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Abstract

Writing the boundary integral equation for an exterior problem of plane elasticity has been subordinate, so far, to hypotheses
on the asymptotical behaviour of solutions at infinity. The sufficient conditions met in the literature are too restrictive and do
not notably cover the case when the loading has a non-zero resultant force. This difficulty can be removed by considering the
problem in displacements relatively to one point located at a finite distance from the loading. Finally, this auxiliary problem allows
the widening of the conditions of validity of the usual formulation of the direct integral method. To cite this article: A. Corfdir,
G. Bonnet, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Conditions de validité de l’équation intégrale directe pour les problèmes extérieurs de l’élasticité plane. L’établissement
de l’équation intégrale de frontière pour un problème extérieur d’élasticité plane nécessite des hypothèses sur le comportement
à l’infini des solutions en déplacements et en contraintes. Les conditions suffisantes établies jusqu’ici sont trop restrictives et
ne couvrent pas le cas d’un chargement ayant une résultante non nulle. Cette difficulté est écartée en considérant un problème
en déplacement relatif. Enfin, ce problème auxiliaire permet d’étendre les conditions de validité de la formulation usuelle de la
méthode intégrale directe. Pour citer cet article : A. Corfdir, G. Bonnet, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Engineering applications justify considering the exterior problem of a half-space or a half-plane in elasticity. The
extension of civil works is indeed small compared to that of the soil mass, which can be considered as infinite, and
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Fig. 1. (a) Integration domain ΩR (in grey); (b) auxiliary integration domain Ω∗
r .

Fig. 1. (a) Domaine d’intégration ΩR (en grisé) ; (b) domaine auxiliaire d’intégration Ω∗
r .

2D analyses are of frequent use in geotechnical engineering. One faces, however, the difficulty of the asymptotic
behaviour of the fundamental solution for plane elasticity which increases as a logarithm at infinity. The solution
of plane elasticity problems on non-bounded domains requires specific conditions at infinity and appears paradoxical
(e.g. [1]). One also has to tackle the difficulty of writing valid boundary integral equations and integral representations.
The purpose of this Note is to justify the use of the boundary integral equation method for any case of loading at the
boundary, including the case of loading having a non-zero resultant.

2. Sufficient conditions for obtaining a boundary integral equation related to 2D elasticity problems within
previous works

Let us consider an open part Ω of a linear elastic, isotropic, homogeneous half-plane, a bounded part Ω of which
having been removed (Fig. 1(a)). There are no volume forces. To apply the direct method, the boundary integral
equation is written on the part of the bounded boundary ∂Ω where displacements or tractions are prescribed. Such an
integral equation is obtained by:

– writing the integral equation on the domain comprised between ∂Ω and a half-circle Sr ;
– looking for the limit of the integrals on Sr when its radius r tends to infinity.

Under assumptions on the behaviour of the solution at infinity, a regular enough solution satisfies a boundary
integral equation (1) for a regular (C2) point of the boundary, and an integral representation (2) (e.g. [2]):

uk(x) +
∫

∂Ω

{(
ui(y) − ui(x)

)
T k

i (x, y) − ti (y)Uk
i (x, y)

}
dSy = 0, x ∈ ∂Ω (1)

uk(x) =
∫

∂Ω

{
ti (y)Uk

i (x, y) − ui(y)T k
i (x, y)

}
dSy, x ∈ Ω (2)

The solutions in displacement and traction are denoted by u and t . Functions U and T are elementary solutions in
displacement and traction for the half plane. The functions Uk

i are defined up to an arbitrary translation. The usual
choice (e.g. [2]), which is adopted here, corresponds to behaviour at infinity such that:

U2
i

(
(x1, x2 = 0), y

) = A2
i ln|x1| + B2

i sign(x1) + O(1/x1), x1 → ±∞ (3)

U1
i

(
(x1 = 0, x2), y

) = A1
i ln(x2) + O(1/x2), x2 → +∞ (4)

where A
j
i and B

j
i are constants.

In the 2D case, different authors have proposed sufficient conditions on the behaviour of the solution at infinity
so that it satisfies a boundary integral equation on ∂Ω . Watson [3] gave: u(x) = o(r−1) and σ = o(r−2); Maiti et al.
[4] u(x) = O(r−1), σ = O(r−2). Constanda [5,6] and Schiavone and Ru [7] used the hypothesis that the ui decrease
at infinity as r−1(a cos θ + b sin θ + c cos(3θ) + d sin(3θ)) + O(r−2). Bonnet [2] gave a less restrictive sufficient
condition: u(x) = O(r−α) and σ = O(r−1−α) with α > 0.



A. Corfdir, G. Bonnet / C. R. Mecanique 335 (2007) 219–224 221
In conclusion, it seems that the least restrictive sufficient condition that is presently known is that given by [2]. All
the sufficient conditions described above are not at all satisfying because they cannot justify studying the boundary
problem related to a point loading or (principle of Saint-Venant) a loading with a non-zero resultant force. The purpose
of the following is to show that the classical boundary integral equations (1), (2) are also valid if the resultant of applied
forces is non-zero.

3. Integral equation and integral representation related to the relative displacement

Poulos and Davis [8] stated that: “displacements due to line loading on or in a semi-infinite mass are only mean-
ingful if evaluated as the displacement of one point relatively to another point, both points being located neither at the
origin of loading nor at infinity”. Accordingly, to mitigate the difficulties related to the behaviour at infinity, it seems
natural to introduce the relative displacements in the formulation of the problem. To this aim, a first step is to build
a boundary integral equation whose solution corresponds to displacements with respect to a reference point x0 taken
within Ω (outside the boundary ∂Ω). This is equivalent to setting a supplementary condition of no displacement for
this reference point x0.

The boundary conditions correspond to prescribed displacements on ∂ΩU and prescribed tractions on ∂ΩF , ∂ΩU

and ∂ΩF being complementary parts of ∂Ω . The displacement is zero at point x0. Hence the following conditions are
met:

u(x) = ud(x), x ∈ ∂ΩU (5a)

t (x) = td (x), x ∈ ∂ΩF (5b)

u(x0) = 0 (5c)

The purpose of this section is to show the following lemma:

Lemma. Assumptions:

(i) u is a vector field on Ω ∪ ∂Ω , which is C0,β (β-Holderian) with β > 0;
(ii) u is such that L(u) = 0, L being the operator of linear plane isotropic elasticity within Ω ∪ ∂Ω ;

(iii) u satisfies the conditions (5).

Consequence: u satisfies the boundary integral equation (12) in any regular point of ∂Ω and the integral represen-
tation (13) below.

Let us consider a function u satisfying the above hypotheses and let us consider the restriction of u to Ωr . The
boundary ∂Ωr of Ωr is constituted by ∂Ω , Sr and Pr (Fig. 1(a)). Solution u satisfies a boundary integral equation (6)
for any bounded open set Ωr [2]:∫

∂Ωr

{(
ui(y) − ui(x)

)
T k

i (x, y) − ti (y)Uk
i (x, y)

}
dsy = 0 (6)

This equation (6) is valid for x ∈ Ωr and for x ∈ ∂Ωr . As the elementary solution T respects the condition of null
traction on Pr , the integration on ∂Ωr is reduced to the integration on Sr and ∂Ω .

Let us introduce the ‘modified Green functions’ defined below by (7), (8):

U∗k
i (x, y) = Uk

i (x, y) − Uk
i (x0, y) (7)

T ∗k
i (x, y) = T k

i (x, y) − T k
i (x0, y) (8)

Replacing x by x0 in (6), making the difference with the original equation (6) and using (5c), leads to:∫ {(
ui(y) − ui(x)

)
T k

i (x, y) − ui(y)T k
i (x0, y) − ti (y)U∗k

i (x, y)
}

dsy = 0 (9)
∂Ωr
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The part of the integral above on Sr can be written as:

IR =
∫

Sr

{(
ui(y) − ui(x)

)
T k

i (x, y) − ui(y)T k
i (x0, y) − ti (y)U∗k

i (x, y)
}

dsy (10)

One has
∫
Sr

ui(x)T k
i (x, y)dsy = −uk(x) (because of the balance condition on the boundary of Ω∗

r with x ∈ Ω∗
r , see

Fig. 1(b)), which leads to:

IR − uk(x) =
∫

Sr

{
ui(y)T ∗k

i (x, y) − ti (y)U∗k
i (x, y)

}
dsy (11)

One can check that U∗k
i (x, y) is O(1/r) when r(y) tends to infinity, and that T ∗k

i is O(1/r2). Due to the Saint-Venant
principle, u and t behave at infinity as the response to the resultant of the forces applied on the boundary. It means that
u is O(ln(r)) and t is O(1/r). Using polar coordinates, it can be concluded that the integral given by (11) tends to 0
as r tends to infinity. By using (10), an integral equation for the relative displacement which is valid for x ∈ Ω ∪ ∂Ω

is finally obtained:

uk(x) +
∫

∂Ω

{(
ui(y) − ui(x)

)
T k

i (x, y) − ui(y)T k
i (x0, y) − ti (y)U∗k

i (x, y)
}

dsy = 0 (12)

The boundary integral equation on ∂Ω is the special case of (12) when x ∈ ∂Ω . Finally, one can write an integral
representation for any point x ∈ Ω . Taking into account the equilibrium condition on the boundary of Ω , leads to∫
∂Ω

−ui(x)T k
i (x, y)dsy = 0 and Eq. (12) yields, for any point of Ω which is not on its boundary, to:

uk(x) =
∫

∂Ω

{
ti (y)U∗k

i (x, y) − ui(y)T ∗k
i (x, y)

}
dsy = 0 (13)

Replacing x by x0 in (13) leads to uk(x0) = 0.
In conclusion, it is proved that any elastic solution in ‘relative displacement’ satisfies particular forms of boundary

integral equation and of integral representation (12), (13). It is worthwhile mentioning that this integral representation
ensures that the condition u(x0) = 0 is satisfied. However, this method does not provide a way for finding the solution
of the classical formulation of the problem since the prescribed relative displacement (5a) is not known from the
boundary conditions in the classical formulation (14b).

4. Back to the classical formulation

Instead of a supplementary condition at x0, conditions on the behaviour to infinity are now considered. In fact,
these conditions at infinity are naturally obtained from the usual choice of Green functions (3), (4). The integral
representation corresponds indeed physically to a suitable set of forces and dipoles, whose behaviour at infinity is
given by relations (3) and (4). The set (14) of conditions at the boundary and at infinity is now:

t (x) = td (x), x ∈ ∂ΩF (14a)

v(x) = vd(x), x ∈ ∂ΩU (14b)

v2(x1, x2 = 0) = A2 ln|x1| + B2 sign(x1) + O(1/x1), x1 → ±∞ (14c)

v1(x1 = 0, x2) = A1 lnx2 + O(1/x2), x2 → +∞ (14d)

where the constants A1, A2 and B2 are generally not known, a priori. They depend on the resultant force of the
loading.

The purpose of the present section is now to prove the following theorem:

Theorem. Assumptions:

(i) Let us consider a solution v of the elasticity problem L(v) = 0 for the half plane;
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(ii) v meets the conditions (14a) to (14d) above;
(iii) v is assumed to be C0,β .

Consequence: v satisfies the integral representation (2) and the boundary integral equation (1) in any regular point
of ∂Ω .

Remark. In other words, it is intended to obtain a boundary integral equation without assuming that v = O(r−α) and
t = O(r−1−α) (with α > 0).

Let us consider a chosen point x0 ∈ Ω (x0 /∈ ∂Ω) and the relative displacement u of any point of the domain defined
as the difference to the displacement at x0 (15):

u(x) = v(x) − v(x0) (15)

Then u is solution of the following auxiliary problem (16), which is a problem in relative displacements with regard
to x0. The traction conditions are the same as in the initial problem and the displacement conditions have been
translated by v(x0).

t (x) = td (x), x ∈ ∂ΩF (16a)

u(x) = vd(x) − v(x0), x ∈ ∂ΩU (16b)

u(x0) = 0 (16c)

v is C0,β and u meets obviously the same property. The Lemma of Section 3 indicates that u meets the integral
equation (12) and the integral representation (13).

Equation (12), valid for x ∈ Ω ∪ ∂Ω , is now considered. Replacing u by (15) in (12) leads to (17), noting that the
integrals can be split into two parts because the right-hand side of (17) has no singularities (x0 /∈ ∂Ω̄):

vk(x) +
∫

∂Ω

{(
vi(y) − vi(x)

)
T k

i (x, y) − ti (y)Uk
i (x, y)

}
dsy

= vk(x0) +
∫

∂Ω

(
vi(y) − vi(x0)

)
T k

i (x0, y) − ti (y)Uk
i (x0, y)dsy (17)

The right-hand side of (17) does not depend on x. It can be shown that it is equal to zero as follows. Assuming that
x ∈ Ω , (17) can be rewritten:

vk(x) +
∫

∂Ω

vi(y)T k
i (x, y) − ti (y)Uk

i (x, y)dsy

= vk(x0) +
∫

∂Ω

(
vi(y) − vi(x0)

)
T k

i (x0, y) − ti (y)Uk
i (x0, y)dsy (18)

In the left-hand term, for k = 1, due to the classical choice of the Green function, the property U1
i ((x1 = 0, x2), y) =

Ai ln(x2) + O(1/x2) is met when x2 tends to infinity. The integral
∫
∂Ω

vi(y)T 1
i (x, y)dsy tends to zero when r tends

to infinity and due to (14d), it can be concluded that the left-hand side can be written as B ln(x2) + o(1) when x1 = 0
and x2 tends to infinity. As the right-hand side is constant, we conclude that B is zero and that the right-hand side is
zero for k = 1 (19).

vk(x0) +
∫

∂Ω

(
vi(y) − vi(x0)

)
T k

i (x0, y) − ti (y)Uk
i (x0, y)dsy = 0 (19)

A similar proof can be used for k = 2, using (3) and (14c). From (17) and (19), it can be deduced that u is solution to
the boundary integral equation (1) for x ∈ ∂Ω and of the integral representation (2) for x ∈ Ω . These results do not
depend on the choice of x0.

The integral representation (2) makes it possible to check that v satisfies the condition to infinity (14c) and (14d),
due to the fact that the Green functions satisfy conditions (3) and (4).
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5. Conclusions

In a first step an exterior elastostatic problem in a half plane was studied by replacing the usually considered
conditions at infinity by a condition of zero displacement at a chosen point, not located on the boundary. If the solution
is assumed regular enough, it meets specific forms of a boundary integral equation and of an integral representation
without any artificial restrictive hypotheses on the behaviour to infinity.

If one assumes in a second step that u satisfies specific conditions to infinity, and that u is C0,β , it has been
proved that u satisfies the usual forms of boundary integral equation and integral representation written on the finite
boundary. Such a result was proved up to now only under largely too restrictive decreasing conditions at infinity. It
can be mentioned that similar results are obtained along similar lines for the full plane problem.
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