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52 Solutions of the Wave Equation by Integration [Ch.2

2.4.3 Springy end
If the loop at x = 0 is attached to a spring which provides a transverse restoring
force equal to Tk times the displacement from the equilibrium position (Fig. 2.4c),
the boundary condition is Tku(0, 1) + Tu,(0,1)= 0.

Inserting the solution (2.13) we obtain

Kf(— ct) + kglet) + /(- e)+ge)=0 ,
whence
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Integration by parts and substitution into (2.13) gives
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in which the lower limit of the integral has been chosen so as to satisfy (2.14).

2.4.4 Damped end
If the loop is attached to a damper which provides a transverse resisting force
equal to R times the speed (Fig. 2.4d), the boundary condition is

Ru0, £) + Tu,(0,) =0
We find that the reflected wave has the form
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The interesting feature of (2.17) is that the reflected wave vanishes when R = Z,
the characteristic impedance of the string defined by (2.11). When this occurs
the impedance of the string is said to be matched by the impedance of the damper,
and all the energy of the incident wave is dissipated in the damper. The matching
of impedances is important in telegraphy where the impedances of electrical
circuits must be matched in order to prevent a reflected pulse interfering with
the signal which is being transmitted.

2.5 BOUNDARY BETWEEN TWO MEDIA

LK/A different kind of boundary condition occurs when the medium in which a wave
is travelling terminates al an interface with another medium in which the wave
may also travel; for example, when an electromagnetic wave in air meets a dielec-
tric or when sound waves in air mectan obstacle. This type of boundary con dition
is essentially different because whilst it produces a reflected wave in the first
medium it also gives rise to a transmitted wave in the second medium.
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5.1 Junction of two strings... -
Consider two semi-infinite strings S; and S, of linear densities 21, P2, joined at
= 0 and stretched at tension T, S; occupying the region x < 0 and S, the
region x > 0. As the two strings have different linear densities it follows that
they also have different wave speeds ¢, and ¢;.

Let flx — cyf) be a given incident wave in §,, and let S, be initially undis-
turbed, so that u(x, 0) = 0 and u,(x, 0) = 0 for x > 0. Then the wave in 55,
which may be written A(x — cyt) + H(x + cyt), must satisfy A'() = 0 and
H'(€) = 0 for £ > 0, and hence H(x + c,t) is a constant for ¢ > 0. Therefore
we may discard H and write

wx, = fx = cyt) + glx Fe). % <.0__]
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We call h(x — ¢,f) the transmitted Qave.
We note that
fE=hE)=0(F>0)andg(®) =0 <0) . (2.19)

There are two boundary conditions at the junction x = 0. The first is the geo-
metrical condition that the displacement must be continuous:

u(=0, ty=u(+0, b, (2.20)
where u(—0, £) denotes iiTu u(x, £} (x <0)
and u(+0, t) denotes Lim0 u(x, t) (x >0).

: The second is the dynamical condition that the transverse force must be continuous:

(=0, ) = u, (F0, D~ i 2.21)

a

this condition is necessary because a non-zero resultant force acting on thé
infinitesimally small mass at O would produce an infinite acceleration.
Inserting the solution (2.18) into (2.20) and (2.21) gives

S eit) +glest) = h(—cyt) (2.22)
and fan+ge)=n e

Integrating we obtain

1 1 1
—— f-e) + — glert) =— —h(-e,) +0 (2.23)
Ci Cy Ca

the constant of integration being zero to satisfy (2.19).
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Then, from (2.22) and (2.23),

-%) (2.249)
and
2(.'2 Cy
h@) = (— §) - (2.25)
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Hence the reflected and transmitted waves are given by

C2—Cy
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Note that, when ¢, = 0,

g(._:_; “heyt)==fl-x — ¢,1)
and h(x —ct) =0

So, by comparison with (2.15), this is equivalent to x = 0 being a fixed end to
the string §;. Similarly when ¢, is large the system is almost equivalent tox =0
being a free end to the string S;. In this case it is interesting to note that the
amplitude of the transmitted wave cannot exceed twice that of the incident
wave.,

2.5.2 Energy transfer

An important feature of wave propagation is the transfer of energy through the
supporting medium. We now consider what happens to the energy when a wave
is reflected and transmitted at the junction. From (2.10) the energy flux in S, is

==Tu, == +g)(cyf +c3g) (x <0)
= Tclf'z(x —_ C';,f) e Tclgq(x + le)
=.‘}-|_9—R 3

where 1 and Fr may be termed the incident flux and the reflected flux
respectively. The transmitted flux is g1 = Tc,h(x — ¢;f).




