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SUMMARY

Derived herein is the integral representation solution of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support
motion, which is free from calculation of a quasi-static solution, and in which the modal participation factor for support
motion is formulated as a boundary modal reaction, thus making cfficient calculation feasible. Three analytical metheds,
including (1) the quasi-static decomposition method, (2) the integral representation with the Cesaro sum technique, and (3)
the integral representation in conjunction with Stokes™ transformation, are presented. Two additional numerical methods
of {4) the large mass FEM simulation technique and (5) large stiffness FEM simulation technique are easily incorporated
into a commercial program to solve the problem. It is found that the results obtained by using these five methods are
in good agreement, and that both the Cesiro sum and Stokes’ transformation regularization techniques can extract the
finite part of the divergent series of the integral representation. In comparison with the Mindlin method and Cesaro sum
technique, Stokcs™ transformation is the best way because it is not anly free of calculation of the quasi-static solution, but
also because it can obtain the convergence rate as rapidly as the mode acceleration method can.
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1. INTRODUCTION

Since Loh! used SMART-1 data, which were obtained in 1982 from a seismograph array in Lotung, Taiwan,
to analyse the effect of spatial variation of ground motion on structural responses, several investigators have
studied the problem of multi-support excitation to identify the need of such analysis, In fact, multi-support
vibration happens frequently, ¢.g. seismic responses of pipelines and long bridges whose abutments and piers
are far apart so that the surrounding topography and geology may be different as schematically shown in Figure
1. Most attention has been paid to the analysis of these systems to obtain design forces during an extreme
event induced by earthquake ground motion, Following the paper of Mindlin and Goodman,? these problems
have all, to our knowledge, been solved by decomposing the solution into two parts artificially. Clough and
Penzien® applied the Mindlin-Goodman method to the discrete system of a finite element formulation and
found that the computational effort for the quasi-static solution was very large. Masti* used the same method
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Figure I. A long bridge subjected to seismic ground motion

to examine the response of a beam to propagating boundary excitation and considered random excitation of
a shear beam in his paper.’ In 1982, Abdel-Ghaffar and Rood® applicd the same method to the analysis of a
tower of the Golden Gate Bridge.

Although Mindlin and Goodman® proposed a quasi-static decomposition method for problems with time-
dependent boundary conditions, Eringen and Suhubi’ found that obtaining a quasi-static solution is still a
difficult task. They omitted calculation of the quasi-static solution and merged it into the total solution after
considering Betti’s law between the eigensystem and the quasi-static solution. This procedure reduced the
solution to that of eigenfunction expansion. Although it is good to eliminate calculation of the quasi-static
solution, a low convergence rate due to the Gibbs phenomenon®? for the primary field and divergence for
the secondary ficld have been noted by Strenkowski.'” Nevertheless, the regularization for divergent scrics
has not been dealt with previously due to the problem created by omitting the calculation of the quasi-static
solution.

In the present paper, we combine the concept of dual integral representation'"'? with either the Cesaro sum
technique'> ' or Stokes’ transformation,'s and apply the idea of Eringen and Suhubi to solve the problem of
a long bridge subjected to multi-support motions. Finally, two numerical methods including large mass and
large stiffness techniques are employed for comparison with the three analytical solutions.

2. ANALYTICAL FORMULATION FOR A RAYLEIGH-DAMPED BERNOULLI-EULER BEAM
SUBJECTED TO SUPPORT MOTIONS

The seismic response of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support excitation
shown in Figure 2 can be described by the following governing equation:

- )
p Aii(x, ) + ( 22p4 +ﬁEIi i, 1) + BT M5 fe), 0<x<! ()
fxd oxd

where a superimposed dot denotes a time derivative, E7, p4 and 7 denote the flexural rigidity, mass per unit
length and length of the single-span beam of the bridge, respectively, « and § are coefficients of the Rayleigh
damping, and u is the displacernent, which is a function of position x and time ¢. For simplicity, but without
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Figure 2. A simple model for a heam subjected to multi-support motions

loss of generality, the load f(x,7) is assumed to be zero during an earthquake. The boundary conditions
are

u(0,t) = a(t), u(l,ty = b(t) : (2)
0,0 =u"(L,ty=10 (3)

where a superscript prime stands for a spatial differentiation, and a(r} and b(t) are support motions prescribed
by records of ground motion. In the numerical examples, the inphase and outphase motions for a(t} and h(¢)
will be considered.

Assuming that the motion starts from rest, the initial conditions are

u(x,0) =0, u(x,0) = 0. 4)

2.1. Quasi-static decompaosition method

As shown in Figure 2, the solution can be decomposed into two parts:

w(x, 1) = Ulx,) + Y galt)tn(x) (5)

n=1

where U(x,t) denotes the guasi-static solution, and the natural modes u.(x) weighted by generalized co-
ordinates g,(¢) are the dynamic contribution due to the inertia eflect. The quasi-static part U(x, ¢} must
satisfy

FUx, )

axt

£l =0 (6)
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and is subject to non-homogeneous boundary conditions:

U(0,8) = a(t), ULty = b(1) (7)

Uo,n=U"(lL,t) =0 (8)

By solving the PDE in equation (6) with boundary conditions in equations (7) and (8) directly, we have

Uty =a(t) (1-3) +b() G) (9)
The sth natural mode u,(x) with frequency w, of the cigen-system is

uy(x) =sin(nnx/l), n=12,... (10)
and the corresponding natural frequencies are

wn = (na/DEN(pA), n=1,2... (1)

The orthogonality conditions of the eigenfunctions are

i
/ puxy(xydy = 4N, nk=12... (12)
0

where N = pl/2. Substituting {5) into (1), we obtain

3 pldn0) + 2E0nd () + wlgu(D)]untx) = —p U(x.1) = 22p Ulnt) (13)

n=1

where the nth damping ratio £, is defined by
26pwy = 22 + P} (14)

Multiplying both sides of (13) by u,(x), integrating over (0,7} and applying the orthogonality conditions of
(12), we have g,(1) satisfying the following re¢lation:

20F,(1)

. . F.(t)
Ga(t) + 28n0mdn(1) + wpga(t) = = + —¢ (15)
where
!
Filty = = [ pUG 0ut) d (16)
]
After considering the initial conditions, we have
{
Ng,(0) = —/ pU(x, 0un(x) dx = F,(0) (17)
0
I’ . .
Ng,(0) = —/ pUx, 0 (x) dx = F (0} (18)
0

It is observed that if {/(x,¢) is known, g,(¢) can be determined by equations (15), {17) and (18), and then
the series solution of equation (5) can be obtained.

Here, we apply a technique to calculate F,(¢) without first determining U(x,1); thus, the domain integration
of equation (16) is aveided. Now, choosing the quasi-static solution and the eigen-system as two systems,
Betti's rectprocal relation or Green’s formula'® yieids

!
—mﬁf pU(x, Du(x) dx = RS U(0, ) + R UL, 0) = RS a(t) + R. b(t) (19)
0
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where R® and R’ are the modal reaction forces of the nth mode at x = 0 and x = /, respectively. Equation
(19) is remarkable in that the integration over the domain, 0 to /, is transformed to boundary data on x = 0
and /. By the definition of equation (16), (19} can be rewritten as

wiF,(t) = RS a(t) + R, b(t) (20)

Thus, we can solve for g,{#) by using equations (15), (17) and {18), that is

En
VAR

1 L omtnt=0 i (e
+Nw,3, _1_5% j;.e sin (wi{t — 1))

% [RO(7) + RiB(1) + 2a(R%(1) + RLA(7))] dr (21

gult) = g (0)e " [cos (31) + —=2— sin (o} :)} "’:if)[e-fnw sin (wdf)]

where @l = w,\/1 — & is the nth damped frequency. Eq.{21) can be rewritten in another form:

(I) n(t) m[ —C,,w {i—1) sin (Ct) (t-1))
x[REa(r) + RLb(t) + B(RSG(r) + RLB(7))) de (22)

Then, the series solutions for displacement u, slope 0, moment M and shear force V can be expressed,
respectively, as

ulx,)=U{x, 1)+ i%(f) sin {(nmx/1) (23}
n=1
O(x, 6) = w'(x, 1) = U'(n 0} + iqﬂ(:) (?) cos (”—I"f) (24)
n=I
M(x,t) = Elu" (x,t) = EI lU”(x,r) + Z 0 (j) sin (?)] (25)
=]
V(x,t)= El"(x,t) = EI lU”’(x,r) £ 3 a0 (i) cos (?)} (26)
=l

where gn(t) can be replaced by either equation (21) or (22).

In deriving equations (24)}(26), the termwise differentiations of equation (23) are permissible due to good
matching of prescribed data on the boundary. However, this is not permissible in the method described in the
foilowing subsection since it renders unmatched boundary data.

2.2. Eigenfunction expansion method

From equations (12) and (16), the Fourier series representation for U(x,t) is found as follows:

Uy =-Y F";‘)u,,,(x) 27)
m=1

If a more generalized coordinate, §,(1), is defined as

n()

g.{1) = — gal1) (28)
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then the solution of ¥ is available upon substituting equations (10), (22) and (30) into (5) and using (20):

= o - _ - -1 ‘ —Epn{t—1) o _
u(x, 1) gqn(r)un(x) ;{M == fn ¢ sin (a(f — 7))

x[R%a(1) + RLb(7) + B(RCa(1) + RLA(1))] dr} sin (nnx/l) (29)

The displacement response in equation (29) has been formulated as an integral representation solution which
contains both the Duhame! integral in time and the boundary intcgral in space; in this case, only two boundary
modal data are concerned due to the one dimensional domain. Therefore, the above equation reveals a new
point of view that the modal participation factors for support motions a(t) and &(t) are simply —R%/N and
—RL/N, respectively, under the condition of § = 0.

Without thoughtful consideration, term by term differeatiations of (29) vield

[ ) —l fl i
— 4 — —Cpult—t} o 4 _
Blx,ty=u'(x,t) "E_[ {Nwﬂm A e sin (@ (f — 7))

x [R%(t) + RLb(t) + A(RYG(T) + RLB())) dr} (—”f) cos (—”‘I”) (30)

M(x, ty=El"(x,1) = Z { —E1 ~5m =0 gin (wi(r — 1))

— e e
N /1 — 8 Jy

2.2
x[Ra(t) + Rob(c) + B(ROG(T) + RLb(7))] d:} (%) sin (%) (31)

A=1

[ o3 !
—E7
Vix,t)=Eh"'(x,1) = ——-——/ e 5= gin (wd(t — )
(r.0) = EI"( E:{an — | :

n=1

X [Roa(t) + RLb(z) + B(R%(T) + RLE(T))] df} ("‘;z”}) cos () (32)

In addition fo the troublesome equation (29), the three expressions (30)—(32) are worse. Because the support
motion acts as a double layer potential, which is the terminology of potential theory and the dual integral
representation,''>!7 the series for displacement is pointwise convergent in the sense that the discontinuity
across the boundary can be described by a series representation, Therefore, the term by term differentiations
of the series for displacement to determine slope, moment and shear force will result in a divergent series.
An appropriate regularization technique is necessary to extract the finite part; for the series forms of equations
(29)H32) in this paper, we shall employ the Cesaro sum regularization technique, which plays the same role
as does the regularization methed for the derivative of the double layer potential,

2.3. Regularization with Cesaro sum technique

The general (C, ) Cesaro sum is defined as'*

= Cr+r (33)

k tr—1 k+r—2 » r—1
Gl s+l s+ + 0 sk +C s
S&Z(C’,r}{g an} o Bt Wl ro19k=1 t Sk

n=0
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where Cf = kl/(rl (k —r)!), and the partial sum is

Zq,(r)un(x) Zan(x.t) (34)

n=0

For efficiency of computation, the s; terms are changed to g; terms, and the equation is, thus, changed to the
conventional Cesaro sum:

k
S,,:(c,l){za,,}ES"“‘J”'{;JIS**'“" (35)
n=0

(C]){Ea,,} k+12(k n+1) ay (36)

r=0 n={
Simularly, the (C,2),(C,3) and {C,4) Cesaro sum is

k ~ 1 k
(C,Z){gan}=m§(k—n+l)(k—n+2)an (3?)
k k
2ol —+ DYk —n+2)k —n+3)a,
(C’”{ga”} = (k+ )k + 2)(k +3) (38)

% k
(C,4) {Zan} = Sk —n+ Dk —n+2)k —n+3)k—-n+4)a, a9

i (k+ D)k + 2)(k + 3)(k + 4)

Based on this regularization technique, the series representations for displacement, slope, moment and shear
force are expressed in the sense of the Cesiro sum as follows:

- ~1 ! — &l t—1) _:
u(x,ty=(C, 1) {"Z:I: [m i e =T gin (el — 1))
x [Roa(t) + RLB(7) + B(RYd(t) + RLB(T))] dr} sin (?) } (40)

o0

-1
6 p— ! = -
(x,t)y=uv'(x,¢) = (C,2) {HE:I [an =& Jy

t
e+ gin (wd(t — 1))

x[R%a(t) + RLB(1) + B(Rga(rHRf,é(r))]] % cos (?) } (41)
M(x. 0y = El"(x,t) = (C,3) {Z [an o / ~Enenli=) gin (d(t — 7))
22
x[Rla(t) + RLb(t) + ﬁ(Rgd(r)+Rf,5(1))]] ’:,f sin (?) } (42)

2

Vixt)=ER"(x,1) = (C,4) { >

n=1

'3
g5l sin (Wit — 1))

—Ef /
Nug+/1 ~ & Jo

P |
x[RSa(t) + RLp(t) + B(Rpa(z) + Rf,fi(rn]]

3?: cos (?) } (43)
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The Gibbs phenomenon exhibited in the pointwise convergent series of equation (29) can be avoided by
using the Cesaro regularization technique, and the finite part of the divergent series in equations (30)}+32)
can be extracted as shown in (41)4{43).

2.4. Regularization with Stokes’ transformation

Although termwise differentiations are not permissible for the pointwise convergent series representation for
u(x,t) in the classical sense, the differential operator can still be applied directly as in equations (30)(32) of
Subsection 2.2, and then the posterior treatment of the Cesaro sum can be vsed to ensure the summability as
in Subsection 2.3. Here, we introduce a logical way of differentiating the pointwise convergent series, which
is called Stokes’ transformation,'® and use the unmatched boundary data as shown below.

Consider the displacement function u(x, 1) represented by a Fourier sine series in the open interval (0 < x < {
with the given histories a(t) and &(¢) at the end points:

a(t), x=0
w(x, 1) = Z:O 1) sin(rmx/l), 0 < x < /. (44)
b1, x=1
Assume
Blx,t) = w(x,0) = 3 _ gy(t) cos (mmx/l), OKx<! (45)
n=f)

multiplying both sides of the above expression by cos (nmx/f} and integrating over (0,/), and considering
cquation {44), we have

&0 = 2U1B0) — a) + gyl m= 1,2, (46)
and
Golt) = _Tl[a(f) - b(t)), forn=20 47
Defining
ey -t n=0
=9t (48)
7[(—1)"50) —a()l, n=12,...
we have

Tolt) = ra() + nrg, (O, n=0 (49)

It is easily found that direct term by term differentiation of the Fourier sine series in equation (44) loses the
ry terms, which can be recovered by Stokes’ transformation as shown above or by the posterior regularization
treatment of the Cesaro sum method as described in the previous subsection.

In order to improve the rate of convergence for u(x,¢) at the points near the boundary as x approaches 0
or I, u{x,t) can be calculated by integrating (45) from 0 to x:

u(x.£) = a(t) = F(a(t) = b)) + 3 rult) (ﬁ) sin (27)

n=]

+§g,,(r) sin (27). 0<x<t (50)
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Comparing equation (50) with (44), the additional three terms result in improvement in the convergence
rate. Similarly, applying the Stokes’ transformation again, the moment and shear force can be expressed as

follows:
Mx, 1) = El"(x,0) = gﬂq;’(:) sin (?) , ogxgl
Vix,t) = Efd'"(x,t) = iEh}:,”(:) cos(nnx/l), 0<x<l
n=0
where

§l(t) = —nng (), n=0,1,2,...

=i

§' 1y = -7 g i, n=0,12...

(51)

(52)

(33)

(54)

It is found that the solution also contains two parts, modal and nen-modal parts. However, the solution of
the non-modal part results from the integration of the secondary field solution in a way different from using
the quasi-static decomposition method which derives the non-modal part by solving the P.IL.E. direcily. No

doubt, the Stokes’ transformation is easier.

Ortglnal problem
.5.1— =
a{t} b{t)
(o) Large mass model (b} Large sfiffness model
M M i K
(;'J {f) i
Ma(t) Mb(r) Ka(t) K{t)
Ka S ,r
Inertla force Mb(x) ) Spring force
20-] bo 2
Sthear force near support | Shear force near support
MB() Ka{t)
External force

Figure 3{a}. Large mass model, {b} Large stiffness mode!
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2.5, Large mass simulation technique

In this and the next subsections, alternative numerical methods will be explored. In order to satisfy the
boundary support motion histories, the large mass technique is used here and incorporated into MSC/NAST
RAN. At the left end, x = 0, a large mass .# is mounted. .# should be much larger than .4, which denotes
the total structural mass. Likewise, at the other end, x = /, the large mass . is also assumed. Thus, the
external agency cxerts the forces of .#d(t) and .#b(t) at the two ends of the free—free beam, respectively,
to ensure the enforced acceleration histories d@(t) and 5(#) as shown in Figure 3(a).

2.6. Large stiffness simulation technique

Instead of using the large mass simulation technique, the large stiffness simulation can also describe the
equivalent system. At x = 0, a spring with large stiffness #" is introduced. %" should be much larger than
A5, which denotes the structurat stiffness. In the same way, a spring with large stiffness X is also assumed
at x = 1. Both springs are connected to the ground. The external agency exerts the forces # a(s) and 4 b(¢)
at the two ends, respectively, to ensurc the enforced displacement histories a(¢) and b(¢) for the constrained
motion as shown in Figure 3(b).

3. ILLUSTRATIVE EXAMPLES

In order to see the validity of the three analytical solutions and the two finite element simulation techniques
for the multi-support seismic response, examples will be furnished and comparisons made between the three
anatytical selutions and finite element outputs using two simulation techniques.

The input data are as follows: / = 60 m, Ef = 245x 10° Nm?, p4 = 2400 kgm ', a(t) = S5 e=% sin ({})
H(ty and b(t) = H{t —t)a(t — 13), S =0-01m, ¢ =01, where H(¢) is the Heaviside function, 4 is the
time lag, & is the decaying rate of the support motion, §; is the magnitude and 2 is the excitation frequency
for all of the support motions.

Case 1: A damped (2 = 0-138 157!, 8 = 0s) Bernoulli-Euler beam subjected to in-phase multi-support

excitations:

a(t) = b(r), &) = 0-05, &y = 0-M25, tg=0

Case 2: A damped (x = 0-138 157!, B = 0s) Bernoulli-Euler beam subjected to out-of-phasec multi-
support excitations:

a(t) = —h(z), & =005 & =00125, =0

Case 3: A Rayleigh-damped (x = 0-111 157!, # = 0.0072 s) Bernoulli-Euler beam subjected to in-phase
multi-support excitations:

a(t)=>5(r), & =005  &=005  t4=0

3.1, Quasi-static decomposition method {method (1))

Substitution of modal reactions for R,(0) and R,(/) into equation (23) yiclds the cxplicit form of the
solution:

zif] Bu(OH (=1 £ (=1)"] sin (nnx/]) 43

u(x, 1) =U(x, )+ Z
=1

where ‘+' and ‘-’ represent the in-phase and out-of:phase motions, respectively, and ¢l(t) can be easily
determined as in Reference {2. The displacement histories at x = 15, 30m for case 1 and x = 15m for case
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2 are shown in Figures 4, 5 and 6, respectively. The displacement, slope, mement and shear force diagrams
at t = 1s for cases | and 3 are shown in Figures 7-10, respectively.

3.2. Eigenfunction expansion method

Substitution of medal reactiens for R,(0) and R,(/) into Eq.{(29) yields the general solution

ulx, 1) = Z Mqﬁz(r)!{(r)[l (=1 sm( T;x)

n=1

(56)

where ‘4 and ‘—* denote the out-of-phase and the in-phase motions, respectively, and ¢2(¢) can be easily
determined as in Reference 12. Since the Gibbs phenomenon in the disptacement response and the divergent
solutions in the slope, moment and shear force occur, the following two regularization techniques are employed

to extract the finite values.
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Figure 6. The solutions of out-of-phase motions at x = 135 using methods (1}(5) with five modes and 25 elements
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Figure 7. The series solutions for the displacement. slope, moment and shear force at ¢ = | s using methods (1)) with five modes for
case 2 when damping is proportional to mass only

3.3. Regularization with the Cesdre sum (method (2))

Using equations (40)—(43), the numerical results of the displacement, slope, moment and shear force re-
sponses can be easily calculated as shown in Figures 7-10 for cases 1 and 3. The displacement histories at
x =15, 30m for case 1 and at x = 15m for case 2 are shown in Figures 4-6, respectively.
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Figure 8. The series solutions for the displacement, slope, moment and shear force at t = | s using methods (1)~(3) with one hundred
modes for case 2 when damping is proportional to mass only
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and method (5) using 25 elements for case 3

3.4. Regularization with Stokes’ transformation {method (3))

Substituting the same values as in Subsection 3-2 for ¢,(¢) of equations (50}, (45), (51) and (52}, the
numerical results of the displacement, slope, moment and shear force responses can be casily calculated and
are shown in Figures 7 and 8 for casc | and in Figures 9 and {0 for case 3.

3.5. Large mass simulation technique (method (4) )

Twenty-five CBAR beam etements and 500 time step intervals are used. The large mass ratio is suggested
as being 10% in this case. Note that in addition to the original modes, two very low frequency modes due
to the two large masses should be included in the modal superposition in order to simulate the enforced
boundary support acceleration. The input data can be prepared easily'® for the program and is omitted here.
For the interior points x = 15, 30m for case | and at x = 15m for case 2, the displacement histories are in
good agreement with analytical solutions as shown in Figures 4-6, respectively.

3.6. Large stiffness simulation technique {(method (5})

The same mesh configuration and time steps as in Subsection 3-5 are used. The large stiffness ratio is
suggested as being 10° in this case. In comparison with the original modes, two additional very high frequency
modes for the deformation of the two large springs should be included in the modal superposition in order
to simulate the enforced boundary support displacement accurately. If the two largest modes are truncated in
modal analysis, the boundary displacement will not match the enforced displacement, while the slope, moment
and shear force distributions will diverge in a way similar to that in the eigenfunction expansion method as
shown in Figure |1. When the two modes are included, the boundary displacement and slope solutions from
FEM approximate the analytical solutions, but the boundary layer effect is still obvious for the moment and
shear force distributions as shown in Figure 10. For the interior points x = 15, 30m for case 1 and at
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Figure 11, The series solutions for the displacement, slope, moment and shear force at £ = 1 s using the eigenfunction expansion method
and large stiffness simulation without considering the two largsst modes using 10 modes for case 3

x = 15m for case 2, the displacement histories are in good agreement with anajytical solutions as shown in
Figures 4-6, respectively,

4. COMPARISONS AND DISCUSSIONS

The displacement histories at x = 15, 30m for case | and at x = 15 m for case 2 are depicted in Figures 46
using five modes and 25 elements. It can be seen that the results of all five methods are in good agreement.
The displacement, slope, moment and shear force diagrams of casc | at + = 15 using methods (1)-(3) are
shown in Figures 7 and 8 for mode number = 5 and 100, respectively. Unfortunately, the shear force result
diverges as shown in Figure 8. For case 3, the displacement, slope, moment and shear force diagrams at
t = 1s using methods (1)+(3) are shown in Figures 9 and 10 for mode number = 5 and 100, respectively.
Although the shear force response is divergent for case 1 in Figure 8, it is convergent for case 3 using the
three analytical formulations as shown in Figurcs 9 and 10, respectively. This motivates us to analyse the
asymptotic behaviours of g,(¢} and §,(¢) as thc mode number becomes infinite. It is found that the solution
of displacement in casc 2 is governed by O(1/n?) of the ¢, terms, as &, — O(1/n?) for §=0. The asymptotic
behaviar of the displacement, u(x,t), in case 3 is governed by (O(1/n*} of the s, terms, as &, — O(n?) for
B # 0. In deriving the series solution of the shear force, three-fold differentiation with respect to x causes the
solution to have O(1) asymptotic behavior after an additional O(r*) multiplication. This is the reason why
the shear force response of case 2 is divergent. Extending this concept to acceleration, the results for case 2
are also divergent,

To summarize:

1. It must be noted that the general solutions of methods (1), {2) and (3) are formulated as boundary
integrals or data instead of domain integration. Therefore, a new point of view regarding the modal par-
ticipation factor has been developed. Recently, two applications of this concept have been successfully
apptied 202!
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2. The convergent solution can only be used to obtain the displacement, slope and moment, not the shear
force response when damping is proportienal to mass only as shown in Figure 9 for case 2. The resnlts
can be understood from the order analysis of the solution. It can be seen that the shear force results
are not available for the same example in Reference 4.

3. For the large stiffness simulation, the inclusion of the two additional high frequency modes enables
matching of the boundary support displacements. The two additional modes can be easily found from
the obtained modes by FEM(NASTRAN in this paper) since the deformation for the two high-frequency
modes locally concentrates on the spring instead of the beam. If the contribution of the two modes
is neglected, the resulis diverge in the same way as with the eigenfunction expansion method as
shown in Figure 11. Even if the two modes are considered, the boundary layer effect is present in the
moment and shear force responses as shown in Figure 10. To explain this phenomenon, the free body
diagram in Figure 3 reveals that the simulation model cannot simulate the end shear equivalently, ic.
inconsistency exists between the original problem and the proposed simulation modet. By the same
token, the large mass simulation has a similar boundary layer effect,

5. CONCLUSIONS

The analytical solutions of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support motions
have been derived by means of three different analytical formulations and compared with two numerical
methods in this paper. The results obtained using the five methods are in good agreement.

Mindlin and Goodman sotutions behave well at the expense of the additional effort involved in determination
of the guasi-static solution; this effort is substantial in most real-world problems, To avoid calculation, the
quasi-static solution is expanded in the Fourier series sense; or, interpreted in another way, the problem is
solved directly in the eigenfunction (generalized Fourier series) expansion sense, thus rendering a pointwise
convergent series solution for the displacement response, which does not cenverge to the prescribed support
motions at the two ends and exhibits the Gibbs phenomenon near the boundary and divergent series solutions
for the slope, moment and shear responses. It has been shown that the boundary layer cifect and divergence
can be dealt with by using the Cesdro sum technique, which smoothens the oscillating behaviour of the
displacement and extracts the finite parts of the diverzent series solutions. Although it is capable of recovering
the finite part of the existing response without obtaining the quasi-static solution, the Cesaro sum technique
requires a larger number of modes in calcylating the response near the boundary for the boundary layer effects
described above. In order to improve numerical efficiency, the Stokes’ transformation technique is utilized to
accelerate convergence since it takes advantage of prescribed data of support motions. This feature can save
a large amount of computational effort and is highly recommended. An extension to real structures by using
a discrete system has been successfully applied.'®

After comparing the FEM results with the three analytical results, care should be taken to add boundary
modes corresponding to the large masses and stiffnesses if the slope response is considered. For the moment
and shear force responses, the boundary effect is apparent and more research effort on this effect is needed in
the future.
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