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where E, = K; + V), is the total energy density and Vv + P is the divergence of the directed
power flow per unit area. Show that the expressions for X, Vi, and P, as given by (1.8.1),
(1.8.4), and (1.8.13), satisfy (1.8.32).

1.9 The Reflection and Transmission of Waves at a Discontinuity

We are here concerned with transverse waves on a string consisting of two
parts, as shown in Fig. 1.9.1. The left part has a linear mass density A\; and
the right part a different linear mass density A;, with both parts under the
same tension 7o. For convenience we place the x origin at the discontinuity.
We suppose that a source of sinusoidal waves on the negative x axis is sending
waves toward the discontinuity and that the waves continuing past it are ab-
sorbed with no reflection by a distant sink. We wish to examine how the abrupt
change in properties of the string affects the passage of waves down the string.

Our first task is to find the so-called boundary conditions that the wave
motion must satisfy at the discontinuity. Evidently there must exist two inde-
pendent conditions, reflecting the fact that the differential wave equation is of
second order. One of these is obviously the continuity of the string, i.e., of its
displacement, or, equivalently, the continuity of its transverse velocity. The
other is the continuity of the transverse force in the string, as given by (1.8.12).
This boundary condition is basically a consequence of Newton’s third law. If
the force is not continuous at the boundary, an infinitesimal mass there would
be subject to a finite force, resulting in an infinite acceleration. Accordingly for
all times at x = 0, we require that
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Fig. 1.9.1 Wave on string having a discontinuity in mass density at the origin.



40 Transverse Waves on a String

Let us take the incident wave coming from the left to be the real part of
n = Ale‘('l"“” —wo < x < 0, (1.9.2)

which has a specified amplitude A4, and the velocity ¢; = w/xy = (ro/A\1) V2. The
wave transmitted past the discontinuity is assumed to be the real part of

N2 = A'zei("’—“") 0<2x< w, (193)
which has a complex amplitude 4, yet to be determined and a velocity and
wave number that differ from those of the first wave, ¢c; = w/ks = (1¢/Ag) V2
Both waves must necessarily have the same frequency.

We now discover that it is impossible with only these two waves to satisfy
the boundary conditions (1.9.1), since the first condition would require that
A, = A, and the second that x;4; = k24 ,. Necessarily, then, there must exist
a third wave that is reflected from the boundary, in order that the boundary
conditions (1.9.1) be satisfied.

We assume that the reflected wave traveling to the left is the real part of

= B eitnz—ot —®0 < x<0, (1.9.4)

where B, is to be determined and the wave number is that appropriate to the
string on the left side of the boundary.
The boundary conditions now require that

Al+él=1{2

- (1.9.5)
KAy — KIEI = KzAz,

which are sufficient to determine B, and A, in terms of 4,, the amplitude of
the incident wave. Solving for the amplitude ratios B,/4, and A,/A,, which
are defined as the complex amplitude reflection coefficient R, and amplitude
Iransmission coefficient T, respectively, we find that

R é K1—K2=Zl—Zz
T A ke Zi+ 2,

T — _x_i_z 2K1 — 221
T4 kit ke Zi+ 2

(1.9.6)

where we have expressed the results in terms of the characteristic impedances
Zi[=Mic1 = (\r0)/?] and Z, of the two parts of the string. The fact that B, and
T, turn out to be real indicates that the reflected and transmitted waves are not
shifted in phase, except for a possible 180° phase shift for the reflected wave,
when R, is negative. We note that if \; > \q, R, is positive, which implies that
the reflected wave has the same phase as the incident wave, whereas if \; < s,
R. is negative, showing that the reflected and incident waves are 180° out of
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phase. Since T, is always positive, the transmitted wave has the same phase as
the incident wave.

It is also customary to define a power reflection coefficient R, and a power
transmission coefficient T, to express the reflection and transmission of waves
at a boundary. The power carried by a traveling sinusoidal wave is given by
(1.8.11). Hence for the power reflection coefficient

et B (5= 2: wom
? %)\161(.02.4 12 A12 Zl + Zz e
and for the power transmission coefficient
_ 1:;)\26‘2(0214 22 _ )\262/’22 42122 (1 9 8)

» %chlszlz - )\161/112 = (Zl + Zz)z'

The fact that the incident power equals the reflected power plus the trans-
mitted power is expressed by R, + T, = 1. Since (1.9.6) to (1.9.8) depend only
on properties of the medium (the string) and not on the frequency of the waves,
they must hold for waves of arbitrary shape. Reflection and transmission coef-
ficients for planme waves of any sort incident normally on a plane boundary
between two media have the same form as those found here when expressed in
terms of the characteristic impedances of the media.

Problems

1.9.1 Obtain the boundary conditions (1.9.5) from (1.9.1) and show that they lead to
(1.9.6).

1.9.2 A uniform string of linear mass density Ao and under a tension 7, has a small bead of
mass m attached to it at x = 0. Find expressions for the complex amplitude and the power
reflection and transmission coefficients for sinusoidal waves brought about by the mass dis-
continuity at the origin, Do these coefficients hold for a wave of arbitrary shape?

1.9.3 Three long identical strings of linear mass density Ao are joinzd together at a common
point forming a symmetrical Y. Thus they lie in a plane 120° apart. Each is given the same
tension 7o. A distant source of sinusoidal waves sends transverse waves, with motion per-
pendicular to the plane of the strings, down one of the strings. Find the reflection and trans-
mission coefficients that characterize the junction.

1.9.4 A long string under tension 7o having a linear mass density 1, is tied to a second
string with linear mass density A; <K \;. Transverse waves on the heavy string are incident
on the junction. Find what happens to them.



