by the traditional
method.

4. Computational results and discussion

With the new discretization, we were able to reduce the
computational time involved in computing the force on an
array of cylinders substantially. As a numerical example,
we computed the wave-induced forces on an array of four
cylinders arranged as shown in Figure 14.

Unlike a singular cylinder being placed in water, the
wave-induced forces on each individual cylinder in an
array can vary vastly, depending on how the cylinders are
placed as a whole, how large each cylinder is, how far they
are separated, and of course at which direction and of what
wavelength the incident waves are relative to the array. To
measure the closeness of the cylinders, the smallest dis-
tance between the edges of any pair of cylinders is defined
as the cylinder separation.

F/{pgajah tanh(kh)/kh}
o
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Figure 13. Wave-induced forces on an elliptical cylinder.
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Figure 15. Wave forces on an array of four cylinders with an
incident angle of 30° and a cylinder separation of 2 a.

Figure 15 shows the wave-induced forces on each of
the four circular cylinders being placed with cylinder
separation equal to 2a, where a is the radius of each
cylinder and is given a value 10 m for all the following
numerical examples. The angle of incident, «, was taken
to be 30° and the water depth was again taken to be 50 m.
From this figure, one can clearly see that the wave forces
on each cylinder vary as «a increases. Some cylinders in
an array may experience larger forces compared with those
they would have experienced if they were standing alone
in the sea water. For example, when «a = 1.0, the nondi-
mensional force on cylinder 3 is about 5.7, which is about
40% more than the nondimensional force on a single
cylinder with the same xa.
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Figure 16. Wave forces on an array of four cylinders with a ka
of 1.0 and a cylinder separation of 2a.
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Figure 17. Wave forces on an array of four cylinders with a ka
of 1.0 and a cylinder separation of 3a.

The wave-induced forces on each individual cylinder
vary with the angle of incidence as well. In Figure 16, the
variation of the nondimensional forces are plotted against
the incident angle of the incident waves when «a and the
cylinder separation are fixed with 1.0 and 2 a, respectively.
At zero incident angle, cylinders 1 and 4 experience the
same wave-induced forces and so do cylinders 1 and 3 due
to the symmetry of the cylinders with respect to the
incident waves. As expected, when the incident angle
becomes 45°, cylinder 3 experiences the largest force
because all the other cylinders are in the ‘‘shadow’ of
cylinder 3. This again shows that care must be taken when
designing an array of cylinders to withstand the wave-in-
duced forces; at certain incident angles, one cylinder could
have taken all the wave loads whereas others are not doing
their jobs.

It is very interesting to have observed that the front
cylinder (e.g., cylinder 3 when the incident angle is 45°)
does not always necessarily experience the largest force. In
Figure 17, again the nondimensional forces versus the
incident angle are plotted in the same way as in Figure 16
except the cylinder separation now is 3a. When the inci-
dent angle is equal to 45° the forces on cylinders 2 and 4
are larger than that on the front cylinder 3, which is
““unexpected’’ in the common sense. This shows that the
diffraction around an array of cylinders are really compli-
cated and the forces on each individual cylinder may
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Figure 18. Wave forces on an array of four cylinders with a ka
of 1.0 and an incident angle of 0°.
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Figure 19. Wave forces on an array of four cylinders with a ka
of 1.0 and an incident angle of 45°,

depend on a number of factors such as the cylinder separa-
tion here. To have a clear view of the wave-induced forces
varying with the cylinder separation, the nondimensional
forces versus the cylinder separation are plotted in Figure
18 for the incident angle being zero and xa = 1.0. The
largest forces seem to be exerted on all cylinders when the
cylinder separation is about 3.3 times the radius of each
individual cylinder for an incident angle of zero. For an
incident angle equal to 45°, quite opposite conclusions are
drawn as shown in Figure 19, in which all the quantities
are the same as in Figure 18 except the incident angle
now is 45°.

All these results indicate that the behavior of wave-in-
duced forces associated with diffraction around an array of
cylinders is very complicated and cannot readily be deter-
mined from the results of the diffraction around a single
cylinder. As the number of cylinders in an array increases,
the use of the new discretization method would signifi-
cantly reduce the computational time required and allow
the calculation of the wave forces on an array of a large
number of cylinders to be numerically more efficient.

5. Conclusions

In this paper, a simple improvement on the numerical
calculation of wave loads on vertical cylinders has been
shown to be very effective. This improvement involves a
new discretization for the constant boundary elements such
that the perimeter of these elements is close to the perime-
ter of the cylinder cross-section. By using the new dis-
cretization, the accuracy of numerical results increases
significantly, even when compared with quadratic bound-
ary elements for the same computational time. When an
array of cylinders is considered, the new discretisation
provides a simple way of reducing the total number of
constant boundary elements required, resulting in great
savings in computational time, allowing larger arrays of
cylinders to be examined efficiently.

Wave diffraction around an array of cylinders is quite
complicated, especially with cylinders of arbitrary cross-
sections. The wave-induced forces on each individual
cylinder in an array can be quite different from those of a



single cylinder. For a given separation and a particular
type of cylinder cross-section, the incident angles and
different wave lengths of incident waves must be exam-
ined when designing an off-shore structure. Furthermore,
short-crested waves may even exert larger wave forces on
an array of cylinders since they have been found to exert
larger wave forces on a single cylinder of noncircular
cross-section®; their role will be discussed in a forthcom-

ing paper.

Appendix

A flow chart of the new algorithm is shown below:

(1) Place n element end points on the perimeter of the
shape (traditional discretization);

(2) For each element calculate its normal direction;

(3) At each element end-point i,

(a) Calculate the angle, 6, between the normals of the
two adjacent elements;

(b) Find the direction, N;, which is obtained by simply
averaging the normals of the two adjacent ele-
ments. (this will be the direction in which to move
the end point);

(c) Calculate the relative distance R, by which the end
point is moved. This relative distance is indirectly
related to the local radius of curvature as:

R’Z__-HT “—‘“‘5;-—1
sin— | 2 sin—
2 2

(4) Sum all the relative distances
n 9.
S= Y 2R, sin—,
i=1 2
(5) Calculate the difference in perimeters D = original
shape perimeter-polygon perimeter;
(6) Move each of the element end points in the calculated
direction, N;, with the distance DR,/S,

Calculation of wave loads: S. Zhu and G. Moule

(7) Repeat steps (5) and (6) until D is sufficiently small
or the polygon perimeter is close enough to the shape
perimeter.
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