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Experiments on Not “Hearing the Shape” of Drums
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We present an experimental test of the theorem of isospectral domains which states that certain pairs
of planar domains have identical spectra for eigenvalues of the Laplacian operator or the Helmholtz
wave equation. The experiments employ thin microwave cavities shaped in the form of two different
domains known to be isospectral. We verify the equality of at least 54 of the measured low-lying eigen-
values to a few parts in 10%. We obtain the eigenfunctions experimentally, and confirm that two non-
isometric transformations connect isospectral eigenfunction pairs. An analysis in terms of periodic orbits
using the trace formula is carried out, and shown to be an alternative confirmation of isospectrality.

PACS numbers: 05.45.+b, 03.65.Sq

The properties of the Helmholtz wave equation, (V?
+k?)y =0, are of fundamental importance in quantum
mechanics, electromagnetics, and acoustics. In closed
two dimensional (2D) domains, the topology, particularly
the shape of the boundary, has been recognized to play an
important role in determining the features of the spec-
trum [1]. The area and the perimeter have long been
known to determine the mean or smooth behavior of the
energy level density. More recently, in the context of
quantum chaos [2-4], statistical fluctuations of the ener-
gy levels about the mean have been shown to be deter-
mined by the classical dynamics of a particle in the
domain, leading to universality classes which are different
according to whether the dynamics is integrable or chaot-
ic. In general, most such results are concerned with gen-
eric properties of spectra and their relationships to classes
of domains. In this context, a recent theorem by Gordon,
Webb, and Wolpert [5] is particularly remarkable. It es-
tablishes that two different 14-sided shapes of equal area
have identical spectra for all values of the energy. This
answers in the negative the well-known question, “Can
you hear the shape of a drum?” posed by Kac [1], since
it leads to the remarkable conclusion that two drums built
of such shapes would “sound exactly alike” [6].

Although the isospectrality of several planar geome-
tries (besides the original in Ref. [5]) has now been prov-
en on mathematical grounds, the actual eigenvalues com-
posing the spectrum of any isospectral pair, and the asso-
ciated eigenfunctions, are not known. Not only are ana-
lytic solutions unattainable, but the special features of the
geometries, particularly the presence of sharp corners,
also appear to lead to difficulties in numerical solutions.
The present work [7] employs a novel approach, viz., the
use of actual physical experiments using microwave cavi-
ties, to determine the eigenvalue spectrum and eigenfunc-
tions of the special geometries, thus enabling tests of their
isospectrality and of proposed relations between the
eigenfunctions.

Mathematical results such as those of Ref. [5] are of
importance in physics because they reveal new aspects of
the wave equation. The isospectrality of different do-
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mains implies an underlying symmetry, and this is
confirmed by the presence of a transformation connecting
eigenfunction pairs corresponding to each eigenvalue.
The proof of isospectrality utilizes the notion of *“‘tran-
splantation” of eigenfunctions from one domain to the
other [8,9]. This nonisometric transformation is a recent
result in mathematics. By direct measurement of the
eigenfunctions for the first time, we are able to test and
confirm this transformation, which can only be done in
physical experiments such as ours.

Electromagnetic waves of wavelength A in metallic en-
closures (cavities) obey the Helmholtz equation when the
cavity has one dimension d <A. Then time-independent
solutions are allowed which are two dimensional, with the
electric field E, playing the role of y in the wave equa-
tion, with Dirichlet conditions E, =0 on the boundary.
The corresponding states are called transverse magnetic
(TM), and are the only states observed for all frequencies
fmax <c¢/2d. Acoustical drum-head vibrations also obey
the same wave equation. The correspondence of the
Helmholtz wave equation and the (particle) Schroding-
er’s equation has been previously exploited [10-12] to
study a variety of problems in quantum chaos using mi-
crowave cavities. Here we use the electromagnetic sys-
tem to verify the isospectral theorem and to obtain quan-
titative results for the eigenvalues and eigenfunctions.

The two cavities were fabricated from copper, with 8-
sided cross-sectional shapes communicated to us by
DeTurck [13]. These two domains are among a family of
pairs of domains in 2D which are recognized to be iso-
spectral [14,15]. The cavities had unit length 3 in. (cavi-
ty area 31.5 in.?) and thickness d =0.25 in. (nearly 6
mm) leading to frmax~25 GHz. It is estimated that di-
mensional tolerances were about 10 ~2 in. The transmis-
sion spectra of the cavities were studied with an HP8510
Network Analyzer. Details of the measurement method
are discussed in Ref. [16]. Eigenvalues are obtained by
determining the maxima of resonances in the transmis-
sion spectra. Multiple coupling positions for the input
and output probes were used to ensure that eigenstates
were not missed due to accidental location of any pair of
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FIG. 1. Experimental transmission spectra vs frequency for
the two cavities. The traces are vertically shifted for clarity.
The isospectrality is evident from the exact coincidence in fre-
quency of the resonance maxima.

coupling probes at nodes of eigenstates.

The transmission amplitude spectra up to 5 GHz of the
two cavities are shown in Fig. 1. Resonances are clearly
seen whose maxima are located at the eigenfrequencies.
These resonances are broadened due to absorption, and
also possibly, the presence of sharp corners. The ampli-
tudes of the resonances are irrelevant [6] for the subse-
quent discussion, since they are determined only by the
field strengths of the corresponding wave function at the

two coupling probe locations.

The most striking feature of Fig. | is the simultaneous
occurrence of resonances at identical frequencies. Thus
Fig. | constitutes a visual verification of the theorem of
isospectrality. More precise measurements of the lowest
54 eigenvalues were carried out via accurate measure-
ments of the resonance maxima on expanded (x100) fre-
quency scales. This was repeated for several coupling
probe locations to ensure that there were no missed levels.

The results of the measurements for the 25 lowest ei-
genvalues f, are shown in Table I, and are typical of re-
sults up to n=54. Also shown are energy eigenvalues of
the spectrum, E,=f;?, normalized to the ground state
value. Differences df, in the eigenvalues between the two
cavities were found to be ~0.01% to 0.2% of f,. The
differences are also small compared to the nearest neigh-
bor spacing of levels (~3%), compared to the widths of
the resonances ( <0.1%). We believe that the principal
reason for observed discrepancies are slight imperfections
introduced during assembly of the pieces. The individual
pieces were themselves machined to accuracies better
than about 0.01%, but assembly is probably restricted to
this accuracy. We have separately verified that the per-
turbations due to the coupling holes are not responsible
for these discrepancies.

The results for the 54 eigenvalues were found to be in
excellent agreement with the Weyl formula for the in-

TABLE 1. Table of lowest 25 eigenfrequencies f, of the two cavities. Also shown is the nor-

malized energy spectrum E, =f2.

Eigen No.  Cavity 1, f (GHz) Cavity 2, f (GHz)  Difference (%) Normalized energy
1 1.99070 1.99080 0.01 1.000
2 2.38350 2.38589 0.10 1.435
3 2.84123 2.84186 0.02 2.037
4 3.19575 3.19518 0.02 2.577
5 3.36790 3.36590 0.06 2.860
6 3.79639 3.79240 0.11 3.633
7 4.07030 4.07028 0.00 4.180
8 4.24985 4.24938 0.01 4.557
9 4.39223 4.39088 0.03 4.866

10 4.51840 4.51570 0.06 5.148
11 4.73100 4.72943 0.03 5.646
12 4.98030 4.98970 0.19 6.270
13 5.14655 5.14590 0.01 6.683
14 5.25935 5.26230 0.06 6.984
15 5.44910 5.45910 0.18 7.506
16 5.71413 5.71975 0.10 8.247
17 5.75988 5.77450 0.25 8.393
18 5.89800 5.89050 0.13 8.766
19 6.09413 6.09175 0.04 9.367
20 6.19568 6.19913 0.06 9.691
21 6.21981 6.23100 0.18 9.779
22 6.38820 6.38975 0.02 10.300
23 6.55065 6.55200 0.02 10.830
24 6.64530 6.64150 0.06 11.136
25 6.81053 6.80675 0.06 11.697

2176



VOLUME 72, NUMBER 14

PHYSICAL REVIEW LETTERS

4 APRIL 1994

tegrated staircase density of states N(E)=(A/4n)E
—(L/An)E'*+ K with measured values for the area
A=31.5in.2, L =30.72 in., and K =0.54, where we have
included the correction for the perimeter (L) and the to-
pology (K). The agreement suggests that levels were not
missed, and also that there were no degeneracies or mul-
tiplicities, at least for these low energy levels. Number-
theoretic degeneracies are expected at high energies be-
cause a class of eigenvalues for these geometries are also
eigenvalues of the unit (45°,45°,90°) triangle. But still
the absence of degeneracies at the lower energies comes
as a surprise, since, as discussed later, there exist two
transformations which connect eigenfunctions in each
domain.

A particularly powerful capability of the present exper-
iments is the ability to measure wave functions in arbi-
trary geometries. This is achieved using a cavity pertur-
bation technique first introduced by one of us in Ref.
[10], which led to the direct experimental observation of
scars in wave functions of chaotic geometries [10). The
results for the n=1, 3, and 6 eigenstates for both cavities
are displayed in Fig. 2. Note that even though the corre-
sponding frequencies agree to 10 ~* the spatial details of
the eigenfunctions in the two cavities are completely
different.

FIG. 2. Pairs of experimental wave functions for selected ei-
genvalues of the two cavities. The eigenfrequencies in GHz are
1.9907, 1.9908 (top), 2.8413, 2.8418 (middle), 3.79639,
3.79240 (bottom).

The theorem of isospectral domains is particularly re-
markable because it states that eigenfunctions which are
not isometrically related may nevertheless possess the
same eigenvalues. Beyond the (trivial) observation that
the number of maxima is identical for isospectral eigen-
states, it is clear that a simple isometric (translation
+rotation) transformation does not connect such eigen-
functions. However, there does exist a nonisometric
transformation [13], based upon the observation that
each geometry can be divided into seven triangles.
“Transplantation” operations are carried out on the tri-
angular “pieces” of the wave function in one geometry.
In addition to rotations and translations, an additional
(symmetry) operation is an inversion about the center
line through the 90° vertex, denoted by ¢— ¢. Then
each triangular piece of the wave function of cavity 2 can
be constructed from a linear combination of transforma-
tions of pieces of cavity 1 (see Fig. 3). There are two
such transformations [17], one a three-element transfor-
mation and the other a four-element transformation. The
three-element transformation can be obtained by substi-
tuting @ =0 and b =1, and the four-element by substitut-
ing a=1 and b =0, in Eq. (1):

A a —a a—-b b—-a—b|[ea)
¥a2 —a a-b a-—-a b b||es
vc2 a—b a—-a b—b—allec
Vo2 | = -b a —a b —a b al |épi
VE2 b —a b —a b —a —all|¢e
VF2 -b b —a a-—-a a b oF1
ve2| |-a@ b —b b -a a a]|sa]
4))

Here a minus sign is accompanied by a flip about the
symmetry axis of the triangle, which is represented by the
tilde.

Utilizing the three-element transformation, we have
constructed the ground state eigenfunction of cavity 2 us-
ing the measured wave function in Fig. 2 for the ground
state of 1. The constructed ground state shown in Fig. 3
is in good agreement with the corresponding measured
ground state of 2 (compare Fig. 2). The result of the
four-element transformation is found to be identical, ex-
cept for a reversal of sign. This is consistent with the ex-
perimental finding of no degeneracies in the spectral win-
dow of the present experiment.

It is interesting to note that the Gutzwiller trace for-
mula, a result well known in the context of quantum
chaos, also suggests that the two domains are isospectral.
Because of the presence of the 270° and the 135° angles
in the two domains, the two geometries are pseudo-
integrable [18]. Hence the invariant integral is not a
torus, but a surface of genus 7 in both cases. The period-
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FIG. 3. Constructed ground state of cavity 2 using the measured ground state of cavity I, and using the nonisometric transforma-

tion on wave function pieces in triangular sections of cavity 1.

ic orbits in these geometries form one parameter families,
covering bands on the phase space surface which are
bounded by trajectories which hit a vertex. In this case
the trace formula can be written as [19]1 X 6(E —E,)
=14+X/=1a;Jo(NEI;), where the /; and a; are the
lengths and phase-space areas (normalized) of the period-
ic orbits [18]. A numerical study of the periodic orbits
was carried out and shows that at least a hundred of the
lj,a; are identical for these geometries, and suggests that
another check of isospectrality (accurate to order E ~'/4)
can therefore be achieved by an analysis of the periodic
orbits. An interesting point to be noted is that the num-
ber of bounces, in corresponding periodic orbits of the
two cavities, is not always the same, even though the
length and the phase-space areas are identical. This rep-
resents a novel and unexpected application of the trace
formula, which is widely used in quantum mechanical
problems.

The present work goes beyond a mere demonstration of
a mathematical theorem. The experiments yield the ac-
tual spectrum, which can be used to address the issue of
whether the eigenvalue spectra possess special mathemat-
ical attributes besides their isospectrality. The experi-
ments have also illuminated the issue of degeneracies.
The experimental determination of the actual eigenfunc-
tions is essential to test the eigenfunction transformation.
None of these issues appear to be easily amenable to nu-
merical solutions. This interplay of mathematics and
physics is beneficial to both fields. While the experiments
have provided a satisfying physical basis for the
mathematical results, the new ideas from mathematics
which have been studied here may have wide and unfore-
seen impact on physical problems [15].
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