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Fig. 16. Time  history of charge  per  unit  length at y = 11’ and x = l2 
(using 5 poles). 

flux density. On Fig. 15 the solid lines beginning at c t /L  = 7.0 
indicate the results of the time independent summation process 
as one includes one, three, and five poles in the sum. This in- 
dicates the  rate of convergence of the  method to  the late  time 
behavior obtained by the limiting process which in a sense should 
include all pole terms. Fig. 16 shows the  time histories for the 
charge densities at  the ends of the other two wire elements, y = 
+Il‘ and x = i2. 
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Extended  Boundary  Condition  Integral  Equations for 
Perfectly Conducting  and Dielectric  Bodies: 

Formulation and Uniqueness 
K. A. AL-BADWAIHY AND J. L. YEN 

Absrracz-The equivalence  theorem is used to derive  novel  generalized 
boundary  condition (GBC) integral  equations for the tangential com- 
ponents of the electric and magnetic  fields  on  the  interfaces of a h i t e  

number of dielectric  or  conducting scatterers. Closed surface,  plane,  and 
line  extended boundary conditions (EBC) equivalent to the GBC are 
introduced. The GBC integral  equations can now be replaced by any of 
these EBC integral  equations  whose  solutions are unique  and easy to 
obtain  numerically  using the moment  method. A perfectly  conducting , 

sphere  and  a  dielectric  sphere in the electrostatic field of two equal  and 
opposite  point  charges are presented as simple  examples of the general 
procedure. 

INTRODUCTION 

The integral equation approach is well suited for  the numerical 
solution of scattering and radiation problems. However, the 
conventional form of an. integral equation for such problems 
may have either or  both of the following two drawbacks. First, 
the kernel of the integrai equation is weakly singular when the 
source and observation  points coincide and secondly, the 
equation  does not have a unique solution at values of k for 
which resonant modes can exist  in the interior, where k is the 
wave number [l 1. 

Albert and Synge [ 2 ]  used the reciprocity theorem to formulate 
the problem of scattering by a. perfectly conducting body. 
Using a dipole field as the auxiliary field, they obtained a 
generalized boundary  condition (GBC) integral equation by 
requiring the electric field to vanish everywhere inside the 
scatterer. Because of the analytic continuability of solutions of 
partial differential equations of elliptic type, Waterman [3] 
showed that one need only make the field vanish in  any  portion 
of the interior to ensure that  the field vanishes everywhere inside 
the scatterer. This is referred to  as Waterman’s extended boundary 
condition (EBC). 

So far  the  GBC  and  the EBC  have mostly been applied to 
perfectly conducting bodies. A novel method for deriving GBC 
integral equations for dielectric and composite scatterers is 
presented in this paper. The EBC  concept is redefined as the 
requirement that a set of observables vanishes over an observa- 
tion domain  in  the zero-field region. It is shown that  the solution 
is unique if the observation domain is restricted to a closed 
surface, a portion of a plane, or a portion of a straight line, all 
completely in the zero-field region, provided the  proper ObseN- 
ables vanish in each case. This class of EBC, when applied 
explicitly, is simpler than analytic  continuation  methods [ 5 ]  
and  the conventional field integral equations. 

FORMULATION AND UNIQUENESS OF GENERALIZED BOUNDARY 
CONDITION INTEGRAL EQUATIONS 

We proceed to derive GBC integral equations for a scattering 
problem using the equivalence theorem [ 6 ] .  The unknown 
functions are the  components of the electric and magnetic 
fields tangential to  the interfaces between different media. The 
number of equations is twice the number of interfaces between 
dielectrics plus  the  number of interfaces between perfect con- 
ductors and dielectrics. The dielectric bodies may be lossy or 
lossless. 

Single Scatterer 

Fig. l(a) shows a homogeneous body with linear constitutive 
parameters (cl,pl) and impressed sources (J , ,Ml)  bounded by 
a closed surface S and embedded in an infinite homogeneous 
host medium (co,p0) with impressed sources (Jo,Mo).  It is required 
to find the tangential components of the electric and magnetic 
fields on S. 

From  the equivalence theorem [ 6 ] ,  the field outside S can be 
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Fig. 1. Single scatterer and generalized boundary  condition  component 
problems. 

field in V which can now be assumed filled with the  host medium. 
Since the currents are now radiating in a homogeneous unbounded 
space, the field everywhere can be simply obtained using the 
unbounded Green’s function. A similar argument can be used 
to show that  the surface currents (- j l ,  - m,) along with (Jl,Ml) 
radiating in a homogeneous unbounded  space of constitutive 
parameters (cl,pl) produce  the same interior field as  the original 
problem but zero field outside S, as is shown in Fig. l(c). We 
have thus derived two “component”  scattering problems from 
the original problem, each of which involves a single medium. 
The conditions that  the fields vanish in appropriate regions in 
the component problems constitute the GBC‘s for  the original 
problem. 

Two coupled integral equations for ( j l , m l )  can be easily 
written by imposing the zero-field conditions in Figs. l(b)  and 
l(c). These are  the  GBC integral equations for the original 
scattering problem. Use can be made of the following integral 
representation [TI: 

E ( r )  = TEin‘(r)  - - { jop(n‘  x H)q5 4‘, I 
- (n‘ x E )  x V‘b - (n’ - E)V‘q5} ds‘ 

- n  

~ ( r )  = THinC(r )  + - {jwc(n’ x E ) b  j; 
+ (n’ x H )  x V’b + (n‘ . H ) V ’ + }  dr’ (1)  

where r is the observation point position vector. f is used to 
denote the principal value integral over S [7], Einc and Hinc 
are  the contributions due to the impressed sources in each case. 
The vector operations indicated are performed in the primed 
source  coordinates and 

e - jk l r - t ‘ l  
q5=--.- 

lr - r‘l 
, r’ E S. 

The factor T equals 1 or 2 if the  observation  point lies outside 
or  on a smooth portion of S, respectively. If the observation 
point lies on  an edge, then 

where f2 depends on  the edge solid angle and is defined in [7, 
p. 1631. In (1) S has a tangent that may not be an analytic 
function of position at all points on S, but the field  is nonetheless 
required to have a finite mean value.  Since many equivalent 
sources outside a given region can produce the same field in 
that region, it is necessary to show that these two  equations 
uniquely define (jl,ml). 

Uniqueness 

Let ( j l , m l )  and (jl’,ml’) both satisfy the  GBC in Figs. l(b) 
and l(c). It then follows that (Aj = j ,  - j , ’ ,  Am = m, - m,’) 
produce  zero field both outside and inside S. In particular, the 
tangential components Er+,Htf,Et-,H,- vanish on S where the 
first two result when S is approached  from  outside and  the 
latter result when S i s  approached  from inside. This is independent 
of the two media involved. Since Aj = n x (H,’ - Hz-)  and 
Am = (E,+ - E*-) x n, it follows that Aj = Am = 0 every- 
where on S and uniqueness is proved. Because the tangential 
components of both E and H are  thus uniquely specified on S, 
the field outside or inside S is uniquely determined because of 
the general uniqueness theorem of the electromagnetic field  [6]. 

Composite Scatterers 

The preceding formulation can now be extended to multiple 
composite scatterers. Consider a finite number N of regions 5 
bounded by closed surfaces Si, each occupied by a medium whose 
constants are (ci,pi) and having impressed sources (Ji,Mi), 
i E [1,N], all embedded in an unbounded  host medium (co,p0) 
with impressed sources (Jo,Mo). Let ji = nj x Hi and mi = 
Ei x ni where Ei and Hi are  the electric and magnetic fields on 
the surface Si and ni is the outward  normal to Si. The equivalence 
theorem can be used as in the case of a single scatterer to arrive 
at a coupled set of integral equations  for the unknowns ( j i ,mi) ,  
each of which is governed by a component scattering problem 
involving a single medium. 

The procedure is  best explained by considering the case of two 
scatterers depicted in Fig. 2(a). One  GBC integral equation for 
( j2 ,m2) is obtained  from  the  component problem of Fig. 2(b) 
by requiring the field to vanish outside S2. Another  equation  for 
(j3,m3) is obtained  from the component problem of Fig. 2(c) 
by requiring the field to vanish inside S3. Finally, two equations 
are obtained from  the third  component problem of Fig. 2(d) 
by requiring the field to vanish in V, and outside S3, respectively. 
To simplify computation in each component problem we assume 
the zero-field regions are filled with the same medium in which 
the actual field is retained. The uniqueness of the general many- 
body  formulation can be proved easily following the  same 
reasoning as in the single body case. 

EXTENDED BOUNDARY COhmlTION INTEGRAL EQUATIONS 
If one restricts the observation point in the  GBC integral 

equations to subdomains  in the zero-field regions, EBC integral 
equations are obtained. If such observation domains do not 
intersect the bounding surfaces of the zero-field regions, the 
resulting EBC integral equations will have regular kernels, a 
desirable feature  for numerical solution. The line type EBC was 
used before to study  the dipole antenna of revolution [2], [8], 
[9]. A boundary  condition closely related to  the closed surface 
type was also used [lo]. However, the EBC has only been used 
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n 1.' - .b 4% a) Waterman's EBC: The observation  domain is a subvolume 
Zero 
fseld V'  E V and  the observables are two  scalars defining the electro- 

magnetic field in V .  
b) Closed Surface EBC: The observation  domain is a closed 

surface S' E V and  the observables are either the tangential 
s, (&& component of the electric or  the magnetic field or  both or a 

linear combination of both. S' may coincide with S in a limiting 
process. 

c)  Plane EBC: The observation  domain is a portion of the XY 
plane totally contained in V and  the observables are E,, Hz, 
(aE,/Cz), and (2HJZz). 

d )  Line  EBC  or Axis Boundary  Condition ABC: The observa- 
tion  domain is a portion of the Z axis contained in V and  the 
observables are 

-m2 

( b )  

Fig. 2. Multiple  composite  scatterer  and generalized boundary  condition 
component  problems. 

"0 

Fig. 3. Extended  boundary  condition  for  interior  and  exterior  problems. 

for axially symmetric cases and its uniqueness has not been 
thoroughly investigated. In  the following we consider the EBC 
under general asymmetric fields and show their uniqueness. 

Let closed surface S divide space  into  two regions 6 and Vo 
inside and outside, respectively, as is shown in Fig. 3. Let V 
stand  for  the zero-field region (V can  be  either Vi or Vo) and let 
z be an arbitrary direction. We classify EBC as follows. 

where (p ,  $,z) is a cylindrical coordinate system. 

Uniqueness 

Although the EBC is not unique  in general, the particular 
choices given here are unique as shown in the following. 

a) Watermun's EBC: This  condition can be analytically 
continued to show that  the field vanishes everywhere in V and 
is thus unique for  both interior and exterior problems [3]. For 
the interior problem the field  is required to vanish in the  open 
volume bounded internally by the spherical surface S2 (see Fig. 3). 
S2 encloses S and can  touch it at any  number of points. 

6) Closed Surface EBC: There are three possible forms of the 
extended boundary  condition where S' stands  for either Si' or 
So' for exterior and interior problems, respectively. 

I )  Either Et or Ht vanishes  over S': Since Poynting's vector 
vanishes over S' and noting that there are  no sources outside 
So' or inside Si' and using the radiation  condition for  the interior 
problem, it follows from Poynting's theorem that if the mediurq. 
is lossy, then the field vanishes everywhere in V' and hence in 
V by the same  argument of analytic  continuation of Waterman's 
EBC. However, for lossless media Poynting's theorem gives 

and hence this  condition is not unique for  both interior and 
exterior problems at values of the wave number k for which the 
electric and magnetic energies stored in V' are equal. 

2) Both Et and H ,  vanish  over Si': The electromagnetic 
field in V' due to sources outside V' is the same  as that produced 
by a surface distribution of electric and magnetic currents with 
densities equal to the components of the magnetic and electric 
fields tangential to S', respectively. Since these components are 
zero on S', it follows that  the field van.bhes everywhere in Y' 
and hence in V by the same  argument of analytic continuation 
in Waterman's EBC. This  condition is thus unique for lossy or 
lossless media. 

3) (.Et + n x H,) = 0 over Si' for exterior problems: 
Re { a ]  > 0 and a can be  arbitrarily specified over Si' subject 
to  the preceding constraint. Let us apply Poynting's theorem to 
Vi' bounded by Si' under the preceding condition, noting that no 
sources exist in Vi': 

Re 6,. (E,  x H,") .  ds = 0 = f Re {E}IE , \~  ds. (4) 

Since Re {a }  > 0, then Et = Ht = 0 on Si'; hence EBC 3 is 
equivalent to EBC 2 and both  are unique. Let us now consider 

Si ' 
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Fig. 4. Sphere in electrostatic  field of two point  charges. 

the limiting case where Si' is allowed to coincide with S. Condition 
3 thus gives 

j + a(n x m) = T ( n  x H:"' + n X H," f U E P  + aE;F). 
( 5 )  

c) Plane EBC: I t  is shown in  the Appendix that if E, = 
(2E,/az) = 0 on a portion of the XY plane  in V ,  then E, vanishes 
everywhere in V .  The same applies to Hz. Assuming no  TEM 
modes in V ,  all other field components can be  related to E, 
and Hz. Thus, all the field components vanish everywhere in V .  
This is true  for  both interior and exterior problems and hence 
this  condition is unique. 

d )  Line EBC: It is shown in the Appendix that if E, and Hz 
both satisfy (2), then they vanish everywhere in V .  Assuming no 
TEM modes, then all other components vanish in V and this 
condition is thus unique. If a scatterer is axially symmetric 
then a very convenient choice of the Z axis is the axis of sym- 
metry. Moreover, if a Fourier series representation for  the  angular 
dependence of the surface currents is used then the integration in 
(2) can be evaluated analytically, yielding direct integral equations 
for  the expansion coefficients. 

In a moment  method  solution with a suitable choice of the 
basis functions, the aforementioned class of EBC yields good 
results with a considerable reduction in computer  time and 
storage requirements as compared to conventional integral 
equations. The preceding proof of the uniqueness of this class 
of EBC integral equations removes doubts  about them and 
should  stimulate efforts in finding efficient computer  algorithms 
for their solution. 

EXAMPLES 
Two  electrostatic examples are considered here. The first is a 

perfectly conducting  sphere and  the second is a dielectric sphere 
where each  sphere is placed in the electrostatic field  of two  equal 
and opposite  point charges located at equal and opposite distances 
from  the center of the sphere. General electromagnetic problems 
can be dealt with in a similar manner. 

a) Perfectb Conducting Sphere: The configuration is shown in 
Fig. 4. The line EBC integral equation for  the charge density 
on the sphere is 

where r f  = 41 + z2 k ~ z z ' ,  rl = b - z, r, = b + z, z' = 
cos (8) and q(cos 0) = 2no(8), where CT is the surface charge 
density. The potential of the sphere is zero and its  radius is 1 m. 
The exact solution of this integral equation is 

where R* = J 1  + b2 k 2bz. 
Equation (6) was solved numdically using the moment method 

with Chebyshev polynomials as basis functions and delta function 
weights. The matching  points were equally spaced along the axis. 
The various integrals were obtained numerically with a relative 
error less than lob4 using an iterative Simpson's rule. The 
expansion coefficients obtained in this way are shown in Table I 
along with the exact coefficients. The solution convergence is also 
shown graphically in Fig. 5. 

6) Dielectric Sphere: The configuration is  the same as in Fig. 4 
where the sphere is made of a homogeneous dielectric whose 
relative permittivity is E,. The aforementioned formulation 
yields the following two coupled integral equations : 

where &') = 2n&,Er, E, is the radial  component of the electric 
field on  the surface of the sphere and &z') = coV(@, where 
V ( 0 )  is the potential on the surface of the sphere. 

A moment  method  solution was applied to  the preceding 
coupled integral equations using Chebyshev polynomials as 
basis functions for  both d(z') and p(z')  and delta  function weights. 
The M matching  points inside the sphere were evenly spaced 
along the axis z1 = (2i - 1)/2M, i E [1,M]. The N matching 
points  outside the sphere were inversely spaced  along the axis 
zi = 2N/(2i - l), i E [ I , N ] .  The expansion of ,u(z') is truncated 
to M terms while that of &z') is truncated to N terms. The two 
simultaneous  matrix  equations  obtained  can easily be solved 
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TABLE I 

M a3 a5 a7  a9 *ll  a13 a15 

2 I 0.941986  0.323228 
0.963847 0.330100 0.110000 
0.967131 0.334227 0.099718  0.035360 
0.967549 0.334572 0.101710  0.028028  0.010453 

6 ' 0.967475  0.334503  0.101656  0.027125  0.012697  -0.W1946 

j i  

0.967578  0.334601  0.102020  0.020996  0.048666  -0.074360  0.047047 

Exact 0.967688  0.334721  0.101638  0.029211  0.008142  0.002226  0.000601  0.00016 

TABLE II 
M 

P(Z) = c a2,- 1T22- 1(z) 
1=1  

1.1 al a3 a5 a7 a9  all  a13 
I 

0.4904  0.1940 
0.5046  0.1996  0.0688 , 0.5067  0.2023 
0.5070 

0.0625 
0.2025 

0.0230 
0.0637 

0.5071 
0.0182  0.0066 

0.2025 
0.5072 

0.0640 
0.2026 

0.0171 
0.0642 

0.0078  0.000035 
0.0131  0.0331  -0.051900  0.03477 

Exact I 0.50713  0.20255  0.06375  0.01862  0.00524  0.00144  0.00039 

Chebyshev 

Fig. 5. Numerical  solution  convergence for perfectly  conducting  sphere. 

to give the expansion coefficients of both p(z') and cp(z'). Table I1 
shows the resulting coefficients for p(z3 and N = M along with 
the exact coefficients. 

Inspection of Tables I and I1 shows  that the present method 
enables  one to  obtain  accurate low-order  solutions. The  computer 

time and  storage space needed are considerably reduced compared 
to  standard  boundary condition integral equations. 

Error  Propagation 
In  a numerical solution  algorithm the EBC is only approx- 

imately satisfied. The residual error field in the observation 
domain  propagates to  the surface S according to  the field 
expansions in the Appendix. The  propagation process results in 
larger  errors in the surface  quantities than actually exist in the 
observation  domain. Because  of simplicity, the line  EBC can be 
carefully handled  to  provide  accurate low-order solutions. If 
more  accurate solutions are needed, the closed surface  type EBC 
seems  very promising especially if S' is kept close enough  to S. 

CONCLUSIONS 
Integral equations based on generalized boundary  conditions 

are derived for  multiple  composite  scatterers. The  formulation 
applied to  both perfectly conducting  and  dielectric  scatterers. 
The EBC concept is generalized and particular choices of the 
EBC equivalent to  the GBC are given. A combined  electric and 
magnetic field integral equation is also derived. Two examples 
are given to  demonstrate  the  use of the EBC integral  equations. 

APPENDIX 

Field Expansion in Cartesian Coordinates 

Let t,b be a continuously differentiable solution of the Helm- 
holtz  equation in a finite region V .  Then ~ can be represented by 
[61 

!Hx,Y,z) = F,(kl,kz)h(k,x)h(kzy) sin (k3z) dk, dkz s 
+ J F,(k,,k,)h(k,x)h(k,y) cos ( k 3 Z )  dk, dk2 

(A.1) 
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where Fo,Fe and the integration contour in the complex klk2  
plane define t,b in V ,  

and k,’ = k2 - k12 - k22. 

and carrying out the integrations term by term, we obtain 
Expanding both sin (k , z )  and cos ( k 3 z )  in powers of (k3z)  

$(x, y , z )  = f, cos ( k t )  + fo sin ( k z )  + - ~ 

(-y (kz)’”+l 

1 m !  2m 

* (i, ,(kz)fom + i n -  l(kz)f,”‘) (A.2) 

where in,(?) is a spherical Bessel function of first kind and 

0 

An analytic continuation process can be used to continue 
(A.2) to points where it may diverge by moving the origin as in 
[ 5 ] .  It  thus follows that  the following holds. 

Theorem 1: An analytic solution t,b satisfying the Helmholtz 
equation vanishes everywhere in V if 

*(X,Y,O) = 
2t,b(X,Y,Z)I = 0 

S Z  i z = o  

over a portion of the X Y  plane. 

Field Expansion in Cylindrical Coordinafes 

In a cylindrical coordinate system (p,d,z), a  continuous 
differentiable solution t,b of the Helmholtz equation in a finite 
region V is  given  by [6] ; 

a, 

$ ( P , ~ , Z )  = an(p,z) COS (nd) + Bn(p,z)  sin ( n d )  (A.3) 
5c 

where K~ has  the following representation: 

K&Z) = Fen(I-)J,(p<) COS 1.z  dA s 
” 

where 5 = v ’ k 2  - iU2, Re (Q > 0, and J,(?) is a Bessel function 
of first order. F,,,Fo,, and  the integration contour in the complex 
3, plane define a in V .  A similar representation holds for 8,. 

Expanding J,(pr) in powers of (p<) and integrating term by 
term, we  get 

where 

64.5) 

Equation (A.3) can be written as 

[cos (n4)a ,y (z )  + sin (n4)bnm(z)]  (A.6) 

where 

sob) = t , b ( O , 4 J ) .  (A.7) 

The electrostatic version of (A.6)  is  widely used in electrostatic 
electron lens calculations and is considered in [ll 1 .  

An analytic continuation process can be used to continue 
(A.6) to points where it may diverge by moving the origin as in 
[ 5 ] .  It, thus follows that  the following holds. 

Theorem 2: An analytic solution t,b of the  Helmholtz equation 
vanishes everywhere in V if all the a and b given  by  (A.7) vanish 
over a portion of a  straight line in V .  
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A Technique to Combine  the  Geometrical  Theory of 
Diffraction and  the  Moment  Method 

W. D. BURNSIDE, C.  L. YU, AND R. J. MARHEFKA 

Abstract-A technique is presented in which the  moment  method @fM) 
is combined  wjth the geometrical  theory of diffraction (GTD). Since 
diffraction  solutions exist for only relatively few structures, it is very 
desirable to have  a  means of obtaining the diffracted  field  for  additional 
structures. Solutions for many  structures  can be obtained  from this 
combination of techniques,  and  thus  one is able to handle a wide variety 
of new  problems  which  could not  have  been  solved  previously.  The ap- 
proach is developed  and  applied to a  variety of structures in  order to 
illustrate the approach  and its validity. 

INTRODUCTION 

For  many years, the geometrical theory of diffraction (GTD) 
has been applied to  antenna  and scattering problems in which the 
structure is large in terms of the wavelength. However, diffraction 
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