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In this paper, the dual reciprocity boundary element method wave model that is governed by a modified

mild-slope equation is developed. Instead of addressing the infinite boundary condition, the model

automatically satisfies the Sommerfeld radiation condition. This work examines the effects of both

the bottom curvature and the slope-squared terms. The conducted numerical experiments have a

topography that is composed of a cylinder mounted on two kinds of basic shoal: types 1 and 2 cubic. In

addition, numerical experiments that combine two cubic type islands with ripple-beds are performed.

The results show that the curvature term dominates the calculation of the sinusoidal-varying

topography; even a disturbance in the topography is insignificant. In contrast to smooth topographies,

the bottom curvature and the slope-squared terms are not dominant. Thus, the extended terms can be

neglected if the seabed is smooth and gentle. When the topographies are combined with ripple-beds,

the difference in the dimensionless wave amplitudes along the sidewall of the types 1 and 2 cubic

islands is found to be 2.9 and 3.02, respectively. According to our study of cubic islands that are

combined with ripple-beds, we can conclude with certainty that even though the variation of the

seabed is very slight, the curvature and the slope-squared terms cannot be neglected for an uneven

bottom.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The mild-slope equation that has been derived by Berkhoff [1]
is a valid method to simulate the linear wave propagation from
deep to shallow water. The assumption of |rh|kh51 in the mild-
slope equation means that the higher-order bottom-effect terms
are neglected in the original derivation of Berkhoff’s procedure.
Motivated in part by significant engineering applications, much of
the relevant existing literature has concentrated on rapidly
varying or steep topography.

In terms of the reflection coefficients, Booij [2] has compared
the numerical results of the mild-slope equation with the finite
element model results for the case of a monochromatic wave
propagating over a plane slope and has concluded that the mild-
slope equation is sufficiently accurate up to a bottom slope of 1:3.
However, it has been pointed out in several investigations that the
classic mild-slope equation fails to produce adequate approxima-
tions for certain types of bathymetry, such as offshore reefs or
bars. Numerous studies have been conducted to improve the
applicability of the mild-slope equation for rapidly and relatively
steep bathymetry. Using Green’s identity, Kirby [3] has developed
009 Published by Elsevier Ltd. All

; fax: +886 4 26525245.

. Wen).
a time-dependent extension of Berkhoff’s mild-slope equation for
the case of a wave propagating over a seabed, which consists of
ripples superimposed on an otherwise slowly varying mean
depth, that satisfies the mild-slope equation. The vertical
integration process is applied to the equation that is derived by
Kirby, which is called the extended mild-slope equation. Tasy et al.
[4] have subsequently followed Kirby’s work to develop a finite
element method (FEM) model. Massel [5] has derived two forms
of the refraction–diffraction equation that are based on the
Galerkin eigenfunction method with different weighting func-
tions. In addition, he has suggested that the extended equation
can be employed to model wave interactions with rapidly
undulating topography (such as a sinusoidal seabed) in which
the curvature term is not small compared to other terms in the
equation. Chamberlain and Porter [6] have proposed a modified
mild-slope equation (MMSE) that contains the curvature and the
slope-squared terms by utilizing the variation principle and the
Galerkin method. It is notable that the most important aspect of
Chamberlain and Porter’s improvement is in retaining a term
involving the second derivatives of the quiescent depth, h. In
addition, Porter and Staziker [7] have derived the corresponding
jump condition that ensures mass conservation where the bed
slope is discontinuous. Furthermore, they have also pointed out
that a similar higher-order approximation, which has been
proposed by Massel [5], is deficient because conservation of mass
rights reserved.
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is violated. The appearance of r2h, where r is the gradient
operator, in the MMSE implies that matching conditions must be
applied to the dependent variable when rh is discontinuous. This
means that the classical mild-slope equation fails to preserve
mass conservation due to the discontinuity in the bed slope and
leads to predictions with less accuracy. A similar work has been
conducted by Chandrasekera and Cheung [8]. They have derived
an alternative mild-slope equation that includes the bottom
curvature and the slope-squared terms. The equation applies the
hybrid element method to simulate wave reflection from ripple-
beds and wave transformation over a circular shoal. Hsu and Wen
[9] have developed a time-dependent parabolic model that not
only includes the higher-order bottom-effect terms but also the
energy dissipation terms. Cho and Kim [10] recast the elliptic
MMSE into the form of a pair of hyperbolic first-order equations
and utilize the internal wave generation technique to simulate
wave propagation in an annular entrance channel. Silva et al. [11]
have developed a numerical model for the elliptic MMSE that
includes the energy dissipation term and have presented results
for problems that involve arrays of cylinders between which the
quiescent depth is allowed to vary. More recently, Chamberlain
[12] has conducted a series of numerical tests on the scattering of
water waves by a finite array of axisymmetric structures. This
investigation is similar to Silva’s works, but the aim of Chamber-
lain’s work is restricted to depth profiles that include submerged
islands, surface-piercing cylinders and their combinations. Nearly,
all of the studies that are mentioned above indicate that the
higher-order bottom terms (including the curvature and the
slope-squared terms) cannot be neglected, especially under the
intermediate water depth condition. Based on the above state-
ments, the most frequently used numerical methods for wave
scattering and diffraction are the finite difference method (FDM)
and the FEM, which can be classified together as the domain
method. The FDM is a classical and straightforward approach that
is used to numerically solve the partial differential equation (PDE),
while the FDM consists of transforming the continuous domain of
the state variables by a network or mesh of discrete points. The
PDE is converted into a set of finite difference equations that can
be solved if they are subject to the appropriate boundary
conditions. Unfortunately, the FDM often cannot fit complex
geometry boundaries very well. On the contrary, a major
advantage of the FEM is that it can easily handle complicated
geometries. However, for the computation domain that is involved
in an exterior-radiation problem, which is unbounded by nature,
the discretization by the FEM has to be truncated somewhere.
Hence, the Sommerfeld [13] radiation condition at infinity should
be used. The non-reflecting boundary can be specified on the far-
field boundary. As a result, its drawback is that the so-called far-
field boundary has to be sufficiently distant from the radiating
source. Furthermore, since the FEM requires internal meshes that
are densely placed near the area of interest, the FEM meshes must
be re-done even for minor changes in geometry in order to satisfy
the element compatibility requirements.

However, with the boundary element method (BEM) that is
based on Green’s second identity, an n-dimension problem can be
reduced to an (n�1)-dimension problem. Due to the fact that the
dimensions of the problem that we are interested in are reduced, a
smaller, linear algorithmic system is obtained, which leads to
more efficient computations by requiring less computer memory.
Differing from the previous two domain methods, the BEM
distinguishes itself as a boundary method. Since the interior
mesh does not have to be dealt with, the mesh preparation of the
BEM is more cost efficient. The most important feature of the BEM
is that it can automatically handle the Sommerfeld [13] radiation
condition at infinity by adapting the governing equation of the
Helmholtz equation. Then, the boundary integration equation,
which is only valid under the no-flow condition, can be obtained.
In reality, the solutions of the Helmholtz equation in polar
coordinates are Hn

(1) and Hn
(2), which represent the outgoing and

incoming waves, respectively. The Hankel function, Hn
(1), fulfills

the Sommerfeld [13] radiation condition, but Hn
(2) does not.

Fortunately, the outgoing wave that is present in the Helmholtz
equation is also the foundational solution of the Helmholtz
equation, which allows the infinite boundary condition to
be automatically satisfied. With these advantages, the BEM has
indeed recently become an essential part of the numerical tools,
especially for infinite problems. Instead of the conventional hybrid
method that is applied to the analytical solution in the
exterior region, many numerical models take advantage of
the BEM to develop mesh-free models in the exterior region
because it automatically meets the Sommerfeld [13] radiation
condition at infinity.

The BEM numerical models are rarely used for the
variable-depth region. This is because the forcing terms will lead
to the integral equation that involves complex domain integration.
In order to overcome this deficiency, a powerful numerical
technique, the dual reciprocity boundary element method
(DRBEM), which transforms domain integrals into the correspond-
ing boundary integrals for the non-homogeneous governing
equation, has been proposed by Nardini and Brebbia [14].
This method adopts an approximating function, which is called
the radial basis function (RBF), in domain integrating terms and
applies Green’s second identity to simplify the domain integration
for the boundary integration. Using the DRBEM enables one
to obtain ‘‘boundary-only’’ formulations for non-homogeneous,
nonlinear and time-dependent problems by eliminating the
domain integral that typically occurs in integral equation
approaches.

To the best of the author’s knowledge, the mild-slope equation
that is solved by the BEM has been rarely used. Zhu [15] first
developed a DRBEM wave model to study the combined reflection
and diffraction of water waves propagating around islands or
offshore structures over a varying seabed. Furthermore, the
GDRBEM has been proposed by Zhu et al. [16] and focuses on
the wave run-up from a tsunami. More recently, the PDRBEM [17]
has been developed to study weakly nonlinear wave run-up
around an island. Even if a number of numerical methods can be
applied to solve the partial difference equations, the numerical
solution of these problems is still under active research. Indeed,
the application of existing MSE solutions, which use BEM, to
practical engineering problems is still limited by the requirement
of slowly varying bathymetry.

The purpose of this paper is to present an improved DRBEM
wave model that is governed by MMSE and to demonstrate water
wave scattering by an axisymmetric island structure that is
mounted on a circular shoal with different topographies. The
problem area includes the possibility of two kinds of basic
topographies, which include types 1 and 2 cubic islands. In
addition, combinations of the cubic island and ripple-beds are
also considered in this study. A numerical approach, which shows
the importance of curvature, is used to obtain the slope-squared
terms. Following the tests, a discussion is presented on which
extended terms that describe the topography can be neglected.
2. Formulation

2.1. Wave theory

In this paper, the fluid is assumed to be incompressible and
inviscid while the flow is assumed to be irrotational. Thus, the
fluid can be expressed in terms of the velocity potential, F(x,y,z,t),
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which satisfies the Laplace equation within the whole domain

r
2
hFðx; y; z; tÞ þ

@2Fðx; y; z; tÞ
@z2

¼ 0; ð1Þ

where rh
2() ¼ (q2()/qx2)+(q2()/qy2). The three-dimensional pro-

blem is defined with a right-handed Cartesian coordinate system
(x,y,z) in which x and y denote the horizontal Cartesian
coordinates while z is measured vertically upward from the still
water level. According to the linear wave theory, a harmonic wave
train can be removed from the velocity potential, F(x,y,z,t), which
describes the wave motion, by setting

Fðx; y; z; tÞ ¼ jðx; y; tÞf ðzÞ; ð2Þ

where f(z) is provided by f(z) ¼ cosh k(h+z)/cosh kh and j(x,y,t) is
a complex function. The wave number, k, satisfies the linear
dispersion relation o2

¼ gk tanh kh, where o is a given angular
frequency and g the gravitational acceleration. Now, by following
the method of Smith and Sprinks [18] and by applying Green’s
second identity to f(z) and j(x,y,t), we have

Z 0

�h
f ðzÞr2

hjþjf ðzÞzz dz ¼ �½f ðzÞjz �jf ðzÞ�z¼0
z¼�h: ð3Þ

Upon substitution of f(z) and the use of the following
formulation rhF ¼ f(z)rhj+jrhf(z),
rh

2F ¼ f(z)rh
2j+2rj � rhf(z)+jrh

2f(z), the dispersion relation
and the relation (q2f(z)/qz2) ¼ k2f(z) together with the linear free
surface boundary conditions of

@2F
@t2
þ g

@F
@z
þ ¼ 0 on z ¼ 0; ð4Þ

the seabed boundary condition can be expressed as

@F
@z
þ

@F
@x

@h

@x
þ
@F
@y

@h

@y

� �
¼ 0 on z ¼ �hðx; yÞ: ð5Þ

By substituting the seabed boundary condition Eq. (5) and the
free surface boundary condition Eq. (4) into Eq. (3), the following
integrated equation can be obtained:

Z 0

�h
½jk2f 2ðzÞ þ r2

hjf 2ðzÞ þ 2f ðzÞrhjrhf ðzÞ þjf 2ðzÞr2
hf ðzÞ�dz

¼
1

g

@2j
@t2
þo2j

 !
jz¼0 � f 2ðzÞrhf ðzÞrhh: ð6Þ

Leibniz’s rule and the harmonic form of the velocity potential,
j(x,y,t) ¼ �ag/o � eiS, where a(x,y) is the wave amplitude and
~S ¼ kxxþ kyy�ot, are applied to derive the linear wave theory,
which leads to the relation (q2j/qt2) ¼ �o2j. Based on the chain
rule, rf(z) and r2f(z) from Eq. (6) can be expressed as a function
of (rh)2 and r2h, respectively. By substituting all of the
expanding terms mentioned above into Eq. (6), we have the
modified mild-slope equation [6–8], which is written in the form

rh ðCCgrhjÞ þ ½k2CCg þ f1ðkhÞgr2
hhþ f2ðkhÞgkðrhhÞ2�j ¼ 0; ð7Þ

where C ¼ o/k is the phase velocity, Cg ¼ qo/qk the group
velocity, rh() ¼ (q()/qx,q()/qy) the horizontal operator, and (rhh)
and rh

2h the bottom slopes and bottom curvatures in the x and y

directions, respectively.
f1 and f2 are both functions of kh and take the following
form [8]:

f1ðkhÞ ¼
½�4kh cosh khþ sinh 3khþ sinh khþ 8ðkhÞ2 sinh kh�

8 cosh3 khð2khþ sinh 2khÞ

�
kh tanh vkh

2 cosh2 kh

f2ðkhÞ ¼
sech2 kh

6½2khþ sinh 2kh�3
½8ðkhÞ4 þ 16ðkhÞ3sinh 2kh

�9 sinh2 2kh cosh 2khþ 12khð1þ 2 sinh4 2khÞð2khþ sinh 2khÞ�:

In order to investigate the characteristics of wave propagation
over the uneven bottom that is described by the MMSE, we
express the complex velocity potential as j ¼ aðx; yÞei~Sðx;y;tÞ.
Substituting this into Eq. (7), we then get

rh ½CCgrha� � ½CCgarhS�rhS

þ ½k2CCg þ f1ðkhÞgr2
hhþ f2ðkhÞgkðrhÞ2�a

þi½ðCCgrhaÞrhSþrh ðCCgarhSÞ� ¼ 0: ð8Þ

In Eq. (8), the real and imaginary parts must be balanced
separately. The real part directly becomes

ðrhSÞ2 ¼
r

2
ha

a
þ
rhðCCgÞrha

CCga
þ
½k2CCg þ f1ðkhÞgr2

hhþ f2ðkhÞgkðrhÞ2�

CCg
:

ð9Þ

We see that the Eikonal equation of the geometrical optics
approximation corresponds to the neglected third terms of right-
hand side in Eq. (8). Those terms represent the diffraction effects.
Furthermore, for the imaginary part, we get

CCgarharhSþ arh½CCgarhS� ¼ 0; ð10Þ

which is collapsed to yield

rh½a
2CCgrhS� ¼ 0: ð11Þ

2.2. Numerical model

Here, the computation domain is divided into two
sub-domains as shown in Fig. 1. The first one is the exterior sub-
domain, which is a constant depth region and is composed of D2,
Gb and GN. The other one is the interior sub-domain, which has
varying quiescent depths and is composed of D1, Gb and Ga.
Between the two sub-domains, a pseudo-interface, which is called
the matching condition and has been proposed by Chen and Mei
[19], is imposed to couple the pressure and velocity in these sub-
domains.

We have assumed that the complex function, j, can be
expressed as ji+js, where ji is the incident wave component
and js is the scattered wave component. In the exterior sub-
domain, MMSE will reduce to the Helmholtz equation, and the
incident wave, ji, will satisfy the Helmholtz equation while the
governing equation of the exterior sub-domain reduces to Eq. (12)

r
2js

2 þ k2
2j

s
2 ¼ 0; ð12Þ

where k2 is the wave number corresponding to the constant depth
and j2

s the scattered wave potential in the exterior sub-domain,
D2. Because the governing equation is the Helmholtz equation, the
fundamental solution j* can be chosen as

j� ¼ 1
4Hð1Þ0 ðk2rÞ ð13Þ
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where H0
(1) is a zero-order Hankel function of the first kind and r

the Euclidean distance between a source and a field point. The
conventional boundary element method can be adopted in the
exterior sub-domain to solve the Helmholtz equation. The
integration formula of the exterior sub-domain can be obtained
after multiplying both sides of Eq. (13) by j*. By applying Green’s
second identity, the boundary integration formulation is subse-
quently obtained

c2ijs
2 þ

Z
GbþG1

½js
2q� �j�qs

2�dG ¼ 0; ð14Þ

where q*
¼ qj*/qn0, q2

s
¼ qj2

s /qn0 and n0 is the outer normal unit
vector.

Since the fundamental solution of the Helmholtz equation is
the Henkel function, the radiation condition at infinity (the so-
called Sommerfeld [13] condition) is satisfied by the Hankel
function

lim
r-1

ffiffiffi
r
p @js

2

@r
� ik2js

2

� �
¼ 0; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
: ð15Þ

It follows that one need only consider the boundary on Ga.
Therefore, Eq. (14) can be simplified and rewritten as

c2ijs
2 þ

Z
Gb

½js
2q� �j�qs

2�dG ¼ 0; ð16Þ

where c2i is dependent upon the location of the source point on
the boundary Gb.

If the boundary Gb is assumed to be smooth, the coefficient c2i

can be set to 0.5. It must be further noted that j2
s and q2

s are all
unknowns. This implies that Eq. (16) provides a relation between
j2

s and q2
s on the matching condition, and thus, it will be later

substituted into the boundary integration equation of the interior
sub-domain, D1. Additionally, the given incident wave condition
can be input by this approach.

In the interior sub-domain, D1, the MMSE can be rewritten as

r
2j1 þ k2

2j1 ¼ ðk
2
2 � k2Þj1 �

f1ðkhÞgr2h

CCg
j1 �

f2ðkhÞgkðrhÞ2

CCg
j1

�
rCCg rj1

CCg
: ð17Þ

Green’s second identity is applied to yield the following
integration formulation:

c1ij1 þ

Z
GaþGb

½j1q� �j�q1�dG ¼ �
Z

D1

bj� dO; ð18Þ

where b ¼ (k2
2
�k2)j1�(f1(kh)gr2h/CCg)j1�(f2(kh)gk(rh)2/

CCg)j1�(rCCgrj1/CCg) and c1i ¼
0:5 if i 2 Ga þGb

1 if i 2 D1

(
.

In the present work, the BEM can be used to solve this problem,
but the corresponding domain integration will occur. This domain
integration makes the numerical procedure difficult and causes
the advantage of the BEM to be lost. Hence, the DRBEM is applied
for the domain integration of Eq. (18). By employing the DRBEM,
the right-hand side of Eq. (18) can be evaluated by transforming
the domain integration into the equivalent boundary integration.
This is achieved by expanding the function b(x,y,j) in terms of x,
which is the radial basis function, at certain points chosen from
the boundary (N+M) and the internal nodes (L) in the domain. The
function b(x,y,j) can be expressed as

bðx; y;jÞ ¼
XNþL

k¼1

akxk; ð19Þ

where xk ¼ 1+rk represents the interpolation function from a field
node to an interpolating node and ak is the undetermined
corresponding interpolating coefficient. The essential goal of the
DRBEM is to express xk, which is a function of rk, as a linear
differential operator of a particular solution, jk. Thus, in the
present work, ck is chosen as the solution to

r
2ck þ k2

2ck ¼ xk: ð20Þ

With the substitution for b(x,y,j) and the application of
Green’s second identity once again, the domain integration on
the right-hand side of Eq. (18) is reduced to a boundary
integration:

Z
D1

bj� dO ¼
XNþL

k¼1

½�dicik þ

Z
G
½j�ck � q�ck�dG�ak; ð21Þ

where di is also dependent upon the location of the source point.
Finally, the boundary integration formulation for Eq. (18) becomes

c1ij1 þ

Z
GaþGb

½j1q� �j�q1�dG ¼
XNþL

k¼1

dicik �

Z
G
½j�ck � q�ck�dG

� �
ak:

ð22Þ

For the Helmholtz-type equations, the particular solution, ck,
for Eq. (20) has been determined by Zhu [15]. Since xk is composed
of the distance power series, Eq. (20) is equivalent to

r2ck þ k2
2ck ¼ rm

k ; ð23Þ

where rk is the distance between a source point k and a field point
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x. A particular solution for Eq. (23) is found to be

ck ¼
p
2

Y0ðk2rkÞ

Z rk

0
rmþ1J0ðk2rkÞdr � J0ðk2rkÞ

Z rk

0
rmþ1Y0ðk2rkÞ dr

� �
:

ð24Þ

After discretizing the boundaries Ga and Gb, Eq. (22) is applied
consecutively for all of the nodes and yields a system of linear
algebraic equations, which are arranged in the following matrix
form

Hj1 � Gq1 ¼ ðHw� GwÞn�1 Kþ
CCgx

CCg
nxn

�1
þ

CCgy

CCg
nyn

�1
�

þF1 þ F2

�
j1; ð25Þ

where H and G are composites of hij ¼
R
Gi
ð@j�ij=@nÞdG and

gij ¼
R
Gi
j�ij dG, respectively. In Eq. (25), j1 is the (N+M+L)�1

vector with the first N elements located on Ga, the next M

elements located on Gb and the final L nodes located on the
internal collocation points. Notice that the matching condition
should be imposed on the N+1-th–M-th elements of the j1 vector
in Eq. (25). The elements that are mentioned above contain the
scattered potential and are different from the other elements of
the j1 vector. Consequently, the mathematical matrix operation
that yields a system of linear algebraic equations should be
carefully performed, and the components of the resultant vector,
which correspond to the boundary Gb, should be added to the
incident wave potential. The definitions of K, c, c, n�1, nx, ny, F1,
F2, CCg, CCgx and CCgy are all (N+M+L)� (N+M+L) matrices, which
can be determined by following the DRBEM procedure. Details of
this method can be found in Partrideg et al. [20] and are therefore
omitted here.
2R = 120cm

R

B

Section 13
3. Model verifications

In order to verify a combined wave refraction and diffraction
numerical model, analytical solutions are always preferable when
examining the reliability of a numerical model. However, to the
best knowledge of the authors, the analytical solution to the
MMSE for the intermediate water depth condition is still lacking.
Therefore, we calculate the conical island by MMSE under the
Incident wave

rb

ra

2D

D1

hbha

x

y

x

z

Fig. 2. Definition sketch of the conical island.
long-wave condition to verify the case while reducing the bottom
curvature term of the conical island and the effect of the bottom
slope-squared term. Thus, the MMSE would approximate the MSE.
Which would consequently allow the analytical solutions to be
y

x0

Incident wave direction 
T = 0.63 sec

Section a

Section 9

Section 5

Section 1

Fig. 4. Definition sketch of the experimental setup of Williams et al. [22].
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compared with the numerical solutions of MMSE under the long-
wave condition. Thus, we expect that the numerical solutions will
coincide with the analytical solutions. In this section, the
analytical solution of the MSE for the conical island, which has
been proposed by Liu and Lin [21], will be compared to the
numerical results.

A sketch of the conical island is shown in Fig. 2, where
ha ¼ 1333 m, hb ¼ 4000 m, ra ¼ 10,000 m and rb ¼ 30,000 m. For
the wave run-up along the sidewall of the island, Fig. 3 compares
the present MMSE (including the reduction to the MSE) results to
the analytical solutions. The numerical solution is obviously in
well agreement with the analytical one. Notice that the wave
period kh of 410 s (kbhb ¼ 0.3144) at rb is very close to the long-
wave limitation.

The experimental data of the wave transformations over a
submerged circular shoal that is surrounded by a region of
constant water depth can be found in Williams et al. [22]. The
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Williams et al. [22] along section 8.
bathymetry is represented in Fig. 4, where R ¼ 0.6 m is the radius
of the shoal, B the height of the shoal and h0 the constant water
depth. The experimental conditions are B/R ¼ 0.4, B/h0 ¼ 0.807
and kh0 ¼ 3.0. The incident wave heights are conducted with a
small wave steepness that ranges from 0.0041 to 0.0205. The
dimensionless wave amplitude along the longitudinal section and
over the center of the shoal is presented in Fig. 5. The results along
the three cross-sections are displayed in Figs. 6–8. Cross-sections
8 and 13, which are, respectively, exhibited in Figs. 6 and 8, are the
best matches between the experimental data and the results of
the conventional FDM model. In great contrast to the conventional
FDM model, the numerical results of the DRBEM–MMSE in all of
the cross-sections exhibit excellent agreement with the
experimental data; in fact, most of the data points that have
been predicted by the model are in exact agreement. Although
slight errors seem to have occurred closer to the center of the
submerged circular shoal (see Figs. 5–8), they are certainly less
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than those of the conventional FDM model. It is also important to
note that when comparing the models to the experimental data,
the DRBEM–MMSE model agrees better than the conventional
MSE models. Moreover, the DRBEM–MSE model presents
significantly better agreement than the conventional FDM model.

In the present study, the comparison between the three models
can be evaluated by a benchmark. The agreement index, Sf, is
defined as [23]

Sf ¼ 1�

PN
i¼1ðPi � OiÞ

2PN
i¼1ðjPi � Oj þ jOi � OjÞ2

;

where Pi is the numerical value, Oi the observed value, Ō the mean
value of the varieties of Oi and N the total measuring point at the
Table 1
The agreement indices for the cross-section of the numerical models.

Model/Section Section-A Section-8 Section-11 Section-13

DRBEM–MMSE 0.9693 0.9892 0.9874 0.9903

DRBEM–MSE 0.9615 0.9835 0.9840 0.9831

FDM—Williams et al. [22] 0.8909 0.9551 0.8956 0.9045
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Fig. 9. Sketches of the parameters fo
control sections. The Sf values of all of the cross-sections are
shown in Table 1 for comparison. Notice that as the indices
approach unity, the accuracy results of the model improve. From
Table 1, it is evident that the DRBEM–MMSE model has an
agreement index that is more reasonable than those of the other
models.
4. Results and discussion

In this section, two kinds of basic shoal profiles, cubic types 1
and 2, are applied to calculate the scattering of waves by a circular
cylinder island that is mounted on those profiles (Fig. 9a). Based
on the basic shoal profiles, the effects of the ripple-beds are also
considered. In addition, the conical island is presented in Figs. 9
and 10 to show the difference between the conical island and
the cubic islands. We assume two different types of
bathymetry profiles and express them as a function of r to analyze
the performance of the extended terms in the cubic island.
The profile equations of the types 1 and 2 cubic islands
are defined as the following equations, respectively:
y1 ¼ �5.0373�10�10

� r3+1.797�10�5
� r2
�0.24174r+680.32
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ius (meter)

Conical Island
Cubic Island Case 1
Cubic Island Case 2

2 2.2 2.4 2.6 2.8 3
ius (meter)

onical Island
ubic Island Case 1
ubic Island Case 2

2 2.2 2.4 2.6 2.8 3

ius (meter)

2 2.2 2.4 2.6 2.8 3

ius (meter)

Conical Island
Cubic Island Case 1
Cubic Island Case 2

x 104

x 104

x 104

x 104

r all of the basic shoal profiles.
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and y2 ¼ �1.0373�10�10
� r3+1.197�10�5

� r2
�0.52174r+3680.3.

Additionally, the combination of the cubic shoals and the ripple-
beds (Fig. 10a) will be discussed later. In order to examine the
relative importance of the bottom curvature term and the bottom
slope-squared term, the contributions of the bottom curvature
(f1gr2h/CCg, MSE C) and the bottom slope-squared (f2gk(rh)2/CCg,
MSE S) terms are calculated and shown separately. The effects of
the bottom curvature and the bottom slope-squared terms of
these shoal profiles are presented in Figs. 9b, c and10b, c. In
addition, Figs. 9d and 10d represent the corresponding kh of the
topographies in order to realize the effects of f1(kh) and f2(kh)
along the radius. It is noteworthy that the D/Lb value of the
topography is 1.03. Furthermore, the coefficients of the curvature
and the slope-squared terms are plotted in Fig. 11. It is clear that
both f1(kh) and f2(kh) approach zero at the deep-water limitation
and are most important in the intermediate water depth, while
being somewhat important in the shallow water condition.
However, the MMSE almost reduces to the MSE in both the
deep-water and the very shallow-water limitation conditions. In
order to emphasize the effects of the extended terms in the
intermediate-depth waves, the wave period of the incident wave
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is set to 120 s, and the corresponding relative water depths are
kbhb ¼ 1.3 and kaha ¼ 0.36.

4.1. Type 1 cubic island

Fig. 12 shows the dimensionless wave amplifications along the
sidewall of the type 1 cubic island for the four mild-slope models
of this test problem. First, a comparison that we can make
concerns predicting the behavior with respect to the position and
magnitude of the wave height of the peaks. Almost all of the
results appear to be in good agreement. One feature of this
example is the fact that the decrease in the difference of the wave
height between the MMSE and the MSE is more apparent for
larger departures from the incident direction. Fig. 12 also indicates
that the maximum wave amplitude always occurs in front of the
island (1801) but, in this case, it shifts from the front side of the
island to the lee side of the island (01). The distribution of the
dimensionless wave amplitudes in the MMSE and the MSE is
displayed in Fig. 13. As expected, the results of the MMSE show a
m
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Fig. 13. Comparison of MMSE and MSE for the type 1 cubic island.
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Fig. 12. Comparison of the type 1 cubic island along the sidewall.
slight difference from the results of the MSE with a steep slope;
however, this is only a minor effect. Fig. 14 presents this
phenomenon and provides evidence to clearly support this
explanation. For the MMSE model, a minor difference in the
vicinity of r ¼725,000 m, which includes both bottom curvature
and bottom slope-squared terms, is observed for a very steep
slope where the effect of the bottom curvature and the bottom
slope-squared terms becomes significant.

4.2. Type 2 cubic island

In this section, we discuss the numerical results of the type 2
cubic island, where the numerical experimental conditions are the
same as the former case. In contrast with the type 1 cubic island,
which has a slope tendency that is steep to gentle from offshore to
the sidewall of the cubic shoal, the slope tendency of the type 2
cubic island is gentle to steep from offshore to the sidewall (see
Fig. 9a). Fig. 15 graphically displays the wave amplification on the
sidewall of the type 2 cubic island. Again, the results of all of the
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Fig. 14. Comparison of the type 1 cubic island at the intersection with y ¼ 0.
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models have similar behavior. As shown in this figure, the peak of
the dimensionless wave amplitudes decreases periodically and
continuously from 1801 to 3601. The results of the MSE S model
coincide with those of the MMSE model rather than others
models, even though the discrepancies are less significant.
Although the effects of the extended terms in the intermediate
water depth (kbhb ¼ 1.3) are strong, the phenomena that are
observed in Fig. 15 still show fewer discrepancies. The comparison
between the amplitudes of the dimensionless wave in the MMSE
and MSE models is presented in Fig. 16. Obviously, the results of
the MMSE and MSE models appear identical. Unlike Fig. 13, where
the peaks of the dimensionless wave amplitudes that surround
the island are denser, Fig. 16 exhibits peaks with dimensionless
wave amplitudes that only occur in front of the island. In contrast
with the front side of island, the dimensionless wave amplitudes
in the lee side of the island, which is a shadow zone, are reduced
because of the variation in the bathymetry and the effect of
diffraction. It can be seen in Fig. 17 that in the front of the island
the numerical results are supposed to coincide with each other;
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Fig. 16. Comparison of MMSE and MSE for the type 2 cubic island.
however, on the lee side of the island, this is slightly violated. This
can be attributed to the extended terms adding to the diffraction
effect in the MMSE model, which includes the bottom curvature
and the slope-squared terms that can describe the effect of wave
diffraction. Eq. (9) can express the difference between the
conventional wave refraction theory and the MMSE. Instead of
the conventional wave refraction theory (rhS)2

¼ k2, the left-side
term of Eq. (9), (rhS)2of MMSE, also depends on the extended
terms f1gr2h/CCg and f2gk(rh)2/CCg.

4.4. Effects of the ripple-beds

There are many previous works concerning wave propagation
over uneven topography or ripple-beds. In this section, we have
performed a literature survey [5–10]. Overall, the results of
previous reports indicate that the bottom curvature and the
slope-squared terms play an important role in improving the
accuracy of the MSE and cannot be overlooked, especially for
rapidly varying topography. Unfortunately, in the literature, there
has been very limited study of wave scattering by island
topography with ripple-beds. Thus, in this section, some numer-
ical experiments on wave scattering by island topography with
ripple-beds are conducted, and the disturbance of the ripple-beds
is addressed by numerical experiments. In order to construct the
ripple-beds, a sine function is combined by superposition to the
cubic island profiles in the 15,000–25,000 m region. The ampli-
tude of the sine curve is 5 m, and the period is 0.25p. The profiles
of the two topographies can be expressed as the following
functions of r:

y1 ¼

�5:0373� 10�10 r3 þ 1:797� 10�5 r2 � 0:24174r þ 680:32;

10000oro15000 and 25000oro30000

�5:0373� 10�10 r3 þ 1:797� 10�5 r2 � 0:24174r þ 680:32þ 5 sinð4pÞ;
15000rrr25000

8>>>><
>>>>:

and

y2 ¼

�1:0373� 10�10 r3 þ 1:197� 10�5 r2 � 0:52174r þ 3680:3;

10000oro15000and25000oro30000

�1:0373� 10�10 r3 þ 1:197� 10�5 r2 � 0:52174r þ 3680:3þ 5 sinð4pÞ;
15000rrr25000

8>>>><
>>>>:

Fig. 18 shows the dimensionless wave amplitudes along the
sidewall of the type 1 cubic island combined with the ripple-beds.
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with y ¼ 0.
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As shown in this figure, the wave phases of all of the solutions in
the lee region of the island (310–3601) have similar behaviors, and
the maximum difference occurs at 2701, where the magnitude is
2.9. Obviously, MMSE and MSE C coincide with each other,
providing evidence that the bottom curvature term is dominant
instead of the bottom slope-squared term. In addition, the
dimensionless wave amplitude peak of the MMSE occurs in
front of the island, which is in contrast with that of the MSE
occurring on the lee side of the island. The overestimation of the
MSE on the lee side of the island and the underestimation in the
front of the island are also illustrated in Fig. 18. These findings
support the previously reported claim [5–10] that if the curvature
and the slope-squared terms are not accounted for, then accurate
results for the rapidly undulating topographies are not possible.
Fig. 19 depicts a comparison of the numerical results of the four
models along the intersection with y ¼ 0. Again, the predictions of
the MSE C are similar to those of the MMSE. An interesting
phenomenon that can be observed is the appearance of a peak in
the MMSE occurring in the ripple-bed region. It must further be
noted that the overestimation of the MSE along the sidewall in
front of the island is 1.64. In other words, the magnitude of the
MSE is almost 2.4 times that of the MMSE.

Figs. 20 and 21 show the results of the type 2 cubic island,
where the shape of the shoal is taken to be a cubic polynomial
with a negative tendency (Fig. 4a). Fig. 20 compares the
dimensionless wave amplitude of different mild-slope models
along the sidewall. Again, the incident wave condition is the same
as in the previous cases. The solid line represents the results of the
MSE case, the dashed line is for the MMSE case, the ‘dash–dot’ line
is for the MSE C case, and the dotted line is for the MSE S case. Fig.
20 illustrates that all of the mild-slope models predict a similar
position for the phase in the 240–3601 region and that the
maximum difference occurs at 1811, where the magnitude is 3.02.
The MSE and MSE S models tend to underestimate the
dimensionless wave amplitudes. This is because the dominant
term, which is the bottom curvature term, is neglected in this
model. Again, the findings show how important the extended
terms are. Fig. 21 shows the dimensionless wave amplitudes at
the intersection with y ¼ 0. This figure shows that the position
and magnitude of the dimensionless wave amplitudes that have
been predicted by the MMSE are strongly affected by the ripple-
beds that are located in the vicinity of r ¼ �22,000. The wave
height curve of the MMSE model in Fig. 21 shows a peak that is
obviously affected by the ripple-beds; however, the MSE model
does not show this. The difference in the dimensionless wave
amplitude of the MMSE and the MSE on the sidewall is 3.02, while
the magnitude of the MMSE is almost 2.3 times that of the MSE.
The considerable difference may be due to the fact that the MSE
model cannot respond to the effect of the wave refraction and
diffraction attributed to the ripple-beds. Consequently, the
oscillation in the region r ¼ 15,000–25,000 m of the MMSE
curve on the lee side of the island supports the claim that is
reported above.
5. Conclusions

This investigation employs the modified mild-slope equation
instead of the conventional mild-slope equation to improve the
wave model via an integral numerical scheme, which is called the
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dual reciprocity boundary element method. This model is
evaluated by a series of cylindrical topographies that include the
cubic island and the cubic island combined with ripple-beds. After
several scenarios are addressed, the principal findings suggest
that (1) the effects of the bottom curvature term and the slope-
squared terms are small in smooth topographies; in other words,
the MSE can provide acceptable numerical results in smooth
topographies; (2) the effect of the bottom curvature term is
dominant in the sinusoidal topography, while the bottom slope-
squared term is small in all numerical experiments; (3) due to the
neglect of the bottom curvature and the slope-squared terms in
the MSE for the ripple-bed experiments along the sidewall, large
differences in the corresponding dimensionless wave amplitudes
of the MSE and the MMSE of almost 2.9 and 3.02 are found for the
types 1 and 2 cubic islands, respectively; and (4) these findings
support the notion that if the extended terms are not accounted
for, then accurate results for rapidly undulating topography
cannot be obtained.
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