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410 "% Chap. 6 Inner Product Spaces

The singular value theorem for linear transformations is useful in its ma-
trix form because we can perform numerical computations on matrices. We
begin with the definition of the singular values of a matrix.

Definition. Let A be an m x n matrix. We define the singular values
of A to be the singular values of the linear *ﬁmnsformal-ion I

Theorem 6.27 (Singular Value Decomposition Theorem for Ma-
trices).  Let A be an m x n matrix of rank r with the positive singular
values oy > oy = -+ > o, and let ¥ be the m X n matrix defined by

S o SR T M
ii = :
0  otherwise.

Then there exists an m x m unitary matrix U and an n x n unitary matrix
V' such that

A=UEV".

Proof. Let T'= L : F* — F™. By Theorem 6.26, there exist orthonormal
bases 8 = {v1,vs,...,v,} for F* and v = {uy,uy, ... U b for F™ such that
T(v;) = ogu; for 1 <4 < r and T(v;) = 0 for i > r. Let U be the m xm
matrix whose jth column is w; for all j, and let V' be the n % n matrix whose
Jth column is v; for all j. Note that both U/ and V are unitary matrices.

By Theorem 2.13(a) (p. 90), the jth column of AV is Av; = oju;. Observe
that the jth column of ¥ is oje;, where ¢; is the jth standard vector of F™.
So by Theorem 2.13(a) and (b), the jth column of U is given by

Ulase;) = o;Ule;) = ojuy.

It follows that AV and U are m x n matrices whose corresponding columns
are equal, and hence AV = UY. Therefore A = AVV* = UDV*, [ |

Definition. Let A be an m x n matrix of rank v with positive singular
values 0y = g9 > -+ = g,. A factorization A = UXV* where [ and V are
unitary matrices a,nd Y is the m x n matrix defined as in ic’orcm 0.27 is
called a singular value decomposition of A.

In the proof of Theorem 6.27, the columns of V' are the vectors in 3, and
the columns of U are the vectors in 4. Furthermore, the nonzero singular
values of A are the same as those of Ly; hence they are the square roots of
the nonzero cigenvalues of A*A or of AA*. (See Exercise 9.)
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Sec. 6.7 The Singular Value Decomposition and the Pseudoinverse
Example 3
o ; o 1l i =l
We find a singular value decomposition for A = i gerrglh
First observe that for
= — -y = =), and gp=—
V3 V2 V6
1 0 2
the set 8 = {v1,vs,v3} is an orthonormal basis for R3 consisting of cigen-
vectors of A* A with corresponding eigenvalues A; = 6, and A, — Az = 0.
Consequently, oy = /6 is the only nonzero singular value of A. Hence, as in

the proof of Theorem 6.27, we let V be the matrix whose columns are the
vectors in 7. Then

=

1 1 1

VB V2 V&

s (V6 0 0 B W e b,
ke | B 2
~1 2

z 0w

Also, as in Theorem 6.27, we take

1

1 1 1
g = gl = A = y
iy S A(’L]) o i \/5 (1)

! 2| 1 : ;
Next choose 1y = E (_1), a unit vector orthogonal to u;, to obtain the

orthonormal basis v = {u;,ug} for R2, and set

tde il
U= ( i ) ‘
V2 2
Then A = UXV* is the desired singular value decomposition. ¢

The Polar Decomposition of a Square Matrix

A singular value decomposition of a matrix can be used to factor a square
matrix in a manner analogous to the factoring of a complex ‘mumber as the
product of a complex number of length 1 and a nonnegative number. In the
case of matrices, the complex number of length 1 is replaced by a unitary
matrix, and the nonnegative nimber is replaced by a positive semidefinite
matrix. : ' \

Theorem 6.28 (Polar Decomposition). For any square matrix A,
there exists a unitary matrix W and a positive semidefinite matrix P such
that
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Furthermore, if A is invertible, then the representation is unique.

Proof. By Theorem 6.27, there exist unitary matrices U7 and V and a
diagonal maltrix ¥ with nonnegative diagonal entries such that A = USV=,
S0

\
A=USV" =UV'VER = WP,
where W = UV* and P = VEV*. Since W is the product of unitary matrices,
W is unitary, and since X is positive semidefinite and P is unitarily equivalent
to X, P is positiye semidefinite by Exercise 14 of Section 6.5.
Now Su].)poa-;e\that A is invertible and factors as the products

A=WP = ZQ,

where W and Z are unitary and P and @ are positive semidefinite. Since A
is invertible, it follows that P and @ are positive definite and invertible, and
therefore Z*W = QP ~'. Thus QP! is unitary, and so

F={@P QP ) = PIQRP,

Hence P? = Q2. Since both P and @ are positive definite, it follows that

P = @ by Exercise 17 of Section 6.4. Therctore W = Z, and consequently

the factorization is unique. |
The factorization of a square matrix 4 as WP where W is unitary and P

is positive semidefinite, is called a polar decomposition of A.

Example 4

11 =5

=2 10

gular value decomposition UXV* of A. The object is to find an orthonormal
basis 3 for R? consisting of eigenvectors of A*A. Tt can be shown that

bl d — S el S
UJ_—E 1 anc 1;2_E ;

are orthonormal eigenvectors of A* A with corresponding eigenvalues A, = 200
and Ay = 50. So # = {wy,ve} is an appropriate basis. Thus o, = /200 =
10v2 and o5 = /50 = 54/2 are the singular values of 4. So we have

1t e
V= (\/} ‘/2) and = (1[)\/5 ¢ )

To find the polar decomposition of A = ( ) , we begin by finding a sin-

—1 L [ i
= 75 0 5v2

Next, we find the columns v, and us of U

1 i 4 1
) = — A = = ( ) and g = —Auy =
) o

| =
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Thus

o-

Therefore, in the notation of Theorem 6.28, we have

4 3 3
o A S 5 il
and
P=VIV*= (

The Pseudoinverse
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Let V and W be finite-ditensional inner product spaces over the same
field, and let T: V — W be a linear transformation. Tt is desirable to have a
linear transformation from W to V that captures some of the essence of an
inverse of T even if T is not invertible. A simple approach to this problem
is to focus on the “part” of T that is invertible, namely, the restriction of
T to N(T)*. Let L: N(T): — R(T) be the linear transformation defined by
L{z) = T(z) for all z € N(T)*. Then L is invertible, and we can use the

inverse of L to construct a linear transformation from W to V that salvages
some of the benefits of an inverse of T.

Definition. Let V and W be finite-dimensional inner product spaces
over the same field, and let T: V. — W be a linear transformation. Let
L: N(T)t — R(T) be the lincar transformation defined by L(z) = T(x) for all
2 € N(T)'. The pseudoinverse (or Moore-Penrose generalized inverse) of
T, denoted by T, is defined as the unique linear transformation from W to
V such that

iy

g e {L_l{y) ﬁ.or y e R(T)
f) for y € R(T)L.
The pseudoinverse of a lihear transformation T on a finite-dimensional
inner product space exists ex»"‘qn if T is not invertible. Furthermore, if T
is invertible, then Tt = T~! because N(T)L =V, and L (as just defined)
coincides with T.
As an extreme example, consider the zero transformation Tg: V — W
between two finite-dimensional inner product spaces V and W. Then R(Ty) =
{0}, and therefore Tt is the zero transformation from W to V.
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