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I. INTRODUCTION

Sound scattering by a finite number of arbitrary scatterers has remained a complicated
problems. For this reason, only limited numerical results have been documented in the liter-
ature. The main difficulty perhaps has been associated with the lack of efficient numerical
algorithms and the limited computing capability. Among many useful formalisms suggested
for describing sound scattering by a finite group of arbitrary scatterers, three approaches
appear to be particularly useful, that is, the self-consistent approach [1, 2], theT-matrix
method [3, 4], and the method of moments [5].

The recent expanding capability of digital computers has in principle made it possible
to compute the more complicated problem of multiple scattering from a finite number
of scatterers. Following the self-consistent scheme in Foldy [1], the multiple scattering
processes can be represented by a set of coupled linear equations. The solution to these
equations can be obtained by a matrix inversion. Such a procedure has been used previously
to investigate multiple scattering by isotropic scatterers, especially the acoustic localization
in bubbly liquids in which air-filled bubbles are isotropic scatterers [6]. The purpose of
this paper is to generalize the numerical matrix method in Ye and Alvarez [6] to more
complicated cases involving many anisotropic scatterers. It will be clear from the derivation
that the present approach can be used for scattering from many scatterers with arbitrary
configurations for a wide range of situations.
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II. THE SELF-CONSISTENT FORMALISM

We follow the approach of Foldy [1] and Twersky [2]. Consider a wave transmitted from a
projector to a number of scatterers. The scattered wave is received by a receiver, which may
not be located at the same position of the projector, i.e., we consider the bistatic scattering.
When the receiver is located at the position of the transmitter, it is called the backscattering.
We investigate the signal at the receiver. The wave is described by the incident wavevector
|Ekin| = k=ω/c. Suppose that there areN scatterers in the acoustic path. The position of
each scatterer is denoted asEri (i = 1, 2, . . . , N.)

When a wave encounters a target, it will be scattered. The scattered wave will be scattered
consequently by other scatterers. This process is repeated to establish an infinitely recursive
pattern of rescattering between all scatterers, causing the scattering characteristics of each
scatterer to change. The multiple scattering which ensues can be conveniently treated in a
self-consistent manner. The total wave reaching a receiver can be written as

p(Er ) = pin(Er )+ Ps(Er ), (1)

wherepin(Er ) is the direct wave arriving at the receiver; the second term represents the total
scattered wave which is a summation of all the scattered waves from each scatterer,

Ps(Er ) =
N∑

i=1

ps(Er − Eri ), (2)

whereps(Er − Eri ) refers to the scattered wave from thei th target.
For k|Er − Eri |À1, we may approximate the scattered wave from thei th target as

ps(Er − Eri ) = pin(Eri )Fi
(
θEr−Eri , θin

)
G(|Er − Eri |) (i = 1, 2, . . . , N), (3)

where Fi is the effective scattering function of thei th target only dependent on the in-
cidence and scattering directions andG(|Er −Eri |) represents the usual Green’s function
exp(i |Er −Eri |)/|Er −Eri |. Equation (3) defines the well known local far field approximation
(LFFA) of the scattered field. Clearly the LFFA approximation fails when two scatterers
are too close; therefore the approximation is expected to be valid for reasonably dilute
many-body systems. In the later numerical example we will employ this approximation and
the validity of the results will be inspected.

Without multiple scattering,Fi will be equal to the far-field single scattering function
of the single targetfi (θ Er −Eri , θin) obtained when other targets are absent. The far-field
single scattering functionfi (θ Er j −Eri , θin) is relatively easy to compute for scatterers with
different size and shape by several theoretical and numerical methods [3, 7, 8]. Note here
thatFi (θ Er−Eri , θin) is the effective far-field scattering function of thei th target in the direction
θ Er−Eri when the incidence is along the direction ofEkin including all multiple scattering from
other targets.

The scattered wave from thei th target is a linear response to the total incident wave
pinging on the target, which includes the direct incident wave and the scattered wave from
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other targets. By Eq. (3), the scattered wave can be therefore written as

ps(Er − Eri ) =
[

fi
(
θ Er−Eri ; θin

)
pin(Eri )+

N∑
j=1, j 6=1

pin(Er j ) fi
(
θ Er−Eri ; θ Er i−Er j

)
× Fj

(
θ Er i−Er j ; θin

)
G(|Eri − Er j |)

]
G(|Er − Eri |). (4)

Equating Eqs. (3) and (4), we get

Fi
(
θ Er−Eri ; θin

) = fi
(
θ Er−Eri ; θin

)
+

N∑
j=1, j 6=1

pin(Er j )

pin(Eri )
fi
(
θ Er−Eri ; θ Er i−Er j

)
Fj
(
θ Er i−Er j ; θin

)
G(|Eri − Er j |). (5)

The second term on the right hand side refers to the multiple scattering effects. Notice that
Eq. (5) expresses the complicated multiple scattering in terms of the scattering function of
each individual scatterers that, in principle, can be easily computed for scatterers of different
shape.

SettingEr at the targets except thei th, we obtainN− 1 equations. In each of theseN− 1
equations, we allowi to vary from 1 toN. Then we have anotherN equations for eachl . In
total we have (N− 1)× N equations forN(N− 1) unknown coefficientsFi (θ Er l −Eri ; θin).

Once the effective functionsFi (θ Er j −Eri , θin) are obtained, the scattered waves can be
obtained from Eq. (4). The total wave can be subsequently obtained from Eq. (1).

III. NUMERICAL ALGORITHM

To simplify the notation, we write Eq. (5) as

Fi,l = fi,l +
N ′∑
j=1

ai,l , j,i Fj,i , (6)

where the summation is made forj = 1, 2, . . . , N excluding j = i , and we denoteFi,l =
Fi (θ Er l−Eri ; θin), fi,l = fi (θ Er l−Eri ; θin), and

ai,l , j,i = pin(Er j )

pin(Eri )
fi
(
θ Er l−Eri ; θ Er i−Er j

)
G(|Eri − Er j |).

The equations in (6) can be rewritten in a matrix form as

F = f + Z · F (7)

with F = (F1,2, . . . , F1,N, . . . , FN,1, . . . , FN,N−1), f = ( f1,2, . . . , f1,N, . . . , fN,1, . . . ,

fN,N−1), and theN(N− 1) × N(N− 1) scattering matrixZ. The solution forF is ob-
tained as

F = (1− Z)−1f. (8)

Therefore the solution forF is obtained by an inversion of matrixZ.
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Due to the complicated structure, it is not trivial to build matrixZ. Particularly when
the number of scatterers is large, building matrixZ is an arduous task because of its high
dimensionality and no apparent order of its elements. Because of this, the previous studies
based on this method were necessarily limited to simple situations such as isotropic scatterers
or a small number of anisotropic scatterers. We propose a numerical algorithm which
allows us to build theZ matrix in a simple way. The core of the method is to find a
mapping between elementsFl ,i and the corresponding coefficientsai, j,l ,i with l = 1, 2, . . . ,
N; l 6= i .

A Fortran program for constructing the vectorsF andf and the matrixZ is given as

do i= 1, N
do 1= 1, N

if (i 6= 1) then
if (i < 1) then

m= (l− i)+ (i− 1)N
else

m= (l− i)+ (i− 1)N+ 1
end if
F̂m= Fi,l← theF vector
f̂ m = fi,l ,θin← thef vector
do j= 1, N

if ( j 6= i) then
if (i > j) then

n= (i− j)+ (j− 1)N
else

n= (i− j)+ (j− 1)N+1
end if
Z(m, n)=ai,l , j,i ← theZ matrix

end if
end do

end if
end do

end do

with m andn being the position indexes of the different coefficientsai,l , j,i in the scattering
matrix Z. Once the F vector is computed from Eq. (8), the final scattered wave can be
obtained from Eqs. (4), (3), and (1).

IV. NUMERICAL APPLICATION

We now apply the numerical algorithm developed in the last section to compute the
scattering from an ensemble of scatterers. For simplicity, we consider a special situation
described by 25 rigid spheres of radiusa which are arranged in a plane, forming a 5 by 5
square lattice. The separation between the spheres isd, which is set to 7a. A unit plane wave
is incident perpendicularly on the lattice structure. The frequency of the incident wave is
chosen such thatka= 2; thuskd= 14. We have numerically tested that for this separation
between the rigid spheres, the LFFA approximation holds. The geometric layout is included
in Fig. 1.
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FIG. 1. Geometric layout (upper corner) and the square modulus of the scattered wave of a group of rigid
spheres, as a function of scattering angles. The solid and dashed–dotted lines refer to with and without multiple
scattering.

We compute the modulus of the total scattered wave, i.e.,|Ps(Er )|2, from Eq. (2). The
observation is made at|Er | =100a. The angular dependence of the total scattered field has
been computed. For simplicity, we consider scattering in plane with the incident wave. The
scattering angle varies from 0 to 180 degrees. Figure 1 shows the results. In the figure,
the solid line refers to the results including multiple scattering and the dashed line to the
results without multiple scattering. It is clear that the effects of multiple scattering are not
negligible. These effects appear at all scattering angles and maximize aroundθ = 60 and
120 degrees.

In summary, this note presents a numerical algorithm to compute the acoustic field
scattered from an ensemble of scatterers incorporating all multiple scattering. An advantage
of this algorithm lies in its simplicity and generality that it may reduce much tedious
computation by expressing the complicated multiple scattering in terms of the scattering
function of each individual scatterer.
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