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P(?C 0 a i A closed form solution of a longitudinal bar with a viscous boundary condition subjected I
: ZO Oq | to point loading is developed in this paper. A new series solution is formulated that !

: allows the time and space modes of the beam to decouple. This expansion yields explicit

eigenvalues and eigenvectors. A frequency domain example is presented, and the results are
compared with finite element solutions of the same problem. It is shown that the closed
form solution is computationally more efficient than a finite element solution. Additionally,

E ' the truncation error at lower frequencies is shown to be extremely small. The method is

easily implemented, and can provide time and frequency domain solutions to this class
of problems.

1. INTRODUCTION g

| The dynamic response of a bar with a viscous boundary condition is irﬁporlant because
I | the designers of various structures often use viscous dampers to reduce force transmissi- f ‘
| bility and decrease displacement. The need for reduced force transmissibility is evident [ |
| since lower force levels permit simpler and lighter structural designs. For this reason, |
)7 viscous (shock) absorbers are currently critical to many systems, such as buildings, cars i ‘
I j—, and airplanes. |
The closed form response of striictures with fixed and free boundary conditions has :

) | been previously analyzed [1-3]. These analyses form the basis for many classical beam |
i problems. Their self-adjoint operators are discretized using mutually orthogonal modes to . |
g produce models of structural dynamic response. However, these models admit only E |
3) Standing waves into the response and do not consider viscous damping at the boundary. g

Recently, a number of papers have appeared that model different effects in beams, such g
: as compressive axial loads [4, 5], elastic foundations [6], and the coupling between flexural
_ and torsional modes to axial loads [7]. In these papers, which use a variety of analytical
/ ! techniques to solve for the structural response of a beam, viscous dissipation at the k|
| boundary is not considered. !

Although the structural response of a bar with a viscous damper can be determined using [

' @ finite element analysis [8, 9], this method does have a number of drawbacks. It is E
fomputationally intensive, does not provide explicit eigenvalues and eigenvectors, and does ; | -
not yield a closed form solution. Finite element discretizations are often too large when '

; :’;a] time computations are required, as in the case of active control systems. Additionally, ‘ !

- effects of changing model parameters is not always as apparent in a finite element ‘
X ¥ @ Model as it is in a closed form algebraic solution.
19
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Figure 1. The beam with a viscous damper.

In this paper, a closed form series solution is developed for the axial wave equation with
a fixed boundary condition at one end and a viscously damped boundary condition at the
other. The addition of a damper to the boundary allows propagating and standing waves
to exist in the structure simultaneously. The system model produces a differential operator
that is non-self-adjoint and corresponding eigenfunctions that are not mutually orthogonal
(with a weight function of unity or on the original problem definition interval). By
redefinition of the problem on another interval, the space and time modes will decouple

and a closed form series solution can be found.

2. SYSTEM MODEL

' The system model represents an axial bar fixed at x = 0 and a viscous damper at x =1

| (Figure 1). A force is applied to the bar at location x = x;. The addition of the damper
to the bar will admit standing and propagating wave energy simultaneously. The linear
second order wave equation modelling particle displacement in the bar is

0%u(x, 1) f;(';zu(x, t) N d(x — x)F(t) 0

ot? p 6x* pA
where u(x, t) is the displacement (m), E is the modulus of elasticity (N/m?), p is the densify
of the bar (kg/m?), x is the spatial location (m), ¢ is time (s), A4 is the area of the bar (m’),
'F is the applied force (N), and § is the Dirac delta function (1/m). The wave equation
assumes uniform area and negligible internal loss in the bar. |
The boundary at x =0 is fixed and can be expressed as

‘ (0, £) = 0. Q)

The boundary condition x = L is obtained by matching the force at the end of the bu
to the viscous dissipative force of the damper. This can be expressed as
AEE @ Ay e (LD, ()
0x at |
where ¢ is the viscous damping coefficient (Ns/m). When ¢ is equal to zero (or inﬁﬂil‘:'_:'-'
the boundary at x =L reflects all the wave energy, and the system responst B
composed only of standing waves. When ¢ is equal to A\;’T}E. the boundary at x=
absorbs all the wave energy, and the system response is composed only of propagatilé
waves. All other values of ¢ exhibit some combination of standing and propagating wavt
energy in their response.

3. SEPARATION OF VARIABLES

A decoupled series of ordinary differential equations that represents the systé
now developed from equations (1)-(3) and the initial conditions of the bar. The firsts
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|

i

| in deriving decoupled differential equations involves finding the eigenvalues and eigen-
functions of the model. This is accomplished by application of separation of variables | :
to the homogenous version of the wave equation (equation (1)) and the corresponding '
boundary conditions (equations (2) and (3)). Separation of variables assumes that the !
independent variable can be written as a product of two functions—one in the time domain

! and one in the spatial domain. This form is

u(x, t) =T()X(x). 4

Equation (4) is now substituted into the homogeneous version of equation (1), which '
produces the ordinary differential equations

&T@) ..E E |
— —A*=T@)=0 { !
g~ M5 T0 5) E |
and |
de b I - n
0 _ 12xey =0, (6) .
dx . 15
where A is the complex-valued separation constant. l :
The general solution to equation (3) is IR

T(t) = G e~Ewt 4 H ¢~ /Et (7

The fixed boundary condition (equation (2)), is now applied to the spatial ordinary
differential (equation (6)) which gives

X(x)=e"—e* (&)

=

ey e e

Sl adig g Saiaiiic e o &

Applying the viscous boundary condition (equation (3)) to equations (7) and (8) yields
H =0 and the n-mode-indexed separation constant

—— . |

1 AE —¢./E/ 2 1 :

‘juzq_loc[ i iv,'.;.p—"}‘(}?:h )ﬂia n:[).il._ izs"'? (9) i

2L AE +e./Efp_ 2L ]

| where i= V-’ — 1. The real part of the separation constant is associated with the !

| Propagating wave energy, and the imaginary part of the separation constant is associated
with the standing wave energy. The eigenvalues of the system are the separation constants
| multiplied by the wave speed,

i —
: A= /Elp 4, _ (10)

| where A, has units of rad/s. A plot of the eigenvalue location in the complex plane is
shown in Figure 2. The eigenvalues are equally spaced and parallel to the imaginary axis.
Once the indexed separation constant is determined, the spatial eigenfunctions can be
defined by inserting equation (9) into equation (8), which gives

@u(x) =% —g %%, (11) "

A IYpical eigenfunction (7 =2) is shown in Figure 3 for, ¢ = (0-5)A4 \/p_E The eigen- -
functions are not mutually orthogonal on [0, L]; therefore their integral with respect to one ¥l
aHOl_her on [0, L] is not zero, and traditional boundary value techniques will not decouple I
the time and space modes. A method is developed below that redefines the problem interval i
oOver[— 1, L] and decouples the time and space modes of the system. Once the modes have o
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Figure 2. The eigenvalue location in the complex plane.

been decoupled, the problem solution can be transformed back to the original interval of
[0, L.

4. SERIES SOLUTION

The displacement (or solution) to the forced wave equation, written as a serie
solution, is

H(X, {) = i bn(r ){:'On(x)r (IE}

where the b,(1)’s are the generalized co-ordinates and the ¢,(x)s are the spaFiﬂl
eigenfunctions. Derivation of a solution that decouples the time and space modes requir®
the time derivative (velocity) of the particle displacement to be written in two diﬁefc“E
forms. The first form is the derivative of equation (12) and yields '

fu o
S 0= Y 600,
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Figure 3. The n = 2 eigenfunction with ¢ —'{O-S)A \.r”p_E: (a) relative magnitude; (b) phase.

where the dot over b denotes the time derivative of the function. The second, developed
by using equations (7) and (4), is written as

cu
— (x,t) =
ct

T Ab 00,00 (14)

Equating equations (13) and (14) produces

o]

Z [})‘H(I]_Anbn{t)](pn(h):o (IS)
The assumption is now made that differentiation will distribute over the summation.
Dcr{oupled. space and time modes will validate this assumption. The forced wave equation
() is rewritten with the above equations. The second partial time derivative is found from
the time derivative of equation (14), and the second partial spatial derivative is found from

;l}elgecond spatial derivative of equation (13). Inserting these derivatives into equation (1)
ields

;_ _[5n(!) — Ayb, (1A, 0 (x) = 6(x — x)F(1)/(pA)- (16)
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Equation (15) is now differentiated with respect to x and multiplied by the wave
speed /E/p. The result is then added to equation (16) to form

z [5"(3) = An 'bllr('r )]2An c)—nx Gon 5(x = xj)FU)!(pA )1

n= —o

xel0,L], ant

and is subtracted from equation (16) to give

Y [Ba(t) — A, b, (D24, 677 = — d(x — x)F(1)/(pA4),
The interval of equation (18), now changed from [0, L] to [ — L’,“f)] by substitution of — x g
for x, yields i‘

xel0,L]. (18]

xe[—L0. (19

S Balt) = Aby(ORA, €% = —8(—x — x)FD)/(pA), |

n= — o |
Combining equations (17) and (19) into a single equation and breaking the exponen-
tial into terms that contain the index n and terms that do not contain the index n
results in

2]

S [Bu(t) — A,b (0124, €%+ VrCD

cxP{—_‘mge[w]x}[—“‘x""‘f)”‘)]. x e[~ L,0)

2L AE/p + ¢ JE 2
=t AEJp — e JET [(x —x)F(1) ],
e[ BEPEY) s

The exponential e ~@”+42D (where m is an integer) is now multiplied on both sides of
equation (20), and the resulting equation is integrated from — L to L. The left side of the
equation tan be expressed as

n=n

L
J [bn(f] = (I )2/1” e[ln + l]:rti,-'fzf.Je (2m + Lmxif(2L) dx
L

(21)

{{b‘”(.f) = A,.bﬂ{f}]q'LAm H = ;ﬂ,
0 j n #m.

Use of the reflection property of integrals and the bound of 0 < x; < L results in the right
side of equation (20) becoming
L

(F(f},.-"pA)U‘ —8(—x—x)e " dx + [ S(x —xp)e ’-“dx]

= — F(t)o,(xp)/(pA). (22)

Equations (21) and (22) can be equated (for n = m) to form ordinary differential equations
for the generalized co-ordinates b, as

Bu(t) — Aub,(1) = — F(1)g,(x)/(4LA, pA). @)

An explicit solution to equation (23) cannot be found until a time-dependent forcing

function has been specified.
§
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Figure 4. The frequency response of an axially forced beam: (a) magnitude; (b) phase, ——, six-term model,

++++ S0-term model.

The initial conditions of the generalized co-ordinates can be determined from the initial
conditions of the bar. This equation is

- t Ou dg,(x) 1 L du
b,(0) = b4 alF) g O i e .
4 422 L L ox (>, 0) 4 aAL |, o (x, 0)p,(x) dx, (24)

where (6u/dx)(x, 0) is the initial strain energy in the bar (dimensionless) and (du/dt)(x, 0)

is the initial velocity of the bar (m/s). The formulation of equation (24) is presented in the
Appendix.

5. FREQUENCY RESPONSE

A' frequency domain solution to equation (23) can be found by specifying that the
forcing function F(t) be equal to a harmonic function Fye'®!, where F, has units of

Newtm?& Solving the differential equation (23) results in the following solution to the
generalized co-ordinates:

— Fog.(xy) ,
b, (1) = o, 25
ey 23)

'\Yhen €quation (25) is inserted into equation (12), the displacement of the bar becomes

o

"Fﬂ(pn(xf)qgn(x) i
£) s ot 26
ek A WTAPA" 0
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te element model; <, eight-node finite element model; %7, 21-node finitt
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Equation (26) can truncated using 2N symmetric terms Lo yield an engineering solution
to the problem.

6. A NUMERICAL EXAMPLE

The accuracy of the model and the effects of truncation error Were investigated witl
a numerical example. The following constants were used: L =20m, E =207 X 10° N/m,
p=78x10 kg/m?®, F,= 1000 N, 4 =001m’ x,=3m and ¢ = 75000 Ns/m. The fre
quency domain response of the structure u(x,, @), viewed at x,=11m for a six-term
(-3<n<2) and a 50-term (—23<sn < 24) model, is shown in Figure 4. Numerict
simulations suggest that two first order terms are needed to model each bar resonanct
There is only a 0-45 percent ( — 46-9 dB) difference between the two truncated models ¥,
to the third resonance of the bar. The addition of terms 1o the model does not chang® i
value at the lower frequencies. This is due to the frequency content of each gcnera]iu
co-ordinate: the lower indexed co-ordinates contain only the lower frequency response ang
the higher indexed co-ordinates contain only the higher frequency response.

In Figure 5 is shown the six-term frequency response of the structure compa
finite element analysis results, using five-node (squares), eight-node (diamonds) %4

71-node (triangles) finite element models. The addition of terms t0 the finite element "
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produces more accurate results at lower frequencies due to the coupling between the nodes
in a finite element formulation. Because the bandwidths of the system matrices are greater
than one, the mode shapes are not explicit to the analysis, and the addition of terms (nodes)
to the analysis can affect the accuracy of many bar resonance modes. The continuous
formulation presented above eleminates the problem of banded system matrices by use of
an orthogonal solution to decouple the mode shapes of the bar. '

R ———

7. CONCLUSIONS

The axial response of a bar with a damper at the end can be determined by using
separation of variables and by changing the interval of the problem. A truncated series
solution can be implemented to approximate the exact dynamic response. The truncation
error at lower frequencies is extremely small. This closed form solution is computationally
efficient and the eigenvalues and eigenvectors of the system are explicit.
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s [ APPENDIX: INITIAL CONDITIONS OF GENERALIZED CO-ORDINATES

aeridl]  The initial conditions of the generalized co-ordinates can be determined from the initial

ﬂ?‘_n tonditions of the bar. This begins with equation (12), which is

lelS :!:I e}

ngelf u(x, )= 3 b(0)p,(x). (A1)
raliZd o

se 4 -?qualign (A1) is now differentiated with respect to the spatial variable x and evaluated
S =V to give

(0u/0x)(x, 0) = f B, (0)h, (€% + &~ n %) (A2)

A= — o0
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and differentiated with respect to the time variable ¢ and evaluated at t =0 to give

0= 3 b0, —e). (A3)

n= =L

Equation (A2) is the initial strain energy in the bar and equation (A3) is the initial velocity
of the bar. Equation (A2) is multiplied by the wave speed /E/p and is added to equation
(A3) to yield

n=—®m

& ; E du du-d 5

g | PR (G e ' Ad) |
Y 26,004,¢ [ \/p = 0+ (x,O)] (a0
and is subtracted to yield '_

S | B0 |
Y 2b,(004,¢ —[ \/; T (x,0) 7 (x,O}]. (AS};__

n= —€

The interval of equation (A5) is now changed from [0, L] to [— L, 0] by the substitution |
of — x for x. This equation is l

® S lli= E du % L "
Y 2b,(0)4,e* —[\/%a(—x,(}}-—ar( x,O)], xe[—L,0]. (Aﬁ}?

n= — 0

Equations (A4) and (A6) are now combined and the exponential is broken into two|
terms: one contains the index n and one does not contain the index n. The resulting |
equation is -

¥

o

Z an (O)An c(Zn + 1 {(2L)

o, 5 el AEJp — ¢ \JE
[J:f_u(wx, 0) — Sl U)}exp {— lorg.:[—'—'—\/,E L#]x}n x €[—L,0}
- p ox at 2L AE/p +cJE

Ep ou du —1 AE ;/;; — c\/%
= — >0+ &0 —log | ———= |x 1 x €L, 0]
[ B Dt )_] i { oL = [AE\,G; SedEl sclar
(A7)

The exponential e =27+ V™4 is now multiplied by both sides and the left half of equatiot
(A7) is integrated from — L to L. This yields

¥ Ed 2
b,(0)44,L = [ [\/iA_u (—x, 0}—&—1‘ (—x, 0}13"'""dx
J_ul\pox at _

k Ed ) "
+ j [\/: 715 (x, 0).+ (;—u £, 0)] e~ " dx. (Ab)
g p ax ot

Using the reflection property of integrals and equation (11), equation (A8) can be rewritten

to give
1 L ou do,(x) 1
b= | == —dx—
© 4)[?,L_[ ael=g =T )

L a
,‘—u (x, 0)g,(x) dx.
, Ot

)
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