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Abstract

In this paper we consider an inverse scattering problem whose aim is to recover the impedance function for an arbitrary
crack from the far field pattern. Because of the ill-posedness of this problem, regularization method for example, Tikhonov
regularization, is incorporated in our solution scheme. Several numerical examples with only one incident wave are given at
the end of the paper to show the feasibility of our method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The inverse scattering problem which aim is the recovering of the geometry of the obstacles or the inves-
tigating of the physical properties of the scatterers has attracted more and more attentions in the past two
decades not only because of the pure mathematical interest but also of its applicability in the real world.
The inverse scattering problem we are considering in this paper is the problem of finding the impedance of
an open arc. The impedance boundary conditions can be used to model practical problems like surface coating
which has its application in detection of buried objects, antenna design or the analysis of the earth surface (see
[13]). Assuming the crack, our inverse problem of finding the impedance has its application in detection of the
corrosion of a pipeline, the flaking or the oxidizing of a wire, for example.

Open arc problem was first investigated by Hayashi [6]. In contrary to the case of a closed boundary, there
appeared an integral equation of the first kind instead of a second kind Fredholm integral equation. Thus the
Riesz–Fredholm theory was not applicable. Wickham [14] proposed a so called ‘crack Green’s function’ which
can transform the problem to an integral equation of the second kind that can be solved by the Riesz–Fred-
holm theory. The additional difficulty in the treatment of the boundary value problem by an open arc as com-
pared to the case of a closed boundary is that the solution is not smooth. Martin [10] reported that the solution
has a square root singularity at the end points of the arc. Using the cosine substitution developed in [15], in the
first article on inverse scattering problem from an open arc [7], Kress has overcome this difficulty for a Dirich-
let problem. In his paper, integral equation method was used to solve both the direct and inverse problems for
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a sound-soft crack. The scattering problem in the unbounded domain is thus converted into a boundary inte-
gral equation. Mönch [11,12] extended this approach to a Neumann crack. Extending to the impedance prob-
lem, the method mentioned above did only give less convergence rates in the numerical solution, although it
did enable an elegant existence analysis (see [9]). This results from the different structure of the singularities of
the solution to the impedance problem at the end points of the crack as compared to those of the Dirichlet or
Neumann boundary condition. To be more precise, the solution of the Dirichlet or the Neumann problem has
only a square root singularity at the crack tips which can be completely cleared out by the cosine substitution.
Besides the square root singularity, the solution of the impedance problem has also a singularity of the log-
arithmic type at the crack tips (see also [3]) which leads to a slower convergence by the numerics.

For the inverse scattering from an impedance crack, a linear sampling method was used to recover both the
unknown crack and the impedance function in [2]. Although the reconstruction of the arc itself is rather suc-
cessful, the reconstruction of the impedance is not satisfactory. To be more precise, the linear sampling
method used in [2] can only reveal the maximal value of the impedance. A pointwise reconstruction of the
impedance is not possible. This gives also the cause to this paper.

The plan of the paper is as follows. For the sake of completeness and also the introduction of notations, in
Section 2 we will briefly summarize the main results of the direct problem. In Section 3, we will formulate the
inverse scattering problem and prove its uniqueness. The notion of the far field operator will be introduced in
Section 4. We also describe our solution scheme after the injectivity of the far field operator and the denseness
of its range are shown in this section. This will be followed by some numerical examples in the final section.

2. Direct impedance problem

Let C � R2 be a C3-smooth open arc, that is, C = {z(s) : s 2 [�1,1]} with an injective and three times dif-
ferentiable parametrization z : ½�1; 1� ! R2. The two end points of this open arc will be denoted by
z�1 :¼ zð�1Þ and z1 :¼ zð1Þ. We set C0 :¼ C n fz�1; z1g. The orientation of C is assumed to be from z�1 to
z1. Further we denote by C+ and C� the left- and right-hand sides of C, respectively. m is the unit normal vector
to C directed toward C+. The mathematical modelling for scattering of time-harmonic acoustic or electromag-
netic waves from thin infinitely long cylindrical coated objects leads to the following impedance boundary
value problem for the Helmholtz equation in the exterior domain of the crack. The direct scattering problem
for an impedance crack that we are considering is the following (Fig. 1).

Problem 1 (The direct impedance scattering problem). Find a solution us 2 C2ðR2 n CÞ which can be
continuously extended to C+ and to C� in the sense that
us
�ðxÞ :¼ lim

h!0
usðx� hmðxÞÞ
exists for all x 2 C uniformly.
The solution us should satisfy the following conditions:

1. us is continuous at the two end points z�1,z1.
2. Dus þ k2us ¼ 0 in R2 n C with a wave number k > 0:
3. The normal derivatives
Fig. 1. Open arc.
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ous
�ðxÞ
om

:¼ lim
h!þ0
hmðxÞ; grad us x� hmðxÞð Þi ð1Þ
exist for all x 2 C0 locally uniformly.
4. For k 2 C0, a(C) with Re(k) P 0, it holds the following impedance boundary conditions
ous
�

om
� ikkus

� ¼ f� on C0; ð2Þ
where f± 2 C0,a(C).
5. us satisfies the Sommerfeld radiation condition, i.e.,
lim
r!1

ffiffi
r
p ous

om
� ikus

� �
¼ 0; r :¼ jxj;
uniformly in all directions bx :¼ x
jxj.

We note that we make no assumption on the behavior of the solution at the crack tips except the continuity
of the solution. As in the case of a sound-soft crack [7] or in the case of a sound-hard crack [11], the direct

impedance problem can be solved by boundary integral equation method. Unlike the two cases mentioned
above, our problem is solved with a mixed potential ansatz. In terms of the fundamental solution to the Helm-
holtz equation in R2
Uðx; yÞ :¼ i

4
H ð1Þ0 ðkjx� yjÞ; x 6¼ y;
we use a combination of a single layer potential and a double layer potential
usðxÞ :¼
Z

C

oUðx; yÞ
omðyÞ u1ðyÞdsðyÞ þ

Z
C

Uðx; yÞu2ðyÞdsðyÞ; ð3Þ
with densities u1 2 C1;a
0;locðCÞ;u2 2 CðCÞ \ C0;a

locðCÞ, where
C1;a
0;locðCÞ :¼ C1;a

locðC0Þ \ u 2 CðCÞjuðz�1Þ ¼ uðz1Þ ¼ 0;u0 2 L1ðCÞ
� �
for 0 < a < 1. The additional requirement of the local Hölder continuity on u2 on C0 serves only to ensure that
the ansatz satisfies the boundary conditions (2). For the direct impedance problem, we have the following un-
ique solvability theorem.

Theorem 1. The direct impedance Problem 1 has a unique solution given by (3) where u1 2 C1;a
0;locðCÞ;u2 2

CðCÞ \ C0;a
locðCÞ is the (unique) solution to the following system of integral equations
2 o
omðxÞ

R
C

oUðx;yÞ
omðyÞ u1ðyÞdsðyÞ þ

R
C

oUðx;yÞ
omðxÞ u2ðyÞ

� �
þ ikkðxÞu1ðxÞ ¼ f�ðxÞ þ fþðxÞ

u2ðxÞ � 2ikkðxÞ
R

C
oUðx;yÞ
omðyÞ u1ðyÞdsðyÞ þ

R
C Uðx; yÞu2ðyÞdsðyÞ

� �
¼ f�ðxÞ � fþðxÞ

8><>: ð4Þ
for x 2 C0.

Using the Maue’s identity to milden the hypersingularity of the first integral of the first equation in (4), we
can rewrite the system (4) in the following form:
o
o#

S ou1

o#
þ k2 < m; Su1m > þK 0u2 þ ikku1 ¼ f1

u2 � ikkKu1 � ikkSu2 ¼ f2

(
ð5Þ
with f1 :¼ fþ þ f� and f2 :¼ f� � fþ and the operators defined by
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ðSuÞðxÞ :¼ 2

Z
C

Uðx; yÞuðyÞdsðyÞ

ðKuÞðxÞ :¼ 2

Z
C

oUðx; yÞ
omðyÞ uðyÞdsðyÞ

ðK 0uÞðxÞ :¼ 2

Z
C

oUðx; yÞ
omðxÞ uðyÞdsðyÞ:
With the help of a Green’s theorem, the uniqueness of the problem is settled by the Rellich’s lemma and
the Sommerfeld radiation condition. Using the potential ansatz, the solvability of the boundary value
problem is then converted to the solvability of the induced system of two boundary integral Eq. (4) which
can be determined by the Riesz theory. For details we refer to [9]. See also [4] for a review on the
hypersingularity.

Since in the scattering problem one is concerned about the solution in the exterior unbounded domain, the
study of the far-field pattern u1 of the scattered field us is therefore natural. The far-field pattern describes the
behavior of the scattered wave at the infinity
usðxÞ ¼ eikjxjffiffiffiffiffi
jxj

p u1ðbxÞ þO
1

jxj

� �	 

jxj ! 1
uniformly for all directions bx 2 X :¼ fx 2 R2jjxj ¼ 1g. The one-to-one correspondence between radiating
waves and their far field patterns is established by the Rellich’s lemma.

Using the asymptotic behavior of the Hankel functions, for a plane incident wave we have in the case of a
double layer potential the corresponding far field pattern
u1;1ðbxÞ ¼ 1� i

4

ffiffiffi
k
p

r Z
C
< mðyÞ;bx > e�ik<x̂;y>u1ðyÞdsðyÞ ð6Þ
and in the case of a single layer potential the far field pattern
u2;1ðbxÞ ¼ 1þ i

4
ffiffiffiffiffi
kp
p

Z
C

e�ik<x̂;y>u2ðyÞdsðyÞ ð7Þ
with the density function u1,u2 given by Theorem 1. The far field pattern for our impedance problem then
reads u1 :¼ u1;1 þ u2;1.

3. Inverse problem for the impedance

In this section, we consider an inverse problem which aim is to recover the unknown impedance function
if one knows the crack and the type of the boundary condition. The setting of this inverse problem is mean-
ingful since there exists methods like linear sampling method which can find the crack and the type of the
boundary conditions but cannot give a satisfactory pointwise evaluation of the impedance, see for example
[2].

Thus we can consider the following inverse problem for impedance

Problem 2 (The inverse impedance scattering problem). Assume that an open arc C 2 R2 with impedance
boundary condition is given. The aim of the inverse problem is to reconstruct the unknown impedance
function from the knowledge of the (measured) far field pattern u1 (Æ,d) for one incident direction d and for a
fixed wave number k.

For this inverse problem, we have the following uniqueness theorem.
Theorem 2. Assume that k1 and k2 are two solutions to the inverse impedance problem with the same far field
pattern. Then k1 = k2. In another word, the inverse problem has at most one solution.
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Proof. Assume that k1 and k2 are two distinct solutions of the inverse problem with the corresponding scat-
tered fields us

1 and us
2 which are the solution of the direct problem. After the assumption the scattered field us

1

and us
2 have the same far field pattern and therefore must be identical according to the Rellich’s lemma, i.e.,

us
1 ¼ us

2 ¼: us. For u :¼ us þ ui it holds
ou�
om
� ikk1u� ¼ 0 ¼ ou�

om
� ikk2u� on C0: ð8Þ
Now let k :¼ k1 � k2. Clearly it holds
ku� ¼ 0 on C0:
We denote the set {x 2 C—k(x) = 0} by R. The theorem is then proven if we can show that R = C. Assume the
contrary, R 5 C. According to the continuity of the impedance k, there exists a nonempty open subset R0 � C0

with the property that k(x) 5 0, for all x 2 R0. This implies that u+(x) = u�(x) = 0 for all x 2 R0. From the Eq.
(8) we have ou�

om ðxÞ ¼ 0; 8x 2 R0. After extending C to a closed C2 – curve, the Holmgren’s uniqueness theorem
can be applied. Thus we have u � 0. This contradicts the fact that the incident wave ui does not satisfy the
Sommerfeld radiation condition. This means that k � 0. h

Having the uniqueness, we can now consider the process of the reconstruction. Before that, we have to have
something to solve. This will be illustrated in the next section.
4. The far field operator

The task of our inverse problem is to recover the impedance from the far field pattern. This means that we
are expecting an equation of the following form
k ¼ Au1: ð9Þ

The first step in the inverse problem is therefore to define the operator A. Since the Rellich’s lemma gives the
1–1 correspondence of the scattered fields and their far field patterns and from the solution theory of the direct
problem we know that the scattered field can be written as a function of the densities, it is spontaneous to
define the operator F : L2(C) · L2(C)! L2(X) for W := (w1,w2) 2 L2(C) · L2(C) through
F ðWÞðbxÞ :¼ C1

Z
C
< mðyÞ; bx > e�ik<x̂;y>w1ðyÞdsðyÞ þ C2

Z
C

e�ik<x̂;y>w2ðyÞdsðyÞ: ð10Þ
with the constants C1 :¼ 1�i
4

ffiffi
k
p

q
and C2 :¼ 1þi

4
ffiffiffiffi
kp
p .

This operator F, called the far field operator, maps the densities W of the potential us to the far field pattern
u1 of us, i.e.,
F ðWÞ ¼ u1: ð11Þ

Since the kernel of the far field operator is analytic, F is compact. The solving of W from the knowledge of the
far field pattern u1 is therefore ill-posed (see [8]). In order to solve the far field equation, we have to incor-
porate some regularization schemes like the Tikhonov regularization. The following theorem justifies the
applicability of a regularization scheme.

Theorem 3. The operator F is injective and has dense range.
Proof. Assume FW � 0. From the definition of the operator F and the Rellich’s lemma, we have us(x) = 0 for
all x 2 R2 n C: As a consequence of the jump relation (in L2� sense) for the double layer potential, it follows
firstly u1 � 0. Then for the single layer potential
wðxÞ :¼
Z

C
Uðx; yÞu2ðyÞdsðyÞ; x 2 R2 n C:
it holds clearly w(x) = 0 for all x 2 R2 n C. From the jump relation (in L2� sense) for the single layer potential
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lim
h!0

Z
C

owðxþ hmðxÞÞ
omðxÞ � owðx� hmðxÞÞ

omðxÞ þ u2ðxÞ
���� ����2dsðxÞ ¼ 0;
we have u2 � 0. We have thus proved the injectivity of the operator F. To prove the second statement of the
theorem, it suffices to show that the to F adjoint operator F* is injective. For g 2 L2(X), the to F adjoint oper-
ator F* : L2(X)! L2(C) · L2(C) is defined by
F �ðgÞðyÞ :¼ �C1

Z
X
< mðyÞ;bx > eik<x̂;y>gðbxÞdsðbxÞ; �C2

Z
X

eik<x̂;y>gðbxÞdsðbxÞ� �
; ð12Þ
for y 2 C. To prove the injectivity of F*, we follow the idea of the first part of the proof. To this aim, we define
for g 2 L2(X) the Herglotz wave function
vðyÞ :¼
Z

X
eik<x̂;y>gðbxÞdsðbxÞ; y 2 R2:
Now assume F*(g)(y) = 0, for y 2 C. It follows immediately that v = 0 on C. For y 2 C it holds further
ovðyÞ
omðyÞ ¼< mðyÞ; gradvðyÞ >¼< mðyÞ; ikvðyÞbx >¼ 0:
Since the Herglotz wave function v solves the Helmholtz equation, from the Holmgren’s uniqueness theorem,
we have v � 0 in R2: Since v is a Herglotz wave function, g � 0 on C (Theorem 3.15 in [5]). It follows the injec-
tivity of F* and hence the denseness of the range of F. h

Because of the ill-posedness of the far field Eq. (11), we solve the following regularized equation
ðaI þ F �F ÞW ¼ F �u1; a > 0; ð13Þ
instead of the original far field Equation (11). From the regularization theory, this equation is uniquely solv-
able for every positive a. The unique solution of (13), denoted by Wa, interpreted as a minimal norm solution,
can be obtained by solving the equation G(a) = 0 for a given d > 0 (see [8]), where the function G : ð0;1Þ ! R

is defined by
GðaÞ :¼ kF Wa � u1k2 � d2: ð14Þ
After obtaining W, the impedance will be solved from the boundary conditions (2). Indeed, for a fixed plane
incident wave we can rewrite the system (5) in the following form
o
om Kw1 þ K 0w2 þ 2ik < m; d > ui ¼ �ikkðxÞw1ðxÞ
ikk Kw1 þ Sw2 þ uið Þ ¼ w2:

	
ð15Þ
We note here that the second equation in the above system suggests a straight forward calculation formula for
the impedance k, namely
k ¼ w2

2iku
on C0: ð16Þ
We also want to point out that since the total field u cannot vanish on a nonempty open set, it can at most be
zero on a set of measure zero. Because of the continuity of the impedance function (or the continuity of the
total field), the formula (16) is sensible and also suitable for the numerical realization of the problem.

In terms of the unknown density function W = (w1,w2) we can define the operator
R : W 7! w2

2iku
: ð17Þ
Thus we can answer the first problem proposed in the beginning of this section, i.e., the operator A defined in
(9) is given by
A :¼ RðaI þ F �F Þ�1F � ð18Þ
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5. Numerical examples

In this section, we will demonstrate our numerical method through some examples. From the solution the-
ory of the direct scattering problem we see that the scattered field us can be represented as a combination of a
double layer potential and a single layer potential with different density functions. We choose the solution
space for w1 the space
T 1;n ¼ spanfsin x; sin 2x; . . . ; sinðn� 1Þxg
and for w2 the space
T 2;n ¼ spanf1; cos x; cos 2x; . . . ; cos nxg:
At this place, we note that although the formula (16) for solving the impedance given in the last section is
suitable for the numerics, the solution can be unstable if the total field is very small. Hence we will solve
the Eq. (16) in the least square sense. In details we write the impedance function
k ¼
XM

m¼1

amvm on C ð19Þ
with unknown coefficients am,m = 1, . . . ,M and a set of linear independent functions {v1,v2, . . . ,vM}. Our task
is then to determine the unknowns am in the way such that the following sum
XN

n¼1

w2ðxnÞ � 2ikuðxnÞ
XM

m¼1

amvmðxnÞ
�����

�����
2

ð20Þ
will be minimized, where xn 2 C, n = 0, . . . ,N are the equidistant knots of the discretization (cf. [1]). At this
setting, the number M can also be regarded as a regularization parameter for the inverse problem.

Since no far field data are present for our inverse problem, we have to work with synthetic data. This
means that we have to solve the direct problem. The direct problem can be solved by applying the Nyström
method to (4). For details we refer to [9]. In order to avoid committing an inverse crime, the number of
collocation points used in the inverse solver is chosen to be different from that of the forward solver. In
all our examples, we choose 256 equidistant quadrature points for the direct solver which gives the far field
pattern at 32 different directions. We note here that as mentioned in the first section, the reason for choos-
ing large number (256) of collocation points for the direct problem is due to the slower convergence rate of
the direct impedance problem. For the inverse problem, we choose 32 equidistant quadrature points. The
direct reconstruction of the impedance will be denoted by k32. The parameter M is taken to be 5 and
the basis function vm is taken to be the trigonometric function vmðxÞ :¼ e�imx in all the examples. The inci-
dent direction is taken to be (0, 1)t. The regularization parameter a is determined by trial and error. In all
our figures below, the dotted line (black) represents the true solution. We denote by the dashed line (blue)
the direct reconstruction using formula (16) and by the solid line (red) the reconstruction with the least
square method.

Example 1. For the first example, we take the straight line y = 0. On this line we test the impedance functions
k = 0, 0.5 and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

for the wave number 1. For k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

a large wave number k = 5 is also tested.

From the results shown in Figs. 2–4, we see that the reconstructions are rather good. Note that the same
regularization parameter a is used in all cases. This shows that the choice of a can be independent of the
impedance. This is important because the impedance is the unknown for the inverse problem. We also note
here that for the case k = 0, our impedance problem reduces to a Neumann problem. Theoretically means that
we have a better convergence result which is also justified by our numerical reconstruction in Fig. 2.

Example 2. The crack considered in this example is a part of an ellipse,
C ¼ ðcosðtÞ; sinðtÞÞ; t 2 ½�1; 1�
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For this example we choose the same regularization parameter as before. The results (Figs. 5 and 6) show that
the goodness of the reconstruction is comparable with that of a straight line. We note that for the case of a
large wave number, the need of the least square method becomes obvious (Fig. 6b).

Example 3. In this final example, we’d like to show the stability of our method. For this purpose, noisy data
will be considered. As test object, we take again the same crack as in the last example. In all the cases, the
perturbed far field pattern is taken to be ud

1ðx̂i; dÞ :¼ 1þ ð�1Þi þ 2
5

� 

d

� 

u1ðbxi; dÞ with d = 5%. The results

(Figs. 7 and 8) show that our method is stable even when noises are present. Only in the case k = 5 with a
strongly oscillated incident wave, the direct method yields less accurate reconstruction. However the
reconstruction with the aid of least square still gives reasonable result (Fig. 8b).



Fig. 5. k = 1, a = 4�23, k = 0.5, kk32 � kk2 = 5.6 E�3.
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Fig. 7. k = 1, a = 4�23, k = 0.5, kk32 � kk2 = 5.6 E�3.

262 K.-M. Lee / Wave Motion 45 (2008) 254–263
6. Conclusions

The numerical results show among others two major advantages of our solution method. Firstly, our
method is direct, simple and fast. Secondly, the choice of the regularization parameter is independent of
the unknown impedance. This is very important from the practical viewpoint since one cannot know the
impedance in advance. We test a parameter by try and error for the simplest case of a straight line and keep
it fixed through all the examples. We also note the parameter a used in our examples are by no means the best
possible regularization parameter whose existence is guaranteed by the theory of regularization. This means
also that a better result could be achieved by choosing a different a using our algorithm for instance in the
very last example. However this is not our intension. From the practical point of view, the detecting of a par-
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tially coated or fully coated object is to determine the unknown coating material, i.e., the impedance function.
From the standpoint of the industrial design, one may wish to find the suitable coating which generates the
desired pattern of radiation. This all indicates that the algorithm should be independent of the impedance.
In particular, the choice of the regularization parameter a should be independent of the configuration. We also
note that the method presented in this paper is also stable in the presence of erroneous data.
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