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NUMERICAL CALCULATION OF FORCES INDUCED BY
SHORT-CRESTED WAVES ON A VERTICAL CYLINDER
OF ARBITRARY CROSS-SECTION
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Abstract—Most off-shore oil platforms are supported by vertical cylinders extending to the
ocean floor. An important problem in off-shore engineering is the calculation of the wave
loading exerted on these vertical cylinders. Analytical solutions have been found for the case
of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave
forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board,
Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder
by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng
20, 389-407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently
exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary
elements. Appl. Math. Modelling 7, 106-114] proposed an efficient numerical approach to
calculate the wave loads induced by plane waves on vertical cylinders by using the boundary
element method. However, wind-generated waves are better modelled by short-crested waves.
Whether or not these short-crested waves can induce larger wave forces on a structure is of
great concern to ocean engineers. In this paper wave loads, induced by short-crested incident
waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain
cross-section, the wave loads induced by short-crested waves can be larger than those induced
by plane waves with the same total wave number.

1. INTRODUCTION

WAVE FORCES, among other forces such as current-induced drag forces, on off-shore
structures are the major contribution to the total forces experienced by such structures,
particularly in rough weather. The calculation of the wave loads on vertical cylinders
is always of major concern to ocean engineers, especially recently when such studies
are motivated by the need to build solid off-shore structures in connection with oil
and natural gas productions. However, wind-generated waves in oceans are much better
modelled by short-crested waves than by plane waves, and yet most of the previous
works were mainly concentrated on wave loads induced by plane waves on solid
structures, except the study carried out by Zhu (1993) on the diffraction of short-
crested waves on a circular cylinder. Zhu (1993) found that wave loads induced by
short-crested waves on a circular cylinder are always less than those induced by plane
waves with the same total wave number. Due to the failure of Zhu’s analytical solution
when applied to a cylinder of cross-section other than a circle, an interesting and
significant question remains to be answered. That is, can short-crested waves produce
larger wave forces on a cylinder of non-circular cross-section than those produced by
plane waves with the same total wave number? In this paper, we aim to provide a
definite answer to this question by studying the wave loads induced by short-crested
waves on a cylinder of arbitrary cross-section.
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It is well known that wave forces on vertical cylinders can be calculated by using
the Morrison equation if incident waves have wavelengths much greater than the cross-
sectional dimensions of the cylinders; wave diffraction effects are ignored. However,
when the wavelength of the incident waves is of the same order as the dimensions of
the cylinder cross-section, the reflection and diffraction effects must be considered in
determining the wave-induced forces on the cylinders. MacCamy and Fuchs (1954)
found an analytic solution for the diffraction of plane waves around a vertical circular
cylinder. Their results have been verified by many experimentalists such as Chakrabarti
and Tam (1975) and Neelamani et al. (1989), and have shown good agreement with
experimental data for 0.2 < ka < 0.65. Goda and Yoshimura (1972) found an analytic
solution for the diffraction of plane waves around an elliptical cylinder by solving the
Helmbholtz equation using separation of variables. However, for the diffraction of waves
around a vertical cylinder of arbitrary cross-section no analytic solution has been found.
Numerical solutions are required for the analysis of the diffraction of waves around
cylinders of arbitrary cross-sections.

Numerical solutions to the wave diffraction problems can be classified into two major
classes: (a) the integral-equation method; (b) the hybrid-element method (see Mei,
1978). Earlier works on harbour oscillation problems, which are mathematically similar
problems to wave diffraction around solid structures, were carried out by Banaugh and
Goldsmith (1963), Hwang and Tuck (1970) and Lee (1971) by using the integral-
equation method. In the later 1970s and earlier 1980s, the hybrid-element method
became popular. Among other researchers, Chen and Mei (1974), Yue et al. (1976),
Bettess and Zienkiewicz (1977), Houston (1981), Tsay and Liu (1983) and Tsay et al.
(1989) all presented computational examples after hybrid elements were adopted in
their calculations. However, the use of hybrid elements seems to be computationally
very expensive; large computers such as CRAY-1 (e.g. Houston, 1981) were needed
to carry out calculations. This is especially so when the wavelengths of the incident
waves are short; a large number of elements are needed in order to resolve waves
within a wavelength (Mei, 1978). With the advent of large computers, the boundary
element method (BEM) was developed based on the theory of integral equations. A
benchmark book was written by Brebbia e al. (1984). For water wave diffraction
problems, Au and Brebbia (1983) used the BEM to calculate wave-induced forces on
cylinders of various cross-sections (circular, elliptical and square) in water of constant
depth for plane incident waves. Since only the boundaries of the problem need to be
discretized, the dimension of the problem in computation reduces by one, leaving a
system of equations of a size which can be solved in a reasonable time, even on
personal computers. This results in a very efficient method for calculating the wave
loads on vertical cylinders of arbitrary cross-sections.

Waves generated by winds blowing across the surface of oceans are modelled more
accurately by short-crested waves than by plane waves. Short-crested waves are the
waves of finite lateral extent, and exhibit different properties to plane waves, especially
the nonlinear short-crested waves (see Jeffreys, 1924; Fuchs, 1952; Hsu et al., 1979).
Short-crested waves incident on a vertical cylinder will diffract and be reflected in a
much more complicated manner than plane waves, and hence the effect on the wave
loading on vertical cylinders is much harder to anticipate. Although an analytic solution
was found by Zhu (1993) for short-crested waves incident on a circular cylinder and
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wave forces induced by these short-crested waves were compared with those induced
by plane waves, it is not clear as to how the wave loads induced by short-crested waves
on vertical cylinders with arbitrary cross-sections compare to the wave loads induced
by plane waves on the same cylinders. Nor is it clear how the force loading changes
with various cylinder cross-sections. Therefore, a study of the effect of short-crested
waves incident on vertical cylinders of arbitrary cross-sections seems to be necessary
to improve the prediction of wave forces on vertical cylinders.

In this paper, BEM proposed by Au and Brebbia (1983) is adopted to numerically
calculate the wave loads due to short-crested waves incident on cylinders of arbitrary
cross-sections. Wave loads due to short-crested waves on circular, elliptical and square
cylinders will be discussed. Through our study, we found that the wave loads induced
by short-crested waves, for a cylinder of certain cross-section, can be larger than those
induced by plane waves with the same total wave number.

2. BOUNDARY INTEGRAL FORMULATION
Consider the case that short-crested incident waves travelling in the positive x-
direction with the wave potential
_ —igay cosh{k(z + h)}
® cosh(kh)

i exp{i(k.x — ot)} cos(k,y + 0), 8
are diffracted by a vertical cylinder resting on the ocean floor and piercing the water
surface as shown in Fig. 1. In (1), i = V=1, a, is the wave amplitude, 4 is the wave
depth, w is the angular frequency, g is the gravitational acceleration, «,, k, are wave
numbers in the x- and y-directions, respectively, and 6 is the phase of the sinusoidal
wave crests in the direction perpendicular to the direction of wave propagation. The
so-called short-crested waves represented by the wave potential in (1) are travelling
in the positive x-direction with celerity

1/2
g«
C= {E tanh kd] , (2)
and the crests are, in the meantime, sinusoidal varying in the y-direction with wave
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Fig. 1. Waves incident on a vertical cylinder.
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number k,. k in the dispersion relation (2) is directly related to the wave numbers «,
and k, by

k=ViZ+ K. (3)

By varying the wave number in the direction perpendicular to wave propagation, k,,
the waves can be changed from plane waves (k,=0) to very short-crested waves
(k, > x,). This wide range of values for the wave numbers can produce waves that
behave very differently when diffracted around cylinders, but have the same total wave
numbers. The phase of the wave perpendicular to the direction of propagation, 6, can
also be varied, so that, for example, the crest or the trough can be made to be incident
to the middle of a cylinder.

If the direction of wave propagation is of an angle a to the positive x-axis as shown
in Fig. 2, a general wave potential for the short-crested incident waves can be written
as

_ —igag cosh{k(z + h)}

I
¢ o) cosh(kh)

exp{i(kix + kly — of)} cos(— k3x + kjx + 0),

(4)
where
KX =k, cos(a), k&= k,sin(a),
Ky = K, sin(a), 3} = k,cos(a),

with k,, and k, being the wave numbers in the direction of wave propagation and the
direction perpendicular to the direction of wave propagation, respectively.

The governing equations and the boundary conditions of the scattered wave field,
with the assumption that sea water is inviscid and incompressible and flow is irrotational,
are

Vb +k2p =0, %

Incident waves

Fic. 2. Boundaries around the fluid domain.
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subject to the following boundary conditions

ab _  ad®

on on ’ onTe, (6)
b

oy~ Kb =0, onl., (7

in which T, indicates the boundary formed by the surface of the cylinder, I'.. stands
for an imaginary boundary at infinity, as shown in Fig. 2, and #» is the coordinate in
the direction of the unit outward vector n normal to I', and I',. Boundary condition
(6) states that waves are totally reflected on the surface of the cylinder. Boundary
condition (7) is the Sommerfeld radiation condition (see Sommerfeld, 1949), which
simply states that the energy associated with the scattered waves will propagate towards
infinity without being reflected back. Notice that the scattered waves are of the same
angular frequency o.

Following Au and Brebbia (1983), an approximate solution is sought after the
Galerkin weighted residual statement for the governing Equation (5) subject to the
boundary conditions (6) and (7) is constructed as

D

[ Forearan= |
Q

Te

where ¢* is a properly chosen weighting function.

As shown by Au and Brebbia, the choice of the weighting function in terms of the
Hankel function of the first kind and of zero order, Hj, simplifies the final integral
equation because the Sommerfeld radiation condition is satisfied at infinity and the
integral on T, disappears after integration by parts twice on (8). The final integral
equation is of the form

3 6¢")> _
ci; + LC ((b an +é an dl=0, )
in which
o
C; = 1- % 5 (10)

with o being the angle between the edges of the two adjacent boundary elements at
the point “i” under consideration and ¢* is chosen as

&t = Hy (xr) (11)

After the boundary I, is discretized into N boundary elements, the unknown function
¢ can be found by solving (9) and all the other physical properties such as water run-
up, the total wave-induced force and moment can be readily calculated.
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3. COMPUTATIONAL RESULTS AND DISCUSSION

3.1.  Short-crested waves incident on a circular cylinder

In order to verify the numerical results and check the convergence of the numerical
scheme, the numerical solution for short-crested waves incident on a circular cylinder
was carried out first. For this case, an analytic solution was found by Zhu (1993).
Therefore, a few particular cases were studied and the wave-induced forces on a circular
cylinder were computed numerically and compared with those obtained from the
analytical solution. Constant elements were used for good numerical efficiency and
satisfactory numerical accuracy (see Au and Brebbia, 1983). In all the numerical
calculations we have carried out so far, the water depth and the radius of the cylinder
were chosen to be 50 and 10 m, respectively. However, since only the nondimensional
force is plotted, the water depth is irrelevant in all the figures shown in this paper.

In Fig. 3, with k, being kept constant while k, was varied, the nondimensional wave
forces from both the analytical solution (solid line) and numerical solution with different
number of elements are shown. The convergence of the numerical scheme can be
clearly seen as the number of elements is increased. Satisfactory numerical results were
obtained when 24 elements were used.

Figure 4 shows the result of varying the two wave numbers, k, and k,, while keeping
the total wave number constant. It is apparent that the total wave force on the cylinder
varies linearly with the wave number perpendicular to the direction of propagation (all
three lines are straight lines passing through the origin). These numerical results are
identical to the analytic results obtained by Zhu (1993).

Unlike plane waves, forces induced by short-crested waves may vary with the phase
angle 0 in (4). Figures 5-7 show the results for different combinations of wave numbers
K, and k,, with ka being kept to be equal to unity when the wave phase 8 is varied.
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Fic. 3. Short-crested waves incident on a circular cylinder (x,a = 0.5).
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F16. 5. Short-crested waves incident on a circular cylinder (x.a = 0.8, x,a = 0.6).

From Figs 5 and 7, it can be seen that the total wave force on the cylinder varies
sinusoidally with the wave phase, whereas the two force components exhibit cusps at
their minima. In the case that k, < k,, the maximum total wave force is larger than
that presented by Zhu (1993), who only discussed the wave-induced forces for § = 0.
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FIG. 6. Short-crested waves incident on a circular cylinder (k.2 = k,a = 0.7071).
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Fic. 7. Short-crested waves incident on a circular cylinder (x.a = 0.6, k,a = 0.8).

However, for circular cylinders, the largest wave-induced forces are still smaller than
those induced by plane waves with the same total wave number.

Furthermore, it can be seen from Figs 5 to 7 that the x- and y- components of the
wave-induced force all exhibit the same pattern of variation as 8 varies from 0 to 360°,
whereas the total wave forces have their minima and maxima at different angles 6
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depending on k, > x,, kK, = Kk, Or K, < k,. For the force component in the direction
of wave propagation, maxima are always reached when 6 is 0 or 180°. The y-direction
force exhibits the opposite behaviour, having maximum values at a phase of 90 or
270°. The values of 90 and 270° are significant because at these values, the mid-points
between the crests and troughs of the incident waves are in line with the centre of the
cylinder and there exists a larger difference in wave heights, through the centre of the
cylinder, in the direction normal to the direction of wave propagation. Naturally, the
y-component of the wave-induced force, which results from the pressure difference on
both sides of a cylinder, is expected to be at its maximum in these cases. At zero
phase the wave heights are symmetric about the cylinder in the direction of wave
propagation and therefore there exists zero net force in the y-direction. For total wave
forces, maxima are reached at § =90 and 270° when «, < k,, whereas minima are
reached at the same phase angles when k, > k,. For k, = k,, the total wave force
becomes a constant, which simply results from the full symmetry of both the cylinder
and the incident wave field in all directions. It is interesting to note that if the total
forces for the cases where k, < k, and k, > k, are averaged across the range of short-

crested wave phases, they are equal to the total wave force when k, = k,,.

3.2.  Short-crested waves incident on an elliptical cylinder

Unlike a circular cylinder, an elliptical cylinder is no longer symmetric in every
direction. The diffraction of short-crested waves can therefore be quite different; the
conclusion we had for the wave forces experienced by a circular cylinder may not be
true any more. A study of the diffraction around an elliptical cylinder is certainly of
great interest.

Now, consider the case that with the same incident short-crested waves described
by (4), an elliptical cylinder with its major axis being twice that of its monor axis,
which is 5 m, has replaced the circular cylinder in Fig. 1. The wave forces in the x-
and y-directions were calculated again with constant boundary elements.

With an elliptical cylinder, the variation of the wave-induced force may vary with
the angle of incidence, a, in (4). Figures 8 and 9 show the effect of varying the angle
of incidence of short-crested waves on an elliptical cylinder. Two different sets of wave
numbers were used, but the total wave number has been kept the same so that
comparisons can be made between the graphs. It can be seen that the variation of the
angle of incidence for short-crested waves has a very similar effect regardless of the
values of the wave numbers, k, and k,. These graphs are also very similar in form to
that of the same case involving plane waves. Hence it appears that the actual wave
type incident on an elliptical cylinder has little effect on the way that the wave forces
vary with the incident angle when k, and k, are changed in such a way that the total
wave number is kept the same.

To examine the effect of different wave numbers on an elliptical cylinder, the total
wave number was kept constant while k, and k, were varied. In comparison with Fig.
4, in which the variation of total wave forces on a circular cylinder is plotted, the x-
and y-components of wave-induced force as well as the total force on_ an elliptical
cylinder for ka = 1.0 are plotted in Fig. 10. The linear relationship between nondimen-
sional force F/{pgaoh tanh (xh)/xh} and k./x shown in Fig. 4 no longer exists; a slight
nonlinear variation is exhibited with curves bending downward as k,/x increases.
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Fic. 8. Short-crested waves incident on an ellipse (axis ratio = 0.5, k.a = 0.8, k,a = 0.6).
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Fic. 9. Short-crested waves incident on an ellipse (axis ratio = 0.5, x.a = 0.6, k,a = 0.8).

However, plane waves with the same total wave number still seem to have induced
the largest force on an elliptical cylinder.

Figures 11 and 12 show the effect of varying the phase of the short-crested waves
on an elliptical cylinder. These two figures show two different compositions of wave
numbers k, and k,, with the total wave number equalling unity. The graphs show the
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Fic. 10. Short-crested waves incident on an ellipse (ka = 1.0, axis ratio = 0.5, incident angle = 30° to the
major axis).

large dependence of the total force on the y-component of the force. This is due to
the ellipse having the major axis (which is twice the length of its minor axis) parallel
to the x-axis, and hence the surface area facing the y-direction is much larger than
that in the x-direction. The difference in wave height on either side of the axis along
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Fic. 11. Waves incident on an ellipse (axis ratio = 0.5, incident angle = 0°).
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Fic. 12. Waves incident on an ellipse (axis ratio = 0.5, incident angle = 0°).

the direction of wave propagation will have the greatest surface area to act on, and
hence will generate the greatest net force. The results of using plane waves with the
same total wave number incident on the same cylinder are also plotted on these two
figures for comparison (they are indicated by two horizontal dashed lines since there
is no lateral phase to vary for plane waves). It is interesting to note that the total
wave force due to the short-crested waves exceeds that of the plane waves with the
same total wave number for a large range of 6. The maximum total wave force due
to short-crested waves increases as the wave number in the direction perpendicular to
the direction of wave propagation increases. These results suggest that the forces due
to short-crested waves must be taken into consideration when designing non-circular
cylinders to withstand ocean waves. This is of great significance, especially to ocean
engineers, since most wind-generated waves in the ocean are short-crested rather than
plane waves. '

In order to illustrate the effect of the incident angle on the forces on the cylinder
when the phase of the short-crested waves is also varied, the nondimensional force vs
phase angle 6, with the incident angles being set to 30 and 60°, respectively, are plotted
in Figs 13 and 14. From these two figures, together with Fig. 11, which is similar to
Figs 13 and 14 except that the incident angle is zero, it can be seen that the variations
of the total forces due to short-crested waves are quite different for different incident
angles. For zero incident angle, the maximum total wave force is reached when the
phase angle is 90°, whereas the minimum total wave force is reached at the same phase
angle when the incident angle is 60°. When the incident angle becomes 30°, very slight
changes are observed when the phase angle is varying from 0 to 180°. All these changes
of the total wave force vs the wave phase angle with different incident angles show
the complexity of the diffraction of short-crested waves around an object without
symmetry in all directions.
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Fic. 13. Waves incident on an elliptical cylinder (axis ratio = 0.5, incidence angle = 30°).
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Fic. 14. Waves incident on an elliptical cylinder (axis ratio = 0.5, incidence angle = 60°).

3.3. Short-crested waves incident on a square cylinder

It is very interesting to compare the wave-induced forces due to short-crested waves
and plane waves on a square cylinder. For plane incident waves, Au and Brebbia
(1983) compared their numerical results with the experimental results obtained by
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Mordridge and Jamieson (1976) and found that the magnitude of the wave-induced
force on a square cylinder is only slightly altered when the angle of incidence changes.
Whether or not the same conclusion can be drawn needs to be examined with regard
to short-crested waves.

As illustrated in Fig. 15, the forces due to short-crested waves on a square cylinder
vary as the angle of incidence is changed. The nondimensional total force changes by
about 25% when the incident angle is changed from 0 to 45°, whereas less than 3%
of such variation was found for plane incident waves (see Au and Brebbia, 1983).
From Fig. 15, it can also be seen that the total force is at the maximum when the
angle of incidence is zero, and decreases to the minimum when the waves are directly
incident on a corner of the cylinder. This is in contrast to the variation in force due
to plane waves incident on a square cylinder where the minimum force occurs when
the angle of incidence is zero (see Fig. 16).

The slight nonlinear variation between nondimensional force F/{pgash tanh (kh)/
kh} and k,/k when the total wave number k is fixed exists as well for a square cylinder.
Figure 17 shows the horizontal forces on a square cylinder due to short-crested waves
incident at 30° while varying the wave numbers such that the total wave number remains
constant. In contrast to the variation of the total force on an elliptical cylinder (see
Fig. 10), the variation of the total force vs the ratio k,/k is again slightly nonlinear
but bending upward as k,/k increases. Again, one cannot jump to the conclusion that
plane waves will always induce the largest force on a square cylinder without examining
the force variation with the phase of the incident short-crested waves.

With the angle of incidence being 0 and 30°, respectively, Figs 18 and 19 show that
the variation of the total force on a square cylinder vs the phase change is sinusoidal
in form, with the maximum total forces occurring when the phase angles of the short-
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Fig. 15. Force due to short-crested waves incident on a square cylinder (k.2 = k,a = 0.7071).
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Fic. 17. Force due to short-crested waves incident on a square cylinder at 30° (ke = 1).

crested waves are at 90 and 270°. This is similar to the behaviour of the variation in
the forces on a circular and an elliptical cylinder when the wavelength in the direction
of wave propagation is longer than that in the direction perpendicular to wave propa-
gation (see Figs 7 and 12). It is very interesting to note that there are again cusps, in
Fig. 18, on the curves for the two force components when they reach their minima,
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Fic. 18. Short-crested waves incident on a square cylinder (k,a = 0.6, k,a = 0.8, angle of incidence =0°).
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FiG. 19. Short-crested waves incident on a square cylinder (x.a = 0.6, k,a = 0.8, angle of incidence = 30°).

whereas there are no such cusps when they reach their maxima. However, there are
no sudden changes in the total wave-induced force because when onegcomponent
reaches its minimum, the other one is always at its maximum. Similar cusps on the
curves for the two force components have already been observed in Figs 5—7 for the
forces on a circular cylinder and in Figs 11 and 12 for the forces on an elliptical cylinder
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with zero incident angles. On the other hand, these cusps on the curves for the two
force components seem to have disappeared when the angle of incidence becomes 30°
(see Fig. 19). Interestingly, there are also no cusps on the curves for the two force
components in Figs 13 and 14 for an elliptical cylinder with the incident angle being
non-zero. For a square cylinder, the total force due to plane waves (incidated by a
horizontal dashed line) appears to be always greater than the forces due to short-
crested waves with the same total wave number.

4. CONCLUSIONS

In this paper, the wave-induced forces due to short-crested incident waves on vertical
cylinders with different cross-sections are discussed. The numerical results for the wave-
induced forces on the cylinders due to the diffraction of short-crested waves were
obtained by solving an integral equation with the boundary element method. Good
agreement between the numerical solution and analytical solution for the case of a
circular cylinder has been demonstrated with only 24 constant elements being adopted.

For cylinders with non-circular cross-sections, the total wave forces depend not only
on the angle of incidence, but also on the phase of the incident short-crested waves
in the direction perpendicular to wave propagation. Quite different variations of the
total forces on an elliptic cylinder and on a square cylinder have been observed in our
numerical experiments when the phase in the direction perpendicular to the direction
of wave propagation is varied.

It is found that short-crested and plane waves behave very differently with regard
to the wave loading on a cylinder. The results indicate that in some cases the forces
due to short-crested waves can exceed those of plane waves with the same total wave
number. The wave-induced forces due to short-crested waves can be larger for non-
circular cylinders. Hence, for the design of off-shore structures the effect of short-
crested incident waves also needs to be examined, due to their complex behaviour
when being diffracted around vertical cylinders of arbitrary cross-sections.
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