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Matrix Decomposition Algorithms Related
to the MFS for Axisymmetric Problems

Andreas Karageorghis and Yiorgos—Sokratis Smyrlis

Abstract In this paper we review some applications of the Method of Fundamental
Solutions (MFS) to certain elliptic boundary value problems in rotationally sym-
metric domains. In particular, we show how efficient matrix decomposition MFS
algorithms can be developed for such problems. The efficiency of these algorithms
is optimized by using Fast Fourier Transforms.

1 Introduction

The Method of Fundamental Solutions (MES) is a meshless Trefftz-type (Kita and
Kamiya, 1995) boundary method which has become very popular in recent years
primarily because of the simplicity with which it can be implemented and, unlike
the boundary element method, it does not require an elaborate discretization of
the boundary. Also, it can be applied even in the case of domains with irregu-
lar boundaries. The advantages and disadvantages of the MFS compared to other
numerical methods, implementational details as well as a wide range of applications
can be found in the survey papers (Cho et al. 2004; Fairweather 2007; Fairweather
and Karageorghis 1998; Fairweather et al. 2003; Golberg and Chen 1999). One
interesting application of the MFS is to elliptic boundary value problems in rota-
tionally symmetric domains. In particular, in (Karageorghis and Fairweather 1998,
n.d., 2000; Kupradze 1965) the MFS was applied to the solution of axisymmetric
acoustics, potential and elasticity and problems, respectively. In these studies, the
MEFS was used to solve the axisymmetric version of the governing equations which,
despite reducing the dimension of the problem by one, led to certain difficulties.
In particular, the fundamental solutions of these equations involved the potentially
troublesome evaluation of complete elliptic integrals.

Moreover, when the boundary conditions of the problem under consideration
were not axisymmetric, this approach required the solution of a sequence of
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Fig. 1 Typical distribution of
singularities on a
pseudo—boundary of an
axisymmetric domain

problems in order to approximate a finite Fourier sum. Alternatively, the full
three-dimensional version of the governing equations may be considered. In such
cases, matrix decomposition algorithms (Bialecki and Fairweather 1993) may be
developed for the efficient solution of the resulting systems. The solution of three-
dimensional harmonic problems in axisymmetric domains was considered in Smyrlis
and Karageorghis (2004b) and the corresponding biharmonic case in Fairweather
et al. (2005). The solution of such problems in hollow axisymmetric domains is
described in Tsangaris et al. (2006a), while the extension of these algorithms to sta-
tionary heat conduction problems is presented in Smyrlis and Karageorghis (2006).
Finally, elasticity and thermo-elasticity problems are considered in Karageorghis
and Smyrlis (2007). All matrix decomposition algorithms algorithms make use of
Fast Fourier Transforms (FFTs) and can be seen as generalizations of the basic
ideas used for the solution of the corresponding two-dimensional problems in a disk
(Smyrlis and Karageorghis 2001, 2004a; Tsangaris et al. 2004, 2006b).

In this paper, we first describe in detail the matrix decomposition algorithm for
the solution of three-dimensional harmonic problems and then describe how it can
be modified for the solution of three-dimensional elasticity problems. We also show
the simplicity of the approach by including a MATLAB code implementing the algo-
rithm for three-dimensional harmonic problems. Some numerical results are also
included.

2 Axisymmetric Potential Problems

We consider the three-dimensional boundary value problem

Au=01in €,

u=f onoad<, M

where, A denotes the Laplace operator and f is a given function. The region
Q c R? is axisymmetric, which means that it is formed by rotating a region
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Axisymmetric MFS Matrix Decomposition Algorithms 225

Q' e R? about the z-axis. The boundaries of Q and Q' are denoted by 92 and
d€2’, respectively. The solution u is approximated by

M N
unn(e, @ PY =Y > cunKs(P, Qua), PEQ,

m=1 n=1

where ¢ € RMN and @ is a 3M N-vector containing the coordinates of the sources
Omn-m=1,...,M, n=1,..., N, which lie outside 2. The function K3(P, Q)
is a fundamental solution of the Laplace equation in R? given by

/C3(P, Q) = m7

with |P — Q] denoting the distance between the points P and Q. The singularities
Q.. are fixed on the boundary 9Q of a solid & surrounding 2. The solid Q is
generated by the rotation of the planar domain €’ which is similar to Q'. A set of
M N collocation points {P;, j}?i‘f\" .1 1s chosen on 02 in the following way. We first
choose N points on the boundary 92" of Q'. These can be described by their polar
coordinates (re;s zp;)), jJ=1,---,N, where rp; denotes the vertical distance of
the point P; from the z-axis and z p; denotes the z- coordinate of the point P;. The
points on 92 are taken to be

Xp,; =rp, COSPi, yp,=rp, SiNg;, Zp,; =2p,

where ¢; = 2(i — )n/M, i = 1,..., M. Similarly, we choose a set of MN
singularities {Qm’n}M’N on 92 by taking Q.n = (X, Y0,.s 20,,.,)> and

i=m,n=1
Xg,, =T, €086, Yo, =Tro, sinth, zo,, =29,

where 6, = 2(a +i — l)w/M, i = 1,..., M. The angular parameter « (0 < o <

1/2) indicates that the sources are rotated by an angle 2w« /M in the angular direc-

tion. The coefficients ¢ are determined so that the boundary condition is satisfied at
the boundary points

MMN(C7Q;Pi,j)=f(Pi.j)7 l=1,,M,J=1,,N

By ordering both the collocation points P; ; and Q; ; the sources in the following
way:

kthpointz(j—l)M—i—i,i:l,...,M,j:],...,N ()
this yields an M N x M N linear system of the form

Ge=f, 3)
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for the coefficients ¢, where

F=f1ts fotsoeos ftts ooy finsooos fun)',

T
€=1(C11,Ca1s -+, CMLs -+ CINs -+ > CUN)
and the elements of the matrix G are given by

1

G-y M+i,n—1)M4m = —
4JT|Pi,j - an|

i,m=1,...,M, j,n=1,..., N. The matrix G has the following block structure

Ay Ap - Ay

Ay Ay - Agy
G= . . )

ANy Anz -+ - Any

where the matrices A;,, j,n =1,---,N,are M x M circulant matrices each
defined by the row

1

@ =(A), =——— - m=1,...M jon=1,.. N
" ( m)]’n 4'77:|P1,j - Qm,n|

We also write the vectors ¢ and f as

cy f1
c Sf2

e={ .| f= | “4)
cn N

where ¢, = (¢in, Con, --wan)T and fn = (fln’ ons 'H’an)Tv n=1,...,N.
System (3) can thus be written as

Ay Ap - Ay c f1
Ay Ay oo Agy c I

ANy Anz -+ - Any cN SN
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Axisymmetric MFS Matrix Decomposition Algorithms 227

If we define Uy, to be the unitary M x M Fourier matrix which is the conjugate
of the matrix

1 1 1 1
1 w w? M-
1 2 4 2AM—1 -
U}T/I — T 1 w w Bt ) . where = eZm/M’
1 M= 2M=1) . (M=D(M-1)

and I to be the N x N identity matrix, pre—multiplication of (3) by Iy ® Uy, yields

(UIN®@Uu)G (In®Uy) Iy @ Uy)e = Iy @Uy) f,

or
Ge=f, (5)
where
Dy; Diy --- Diy
- Dy Dy --- Doy
G = , (6)
Dyi Dy2 -+ Dy
and
C1 fi
- €2 ~ S
= . f= (N
Cy fy
In (6), each of the M x M matrices D;,, j,n=1,---, N is diagonal which is

a result of the properties of circulant matrices and as
Dj,n = UMAj,nU}t[’ j,n = 1, o, N.
Further, if

Dj = diag (af",af", ... d}}").



December 24, 2008 Time: 02:29pm tl-vl.4

01

02

03

04

05

06

07

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

s

45

228 A. Karageorghis and Y.-S. Smyrlis
we have, for j,n=1,---, N,
di" =Y al oD =1 M (®)
k=1
In (5),

E=(Uy®Uy)c and f=Iy®Uy)f,
and, equivalently, in (7),
¢=Uyc, and f,=Uyfy, £€=1,-,N,

where the vectors ¢, and f, are defined in (4). Because of the structure of matrix
G, the solution of system (5) is equivalent to solving the M systems of order N

Enxpy=yn, m=1,--- M, 9)
where
(En)jn=dy". jon=1-- N
and
@m); = (&), Gm); =(f;), . j=1--.N. (10)
The solution of the M systems (9) yields the vectors x,,, m = 1,---, M from
which we can readily recover the vectors ¢,, n = 1, ---, N from (10). Finally, the
vectors ¢,, n = 1, --- , N may be calculated from
¢, =Uj ¢y (11

The algorithm described in the section may thus be summarized as follows:

Step 1. Compute fz =Uyfe, €=1,---,N.

Step 2. Construct the diagonal matrices D; , from (8).

Step 3. Solve the M, N x N systems (9) to obtain the {x,, },1‘,:’:1 , and subsequently
the {¢,}_.

Step 4. Recover the vector of coefficients ¢ from (11).

Cost. In Step 1 and Step 4, the operations can be carried out via Fast Fourier Trans-
forms (FFTs) at a cost of order O(N M log M) operations. FFTs can also be used
for the evaluation of the N? matrices D;, in Step 2 at a cost of O(N>M log M)
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Axisymmetric MFS Matrix Decomposition Algorithms 229

operations. The FFTs are performed using the MATLAB commands £ft and i fft.
Finally, in Step 3, the cost of solving M complex linear systems of order N via
LU —factorization with partial pivoting is O(M N?) operations.

Remark. The algorithm described in this section is different from the one described
in Smyrlis and Karageorghis (2004b) the sense that the system (3) is set up dif-
ferently than the corresponding system in Smyrlis and Karageorghis (2004b). The
current ordering leads to a block matrix, where each block is a circulant matrix in
contrast to the ordering in Smyrlis and Karageorghis (2004b) which leads to a block
circulant matrix. Clearly, the two formulations are equivalent.

3 Axisymmetric Elasticity Problems

We consider the boundary value problem in R3 governed by the Cauchy—Navier
equations of elasticity

A+ wugp +puig=0in Q,
u; = f; on 92.

The region @ C R? is, as in Section 2, axisymmetric. The displacements u =
(ul, uy, u3) at the point P € R? are approximated by

M N 3
w™Ne, @ PY=) "D > eh,8ii(P— Quu), i =1,2,3,
m=1 n=1 j:]

where @ = (Q,)'= ), with Q,,, = (x2,.v2,.22,) € R are the coor-

..... m,n’ m,n
dinates of the sources. The fundamental solution in this case is a 3 x 3 matrix

defined by
8t Ru+a) Ix| Swuu+ir) |xP
The discretization of the axisymmetric domain is carried out as in Section 2.
The satisfaction of the boundary conditions at the boundary points {Pk,g}f:if{ =1
yields
)" (e, @ Pre) = fi(Peo).

ud"Ne, Q5 Pry) = fr(Pey),

uy Ve, Q5 Pry) = (P,
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230 A. Karageorghis and Y.-S. Smyrlis

k=1,...,M, ¢ = 1,...,N. By ordering both the boundary points and the
singularities as in (2), this gives a 3MN x 3MN linear system of the
form

o

A Ap - A : f!

Ay Az - Agn c? f?
Ge= ) ) )

=f, 12)

o
=
=

Ay Anp - An N
where

ALL 12 4

£, £,v v
2,1 2,2 2.M
AZ v AZ,\J e Al,\)

Aé,\) = . . X s

M,1 M2 M.M
A(f,\) AZ,\J Ny AZ,\J

where A}" = g(Pro — Q) € R,

v 1,v M) __ 1 2 3 1 2 3 1 2 3
¢ = (C RRRERY ) - (Cl,v7 Cl,\)’ Cl,\)’ C2,\J7 CZ,\J’ c2,\)’ ceo CM,\)’ CM,\)’ CM,\))’

Fo= (Y MY = (s fR e o e oo Fares Fires Fine)s

and fki.z = fi(Pe),i=123kpu=1...,Mand {,v=1,..., N. We pre—
multiply system (12) by the matrix

R=I,®R

where

Ry, 0 O - 0 0

0 Ry, O 0 0

R = IR :

0 0 O0---Ry,, O

0O 0 O 0 Ry,
with

costy sind; 0
Ry, = | sindy —cosd O
0 01
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o and ¥ = ds%, to obtain, using the properties of R,
02

0 RGe=RGRRe=Rf, or Gé=f, (13)

04

% where G = RGR, é = Reand f = R f. The matrix G has the form

06

07 A A
Al Al Ay
08 ~ ~ ~
09 ~ A2,1 A2,2 AZ,N
G = . )
10 .
11 ~ ~ ~
s AN,] Ano - Ay
13
where

14
15 ALl 312 AlM
16 £,v v ST ey
17 AZ,I AZ,Z AZ’M

~ £,v £, £,
18 Apy=RA,\R =
19
20 “M,1 M2 MM
a AIZ,\) Aé,\) AZ,\)
22

and

23
24 sk ko
" ALt = Ry AR,

. At this point we re-order the vectors ¢ and f as ¢ and f, respectively,

where
28
29 Al
% ¢! f
31 &2 f'z
32 ¢ = , f = >
33
AN AN
34 c
35 f
*  where
37
3 Ao (=l ~1 =2 =2 =3 ~3 3M
. & =(8] - T Ty oo T C oy - Tapy) € R,
40
AN 71 72 72 73 73 M
al f =(f1!\), v S Sl oo Jirws fl,\)""fM,\)) e R™™.
42
2 With this re-ordering, system (13) becomes

s

s Gé=f, (14)
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232 A. Karageorghis and Y.-S. Smyrlis

where

G = )
AN 1 AN,2 AN N

where the matrices
ALL 412 413
AL\) AZ,\) Ak,\)
A A2 422 423
Ay = | Ay ALy ALy
A3.1 432 233
AZ,\) AK,\) AE,\)

are M x M, and
Ak _ (aii
(k) =(a4), - (15)

i,j k.t

Each of the M x M matrices Alz:’j is now circulant (Karageorghis and Smyrlis
2007) and thus premultiplication of (14) by Iy ® I3 ® Uy, yields

In®LOUWG(In® LU UIn®LR®Uy)é=(Iy®L® Uw) f. (16)
or
Dy = h, a7
where where

Dy Dy --- Dy
Dy; Dy -+ Doy

Dyy Dyy --- Dyn

and where the matrices

AL ANL2 /L3
£2,v DZ,\) 2,v
7 _ ~N2.1 7N2,2 1”23
Dz-" - DZ,\) Dl,v 2,v (18)
~3.1 73,2 733
DZ,\) Dé,\) Dé,v ’
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Axisymmetric MFS Matrix Decomposition Algorithms 233

whiley=(UIy Q@ L Uy)candh = (Iy ® Iz ® Uy) f In (18), each of the M x
M matrices th’“ = diag (dz’ébl, d‘lz‘"\‘)‘z, e ,dZ’\/f M) is diagonal and its elements
may be calculated as in (8). Solving (17) is thus equivalent to solving M systems of
order 3N of the form

memzyma m:l,--~,M (19)

where form =1,--- .M
ko™ . .
Enyy=(d2"), i=3C=D+k j=30=D+n

Liv=1,---,N, k,u = 1,2,3. The vectors x,, and y,, are defined accordingly.
Having obtained vy one may recover é = (I N L ® U;}) v and subsequently c.
The algorithm described in the section may thus be summarized as follows:

Step 1. Compute f =R f.

Step 2. Construct the first rows of the M x M submatrices A]z:\’f, k,pu=1,...,3,
,v=1,..., N from (15).

Step 3. Compute h = (Iy @ I3 @ Uy) f

Step 4. Construct the matrices Df,’é‘ using (8).

Step 5. Solve the M systems of order 3V in (19)

Step 6. Recover the vector of coefficients ¢ = (Iy ® I3 ® Uj;)y and subse-
quently c.

Cost. In Step 3, Step 4 and Step 6, the operations can be carried out via FFTs at a
cost of order O(N M log M) operations. In Step 5, the cost of solving M complex
linear systems of order 3N via LU —factorization with partial pivoting is O(M N?)
operations.

Remark. The algorithm described in this section is different from the one described
in Karageorghis and Smyrlis (2007) the sense that the system is set up differently
than the corresponding system in Karageorghis and Smyrlis (2007). As in Section 2
the two formulations are equivalent.

4 Numerical Results

We considered problem (1) with f corresponding to the exact solution
u(x,y,z) = e cosbhy sincz

when 2 is the unit sphere. The absolute value of the maximum error was calculated
for various values of M = N on a uniformly distributed set of points (different
from the collocation points) on the unit sphere. Plots of the maximum error ver-
sus the radius R of the pseudo—boundary are presented in Fig. 2 for « = 0 and
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Fig. 2 Maximum error u=e cos(dy) sin(3z)
versus R . . . .
\
\4’: N . ) lill.)‘(‘h
\ ~ 7R
s A
: S~ I
\ S~ o
104} ~ - 1
g 10 \\ \\ '/ 4 &
L \ M
] \ L
= \ o
\ I
108 \ . ;’" 1
N %3
\ , —— M=N=16
\ N - - -M=N=32
N - M=N=48
~ - - M=N=64
12 L L T T
10754 2 4 6 8 10
R

a=35,b= 4, c =3.1Inall cases we observe that the accuracy of the approxima-
tion improves as we increase M. Also, because of ill-conditioning, for larger values
of R the accuracy deteriorates. In Fig. 3 we present plots of the maximum error
versus the angular parameter « for a fixed pseudo-boundary of radius R = 1.01 for
a = 0.5, b =04, ¢c = 0.3. These confirm the observations reported in previous
studies, i.e. that when the pseudo-boundary is close to the boundary, the variation of
the angular parameter does improve the accuracy of the MFS approximation, with a
minimum reached for o & 0.25. In order to show the simplicity of the implementa-
tion of the algorithm presented in this work, in the Appendix we present a MATLAB
code performing the calculations presented.

u=e%% cos(0.4y) sin(0.3z)

100

Max Error

1073 ' ' ' *
Fig. 3 Maximum error versus 0 0.1 0.2 0.3 0.4 0.5

a for R = 1.01 o
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o 5 Concluding Remarks

02

0s  In this paper we describe how the MFS can be efficiently implemented for the
o« solution of problems in rotationally symmetric domains using FFT-based domain
os  decomposition algorithms. We present the algorithm for the cases of the Laplace
s equation and the Cauchy-Navier equations of elasticity. Numerical results for the
o former are presented as well as the MATLAB code used for the numerical tests.

08

09

o Appendix

2 function mfs_mda(f,mp,iter,rp,ds,alfa,n,m)

13 fi=2+pi/m; th=pi/ (n+1l) ;rs=rp+ds;om=ones (1,m) ;
14 onm=ones (n,m) ; omp=ones (mp,mp) ;at=th=* (1:n);
15 for ii=l:iter
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rs=rp+iixds;alfa=.5%11/(iter+1l) ;af=fi*(0:m-1);
cat=cos (at) ;sat=sin(at) ;ca=cos(af);sa=sin(af) ;
cal=cos(af+fi*alfa);sal=sin(af+fixalfa);
Xp=rp*sat’'*ca;yp=rp*sat’*sa;zp=rp*cat’*+om;
b=feval (f,xp,vyp, zp) ;Xs=rs*sat’xcal;
vs=rsx*sat’*sal;zs=rs*cat’*om;
for in=1:n
x=xp (in, 1) ronm-xs;y=yp (in, 1) ronm-ys;
z=zp(in, 1) ronm-zs;r=sqgrt(x. 2+y." 2+z."2);
aaa(in,:, :)=(1/(4*pi)) /r;
end
for k=1:n
fff(k, :)=fft(b(k,:) ") /sqrt(m);
end
for im=1:m
for in=1:n
for jn=1:n
d(in, jn, :)=ifft(aaa(in, jn, :)) *m;
matr (in, jn)=d(in, jn,im) ;

end
end
sol=matr\fff(:,im)’; c(:,im)=so0l;
end
for k=1l:n
ct(k,:)=real (ifft(c(k,:)’")*xsqgrt(m));
end

angf=th=* (0:mp-1) ;angt=fi* (1l:mp) ;car=cos (angt) ;
sar=sin(angt); caf=cos(angf);saf=sin(angf) ;
xpm=rp*sar’+rcaf;ypm=rp*sar’*saf;
zpm=rpxcar’*ones (1l,mp) ;exa=feval (£, xpm, ypm, zpm) ;
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236 A. Karageorghis and Y.-S. Smyrlis

for jn=1:n
for jm=1:m
x=xpm-xs (jn, jm) xomp; y=ypm-ys (jn, jm) xomp;
z=zpm-zs (jn, jm) »omp; r=sqgrt (x. " 2+y." 2+z.72) ;
approx=approx+ ((1/ (4xpi))*ct(jn,jm)./r);
end
end
error=max (max (approx-exa) ) ;
end
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