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CHAPTER 7. Operators on Inner-Product Spaces

matrix 7.40 has the required form 7.39, completing the proof in this
direction,

Conversely, now suppose that there is an orthonormal basis of V
with respect to which the matrix of S has the form required by the
theorem Thus there is a direct sum decomposition

V=U10- ©Upnp,

where each Uj is a subspace of V of dimension 1 or 2. Furthermore,
any two vectors belonging to distinct U’s are orthogonal, and each S ly,
Is an isometry mapping U, into U;. If v € V, we can write

V=ULF o+ Uy,

where each u; € U;. Applying S to the equation above and then taking
norms gives

ISVIZ = lISuy + - - - + St |?
= 1Sl + -« - + [|Sum|?
= urll® + -« + [|uml?

= lIvI.

Thus S is an isometry, as desired. (1

Polar and Singular-Value Decompositions

Recall our analogy between C and £(V). Under this analogy, a com-
plex number z corresponds to an operator T, and 2 corresponds to T*,
The real numbers correspond to the self-adjoint operators, and the non-
negative numbers correspond to the (badly named) positive operators,
Another distinguished subset of C is the unit circle, which consists of
the complex numbers z such that |z| = 1. The condition |z] =118
equivalent to the condition 2z = 1. Under our analogy, this would cor-
respond to the condition T*T = I, which is equivalent to T being an
isometry (see 7.36). In other words, the unit circle in C corresponds to
the isometries.

Continuing with our analogy, note that each complex number z ex-
cept 0 can be written in the form

o= (e ()
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where the first factor, namely, z/|z|, is an element of the unit circle. Our
analogy leads us to guess that any operator T € £(V) can be written
as an isometry times ~/T*T. That guess is indeed correct, as we now
prove.

741 Polar Decomposition: If T € £{V), then there exists an isom-
etry § € £(V) such that
T = 8ST#*T.

PROOF: Suppose T € L(V). If v € V, then

ITv|I? = (Tv,Tv)
ST TRy
= (VT*TVT*Tv,v)
= (VT*Tv, VT*Tv)

= [|[VT*Tv|12.
Thus
7.42 ITvIl = INT*T|
forallv e V.

Define a linear map S;: range /T*T — range T by

7.43 S1(¥T*Tv) = Tv.

The idea of the proof is to extend $; to anisometry S € £(V) such that
T = S\/T*T. Now for the details.

First we must check that S; is well defined. To do this, suppose
v1,v2 € V are such that vVT*Tv; = +/T*Tv,. For the definition given
by 7.43 to make sense, we must show that Tv; = Tv,. However,

1 Tvy — Tvall = IT(vi —v2)ll
= [[WVT*T(vy —v2)|
= [[VT*Tv, = VT*Tv,|| |
=0

where the second equality holds by 7.42. The equation above shows
that Tvy = Tv, so §; is indeed well defined. You should verify that S;
is a linear map.

If you know a bit of
complex analysis, you
will recognize the
analogy to polar
coordinates for i
complex numbers: b
every complex number

can be written in the

form e%v, where

0 € [0,2m) and v = 0.

Note that €% is in the

unit circle,

corresponding to §

being an isometry, and

¥ is nonnegative,

corresponding to

VT*T being a positive

operator.
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In the rest of the proof
all we are doing is
extending S, to an

isometry S on all of V.

We see from 7.43 that S; maps range ' T*T onto range T. Clearly
7.42 and 7.43 imply that ||S;u|l = llull for all u € rangeT*T. In
particular, S; is injective. Thus from 3.4, applied to S, we have

it dimrange v T*T = dimrange T.

This implies that dim(range /T*T)* = dim(range T)* (see Exercise 15
in Chapter 6). Thus orthonormal bases (ey,...,em) of (range JTET g
and (fi,..., fm) of (range T)* can be chosen; the key point here is that
these two orthonormal bases have the same length. Define a linear map
S,: (range vT*T)* — (range T)* by

Sal@rer + -+ amem) = arfi + - + Amfm.

Obviously [|Sawll = |wll for all w € (range ~/T*T)*.

Now let S be the operator on V that equals $; on range T*T and
equals S» on (range /T*T)*. More precisely, recall that each v € V
can be written uniquely in the form

7.44 vV =u+W,

where u € range T*T and w € (range ~/T*T)* (see 6.29). Forv €V
with decomposition as above, define Sv by

Sv =S1u+ Sow.
For each v € V we have
S(VT*Tv) =S (¥T*Tv) = Tv,

soT = ST*T, as desired. All that remains is to show that § is an isom-
etry. However, this follows easily from the two uses of the Pythagorean
theorem: if v € V has decomposition as in 7.44, then

ISvII? = I1S1u + Sow ||
= 1Syull? + 1S2wlI?
= |ull® + llwl|?

= lvI?,

where the second equality above holds because S1u € rangeT and
Sou € (range T') L, (]
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The polar decomposition (7.41) states that each operator on V is the
product of an isometry and a positive operator. Thus we can write each
operator on V as the product of two operators, each of which comes
from a class that we have completely described and that we under-
stand reasonably well. The isometries are described by 7.37 and 7.38;
the positive operators (which are all self-adjoint) are described by the
spectral theorem (7.9 and 7.13).

Specifically, suppose T = S/T*T is the polar decomposition of
T € £(V), where S is an isometry. Then there is an orthonormal basis
of V with respect to which S has a diagonal matrix (if F = C) or a block
diagonal matrix with blocks of size at most 2-by-2 (if F = R), and there
is an orthonormal basis of V with respect to which +T*T has a diag-
onal matrix. Warning: there may not exist an orthonormal basis that
simultaneously puts the matrices of both S and +/T*T into these nice
forms (diagonal or block diagonal with small blocks). In other words, S
may require one orthonormal basis and +/T*T may require a different
orthonormal basis.

Suppose T € L(V). The singular values of T are the eigenvalues
of /T*T, with each eigenvalue A repeated dim null(~/T*T — AT ) times.
The singular values of T are all nonnegative because they are the eigen-
values of the positive operator /T*T.

For example, if T € L£(F*) is defined by

7.45 T(z1,22,23,24) = (0,321,222, —-324),

then T*T (21,23, z3,24) = (921,422,0,924), as you should verify. Thus
VT*T(z1,22,23,24) = (321,225,0,324),

and we see that the eigenvalues of /T*T are 3,2, 0. Clearly

dimnull(vVT*T-31) = 2, dimnull(vT*T—-2I) = 1, dimnull VT*T = 1.

Hence the singular values of T are 3,3,2,0. In this example —3 and 0
are the only eigenvalues of T, as you should verify.

Each T € £(V) has dimV singular values, as can be seen by applying
the spectral theorem and 5.21 (see especially part (e)) to the positive
(hence self-adjoint) operator +/T*T. For example, the operator T de-
fined by 7.45 on the four-dimensional vector space F* has four singular
values (they are 3, 3,2, 0), as we saw in the previous paragraph.

The next result shows that every operator on V has a nice descrip-
tion in terms of its singular values and two orthonormal bases of V.
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7.46 Singular-Value Decomposition: Suppose T € £(V) has sin-
gular values sy, ..., sy. Then there exist orthonormal bases (e1,..., en)
and (f1,...,fn) of V such that
747 Tv =si{v,e1)fi+ - +snlv,en)fn
1
for evéry'v eV.
PrROOF: By the spectral theorem (also see 7.14) applied to +/T*T,
there is an orthonormal basis (ey, ..., en) of V such that vT*Te; = s;e;
for j=1,...,n. We have
v={(v,e1)e1+---+{(v,enlen
for every v € V (see 6.17). Apply +T*T to both sides of this equation,
getting
T*Tv = s1{v,e1)e1 + -+ - + sp{V,en)en
This proof illustrates  for every v € V. By the polar decomposition (see 7.41), there is an
the usefulness of the  isometry S € £(V) such that T = S+/T*T. Apply S to both sides of the
polar decomposition.

equation above, getting

Tv =s1{v,e1)Sey + - - - +sp{Vv,en)Sey,

for every v € V. For each j, let f; = Se;. Because S is an isometry,
(f1,-..,fn) is an orthonormal basis of V (see 7.36). The equation above
now becomes

Tv = sp{v,en}fi+ -+« +snlVv,en) fn

for every v € V, completing the proof. [

When we worked with linear maps from one vector space to a second
vector space, we considered the matrix of a linear map with respect
to a basis for the first vector space and a basis for the second vector
space. When dealing with operators, which are linear maps from a
vector space to itself, we almost always use only one basis, making it
play both roles. )

The singular-value decomposition allows us a rare opportunity to
use two different bases for the matrix of an operator. To do this, sup-
pose T € L£(V). Let s1,..., S, denote the singular values of T, and let
(e1,...,en) and (f1,..., fn) be orthonormal bases of V such that the
singular-value decomposition 7.47 holds. Then clearly
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5 0

M(T,(e],---ue‘n}!(f]:--'!fﬂ)) =
0 Sn

In other words, every operator on V has a diagonal matrix with respect
to some orthonormal bases of V, provided that we are permitted to
use two different bases rather than a single basis as customary when
working with operators.

Singular values and the singular-value decomposition have many ap-
plications (some are given in the exercises), including applications in
computational linear algebra. To compute numeric approximations to
the singular values of an operator T, first compute T*T and then com-
pute approximations to the eigenvalues of T*T (good techniques exist
for approximating eigenvalues of positive operators). The nonnegative
square roots of these (approximate) eigenvalues of T* T will be the (ap-
proximate) singular values of T (as can be seen from the proof of 7.28).
In other words, the singular values of T can be approximated without
computing the square root of T*T.
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