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Abstract Quite recently, a novel global collocation method for the eigenvalue analysis of freely vibrated7

elastic structures was proposed ( Archive of Applied Mechanics: DOI: 10.1007/s00419-007-0159-4). This8

paper extends the latter methodology on several levels, in both the time and frequency domain. Firstly the9

formulation is updated so that it can also deal with rods of variable cross section. Then, the fully populated10

mass matrices of the previous formulation are properly replaced by lumped masses, thus saving still more11

computer effort. Subsequently, a new general formulation for the transient response analysis is proposed.12

Finally, a novel procedure for the coupling of two neighboring collinear rods is presented. The theory is13

supported by six test cases concerning elastic rods of constant and variable cross sections. Among these,14

transient analysis refers to the response of a single rod due to a Heaviside-type loading as well as to the impact15

between two collinear rods of different cross sections.16

Keywords Collocation · Finite element · Eigenvalues · Transient response · Impact17

1 Introduction18

Static as well as eigenvalue and transient response analysis of one-, two-, and three-dimensional structures is19

usually performed using the well-known finite-element method in conjunction with approximating polynomials20

of low degree [1,15]. Besides, higher-order p-methods have been used since the 1970s [14]; in general, for21

a certain number of n subdivisions the p-version (polynomial of nth degree) has better performance than the22

h-version (n linear finite elements) [14]. An alternative way to create higher-order elements is based on the23

use of Coons–Gordon interpolation, which is well known in computer-aided design (CAD) theory, and allows24

for the automatic derivation of global shape functions for any discretization of the boundary and the interior of25

the structure [8–10]; the thus obtained finite elements have been called Coons macroelements. In the context26

of CAD-oriented techniques, Bézier and nonuniform rational B-spline (NURBS) interpolation [7] have been27

also applied in engineering analysis [3,5,6,13].28

Although the aforementioned Coons macroelements can be applied in conjunction with piecewise-linear29

and piecewise-quadratic interpolation, thus achieving compact support, numerical experience has shown that30

they are more accurate and converge faster when applied in conjunction with higher-order Lagrange polyno-31

mials, for example up to the eighth or tenth degree [8–10]. In such a case, the obtained matrices become fully32

populated and the computer effort may be substantial [10].33

As a remedy to the aforementioned shortcoming of Coons macroelements, it was recently proposed to34

preserve the same global shape functions and substitute Galerkin–Ritz by a novel global collocation scheme35

C. G. Provatidis (B)
School of Mechanical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Avenue,
157 73 Athens, Greece
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that can deal with any type of boundary conditions using only the displacement value (not its derivative);36

therefore, the cases of two Dirichlet as well as one Dirichlet and one Neumann condition were successfully37

treated [11]. In the latter work, not only Chebyshev [2] but also Lagrange and Bernstein polynomials were38

tested and the conclusion was that all of them lead to identical eigenvalues that coincide with those obtained39

through a Taylor series expansion [11]. Despite the clear advantage of that novel collocation method, it was40

however reported that, when fulfilling the governing stress equilibrium equation at equidistant internal points,41

unrealistic complex eigenvalues may appear; therefore, the additional potential advantage of dealing with a42

trivial unitary (or at least diagonal) mass matrix has not yet been accomplished [11] (a detailed numerical43

study on this issue including a comparison with the conventional finite elements was later reported in [12]).44

In this paper, the aforementioned inability to built up robust lumped masses [11,12] is overcome, and a45

simple way to eliminate the appearance of complex eigenvalues is proposed. Since the eigenvalues depend46

only on the polynomial degree and the position of the collocation points, it seems reasonable to use Lagrange47

polynomials defined by the two ends of the interval [0, L] plus those collocation points that led to the most48

accurate solution in [11]. Therefore, instead of using uniformly distributed internal nodes, as was the case in49

[11,12], the main novel feature of this work is to locate them at the roots of either Legendre or Chebyshev50

polynomials.51

The paper is structured as follows. The frequency-domain formulation (Helmholtz equation) of [11] is52

reconstructed in the time domain so that it can deal with a rod of variable cross section subjected to a general53

time-dependent traction at its free end. New closed-form expressions are obtained for the lumped mass and54

stiffness matrices. In the case of a forced excitation, the time-dependent force vector is formulated for the55

first time. Concerning the numerical results, firstly eigenvalue and transient response analysis is performed to56

rods of constant and smoothly variable cross-sectional area by using one macroelement only. Then, the new57

formulation is applied to a rod with a sudden change of cross section as well as to the impact analysis of58

two rods of different cross-sectional -areas, where it becomes necessary to decompose the domain into two59

macroelements.60

2 General formulation61

2.1 Governing equations62

In the case of an elastic, isotropic, homogeneous rod, in 0 ≤ x ≤ L , the governing equation is:63

∂

∂ x

(

A(x)E
∂U (x, t)

∂ x

)

+ b(x, t) − (A(x)ρ)
∂2U (x, t)

∂ t2
= 0, (1)64

where U (x, t) is the axial displacement, x is the Cartesian coordinate, t is the time, A(x) is the variable65

cross-sectional area, E is the elastic modulus, ρ is the mass density, and b(x, t) is the body force towards the66

x-direction. Hereafter, the spatial and temporal derivatives will be denoted by the prime (′) and the dot (◦)67

notation, respectively.68

In order to find a particular solution of Eq. (1) within the one-dimensional domain [0, L], it is necessary69

to specify initial conditions:70

U (x, 0) = U0(x),

V (x, 0) = ∂U (x, t)

∂t

∣
∣
∣
∣
t=0

= V0(t).
(2)71

In the particular case in which kinematic and traction excitation occurs at the left and right end, respectively,72

at any time instant t the boundary conditions are written as:73

U = Ū (t) at x = 0,

σL = E
(

∂U
/

∂x
)

x=L
at x = L .

(3)74

For simplicity, henceforth absence of body sources (b = 0) is considered.75
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2.2 Global collocation approach76

The solution of Eq. (1) can be expressed as a series expansion:77

U (x, t) =
n

∑

j=1

φ j (x)U j (t) (4)78

where φ j (x) are the shape functions associated to the nodal potentials U j at the positions x = x j , j = 1, . . . , n79

(x1 = 0, xn = L). We recall that usually φ j (x) are cardinal functions, i.e., φ j (xi ) = δi j (Kronecker’s delta)80

and also partition unity, i.e.,
n∑

j=1

φ j (x) ≡ 1, for all x ∈ [0, L]. A typical set of such cardinal functions consists81

of the Lagrange polynomials.82

Instead of choosing the aforementioned n nodes through a uniform subdivision of the domain [0, L], as was83

the case in Ref. [11], in this paper we take the two extreme nodes at their apparent position (x1 = 0, xn = L),84

but the interior ones are chosen to coincide with the roots of either Legendre or Chebyshev polynomials of the85

second kind (details are given in Appendix A).86

With respect to the implementation of boundary conditions, we distinguish two cases (A and B) as follows.87

A. One end fixed the other is excited. Here, we assume that the rod is fixed at the end x = 0 and it is88

subjected to a prescribed traction σL(t) at x = L . In order to implement the boundary conditions, substituting89

Eq. (4) into Eq. (3) for x = 0 leads to:90

U1(t) = U (0, t) =
n

∑

j=1

φ j (0)U j (t) = 0. (5)91

Furthermore, the Neumann boundary condition at the other end (x = L) gives:92

σL(t) = E
∂U (x, t)

∂x

∣
∣
∣
∣
x=L

= E

n
∑

j=1

[
∂φ j (x)

∂x

]

x=L

U j (t). (6)93

Combining Eqs. (5) and (6), the potentials of the first and last node (at x = L) are eliminated, thus94

leading to:95

Un(t) =

[
σL (t)

E
−

∑n−1
j=2 φ′

j (L)U j (t)
]

φ′
n(L)

. (7)96

Moreover, we demand that the governing stress equilibrium equation (1) is fulfilled at the same internal97

points x̄i ∈ [0, L], i = 1, . . . , n p = n − 2 (where x̄i = xi+1), which determine the Lagrange polynomials:98

∂

∂ x

(

A(x̄i )E
∂U (x̄i , t)

∂ x

)

− (A(x̄i )ρ)
∂2U (x̄i , t)

∂ t2
= 0 , i = 1, . . . , n p (8)99

Substituting Eqs. (4) and (7) into Eq. (8), on which the chain rule is applied, and by writing it for all the100

n p = n − 2 intermediate nodes, one obtains:101

mi iÜi+1(t) +
n−2
∑

j=1

ki jU j+1(t) = fi (t), i = 1, . . . , (n − 2), (9)102

where103

mi i = ρ A(xi+1),

ki j = E A(xi+1)

(

−φ′′
j+1(xi+1) + φ′′

n (xi+1)
φ′

j+1(L)

φ′
n(L)

)

+ E A′(xi+1)

(

−φ′
j+1(xi+1) + φ′

n(xi+1)
φ′

j+1(L)

φ′
n(L)

)

,

fi (t) = σL(t)

[
A(xi+1)φ

′′
n (xi+1) + A′(xi+1)φ

′
n(xi+1)

φ′
n(L)

]

.

(10)104

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“419_2008_203_Article” — 2008/1/21 — 18:44 — page — #4

C. G. Provatidis

Obviously, the formation of a lumped mass, M, instead of the fully populated matrix that was found in105

reference [11], is due to the fact that the shape functions (Lagrange polynomials) are cardinal (φ j (xi ) = δi j ,106

Kronecker’s delta).107

A.1 Variable cross section108

Writing Eq. (9) for all (n − 2) values, the following matrix formulation is obtained:109

M
︸︷︷︸

(n−2)×(n−2)

· Üinternal(t)
︸ ︷︷ ︸

(n−2)×1

+ K
︸︷︷︸

(n−2)×(n−2)

· Uinternal(t)
︸ ︷︷ ︸

(n−2)×1

= f(t)
︸︷︷︸

(n−2)×1

, (11)110

where111

Uint ernal(t) =
[

U2(t), . . . , Un−1(t)
]T

. (12)112

Obviously, Eq. (11) can be solved using any known time-integration scheme such as explicit (central113

difference), implicit (Newmark, θ -Wilson, Houbolt) or modal analysis. By recalling [11], while in usual finite-114

element schemes the order of the mass and stiffness matrices is n − 1, which is the total number of n nodes115

minus the restricted node at the boundary x = 0, in the proposed procedure the elimination of the degree of116

freedom (DOF) associated with the excited node at the free boundary x = L leads to an order of n − 2 (cf.117

Eq. 11). However, since at the end of each time step the vector Uint ernal(t) is known, Eq. (7) can be immediately118

used to determine the displacement Un(t). We also recall that U1(t) ≡ 0.119

Concerning the transient response, according to the usual recipe [15, p. 587], for the central-difference120

method the critical time step should be:121

�tcr = Tn

π
= 2

ωn
, (13)122

where Tn = 2π
/

ωn is the smallest period of the finite-element assemblage with n degrees of freedom. In123

addition, the well-known Courant–Friedrich–Lewy (CFL) criterion offers an a priori estimation for �tcr,124

which is the time it takes the wave (c =
√

E
/

ρ) to travel across the smallest element of the mesh, �lmin,125

that is:126

�t̂cr = �lmin

c
(14)127

Concerning the eigenvalue problem, the (n − 2) eigenvalues can be easily calculated by vanishing the128

determinant of the matrix (det (K − λM) = 0), for example, by using the Q R algorithm.129

A.2 Constant cross section. In case of a constant cross-sectional area, i.e., A(xi+1) =const., its derivatives130

found in the stiffness and the force vector (cf. Eq. 10) vanish. Therefore, as A(xi+1) becomes a common factor131

in mi i , ki j and fi (t), it can be further eliminated. Consequently, the mass matrix becomes a unitary matrix, I,132

times the mass density, ρ:133

M
︸︷︷︸

(n−2)×(n−2)

= ρ · I
︸︷︷︸

(n−2)×(n−2)

. (15)134

In this particular case, it is obvious that the eigenvalues of the problem can be found by dividing the135

eigenvalues of the stiffness matrix, K, by the mass density, ρ. Alternatively, if the cross-sectional area A136

appears in the right-hand side of Eq. (15), then it should also appear in the aforementioned stiffness matrix137

and the force vector.138

B. Both ends fixed. This type of boundary conditions usually restricts analysis to the extraction of modes139

(eigenvalue problem). In this case, the formulation of reference [11] is modified as follows:140

mi iÜi+1(t) +
n−2
∑

j=1

ki jU j+1(t) = 0, i = 1, . . . , (n − 2) (16)141

where142

mi i = ρ A(xi+1),

ki j = −E
[

A(xi+1)φ
′′
j+1(xi+1) + A′(xi+1)φ

′
j+1(xi+1)

]

.
(17)143
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Fig. 1 The general case of a complex unified rod that consists of two parts (AK and KB) to be assembled. This also holds in case
of impact between two different rods

3 Coupling of two adjacent rods144

Let us assume that the assembled structure AB consists of two rods with dissimilar cross sections, which145

are joined at the point K, as shown in Fig. 1. For the purposes of variety, in this section we assume that the146

structure is fixed at the right node B. In order to couple the two rods, we should impose two conditions: zero147

stress at the traction-free end A and force balance at the junction K. Obviously, compatibility of displacement148

and velocity at the junction K is taken into consideration. Below, the shape functions and the corresponding149

displacements related to the first (AK) and the second (KB) rod refer to a local numbering and are denoted150

by the upper left indexes (1) and (2), respectively. Similarly, the local coordinates involved in the argument of151

the aforementioned shape functions are denoted by (1)x and (2)x , respectively (Fig. 1); obviously, it holds that152

(1)x = x and (2)x = x − L1. In more detail, let us assume that the rod AK is discretized using n1 nodes (two153

of them are its ends A and K and the rest are the roots of Legendre or Chebyshev polynomials); this choice is154

related to a series of Lagrange polynomials, (1)φ j (x), j = 1, . . . , n1, each of degree n1 − 1. Similarly, the rod155

KB is discretized using n2 nodes (two of them are its ends K and B); again, this choice is related to another156

series of Lagrange polynomials, (2)φ j

(
(2)x

)

, j = 1, . . . , n2, each of degree n2 − 1. Thus, the total number157

of geometric nodes in the entire structure becomes n1 + n2 − 1. Without loss of generality, node numbering158

is performed from left to the right, so that the first node coincides with the point A while the (n1 + n2 − 1)th159

node coincides with the fixed point B.160

The traction-free condition at the point A (x = 0) is equivalent to zero strain, and therefore gives the161

following relationship for the n1th DOF of rod AK:162

n1∑

j=1

(1)φ′
j (0) ·(1) U j = 0. (18)163

At this point it should be noted that if point A were excited by an external force instead of being traction free,164

then the above Eq. (18) has to be replaced by Eq. (6) in a similar way.165

Also, force balance at the junction K (x = L1) relates the displacements of rod AK with those of rod KB,166

and leads to:167

E1 · A1(L1) ·
n1∑

j=1

[
(1)φ′

j (L1) ·(1) U j

]

= E2 · A2(0) ·
n2∑

j=1

[
(2)φ′

j (0) ·(2) U j

]

. (19)168

Equations (18) and (19) constitute a system that imposes two linear constraints between the n1 + n2 − 2169

unrestrained nodal values (fixed point B being excluded). Therefore, two out of the n1 + n2 − 2 DOFs can170

be expressed in terms of the remaining nm=n1+n2 − 4 DOFs. If, for instance, the displacements U1 and Un1171

(global numbering), at the left end (A) and the junction (K), respectively, are considered as candidate for172

elimination, then collecting the corresponding columns in the two first positions, Eqs. (18) and (19) can be173
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written together as (below, displacements refer to a global numbering):174

[

a1 an1 a2 . . . an1−1 0 . . . 0
b1 bn1 b2 . . . bn1−1 bn1+1 . . . bn1+n2−2

]

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U1

Un1

U2

...

Un1−1

Un1+1

...

Un1+n2−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[

0
0

]

, (20)175

with176

a j =(1) φ′
j (0), j = 1, . . . , n1177

and178

b j =

⎧

⎨

⎩

E1 · A1(L1) · (1)φ′
j (L1), 1 ≤ j ≤ n1 − 1

E1 · A1(L1) · (1)φ′
n1

(L1) − E2 · A2(0) · (2)φ′
1(0), j = n1

−E2 · A2(0) · (2)φ′
j−n1+1(0), n1 + 1 ≤ j ≤ n1 + n2 − 2

(21)179

Therefore, eliminating U1 and Un1 in Eq. (20), the following expression is derived:180

[

U1

Un1

]

︸ ︷︷ ︸

Us

= − 1
(

a1bn1 − an1b1

)

[

bn1 −an1

−b1 a1

]

·
[

a2 . . . an1−1 0 . . . 0
b2 . . . bn1−1 bn1+1 . . . bn1+n2−2

]

︸ ︷︷ ︸

B

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U2

...

Un1−1

Un1+1

...

Un1+n2−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Um

. (22)181

Equation (22) can also be written in brief, as follows:182

Us
︸︷︷︸

2×1

= B
︸︷︷︸

2×nm

· Um
︸︷︷︸

nm×1

, (23)183

where Us =
{

U1, Un1

}T
is the vector of the slave DOFs that are to be eliminated, B is a transformation matrix,184

and Um is the vector of the remaining nm master nodes (in other words, primary or active DOFs), i.e., the185

internal nodes between the segments AK and KB.186

Therefore, separating the master from the slave DOFs, the matrix equation of motion for the internal nodes187

can be written as188

[M]
︸︷︷︸

nm×nm

· Üm
︸︷︷︸

nm×1

+
[

Kms
︸︷︷︸

nm×2

Kmm
︸︷︷︸

nm×nm

]

·

⎡

⎢
⎢
⎣

Us
︸︷︷︸

2×1

Um
︸︷︷︸

nm×1

⎤

⎥
⎥
⎦

= 0. (24)189

Substituting Eq. (23) into Eq. (24) one obtains190

M · Üm + (KmsB + Kmm) · Um = 0. (25)191
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Fig. 2 Example 3. Discretization and loading time history of a rod with constant cross section

4 Numerical results192

The first three examples refer to a rod with constant cross section, while the last three examples deal with rods193

of variable cross section.194

Example 1 Rod with constant cross section and both ends restricted195

When the nodes that determine Lagrange polynomials were taken at the roots of Legendre polynomials196

(Gauss points), the calculated eigenvalues were found to be identical with those previously obtained through197

Lagrange polynomials based on a uniform mesh and collocation of the stress equilibrium equation at the198

aforementioned roots (cf. Table 1 in Ref. [11]). Analogous findings for the roots of Chebyshev polynomials199

of the first kind (cf. Table 2 in Ref. [11]) and the second kind (cf. Table 3 in Ref. [11]) were obtained.200

Example 2 Rod with constant cross section, one end restricted, the other free201

Again, numerical coincidence of the proposed lumped mass formulation with Tables 4, 5, and 6 in Ref. [11]202

was found.203

Example 3 Rod with constant cross section, fixed at one end and subjected to a Heaviside-type loading204

An elastic rod is fixed at one of its extremities (x = 0) and is subjected to a Heaviside-type loading205

σL = Eq0 H(t − 0) (N/m2) at the other one (x = L). For simplicity, all geometric and material data were206

assigned the unitary value. In order to elucidate the proposed method, the (explicit) central-difference scheme207

was applied.208

For the particular discretization of Fig. 2 (c =
√

E
/

ρ = 1 m/s), if the minimum distance between two209

successive nodes was taken equal to that of a hypothetical uniform mesh (�l̄min = 0.125 m) Eq. (14) would210

give �t̂cr = 0.125 s; the latter would be useful for a either a fully populated mass matrix global collocation or211

a finite-element method (FEM) analysis. In contrast, taking the nodes at the roots of Chebyshev polynomial of212

the second kind, the actual minimum length becomes l ∼= 0.038 m and corresponds to the largest root (shown213

in Fig. 2); therefore, the corresponding time step becomes � ˆ̂tcr
∼= 0.038 s, which normally should constitute an214

upper limit. Based on previous experience related to the value of maximum eigenvalue (Eq. (13)) [10], the time215

step in the Galerkin–Ritz formulation had been conservatively chosen as �t = 0.20�l̄min

/

c = 0.025 s, which216

in the present case is smaller than � ˆ̂tcr, and therefore can be adopted. Implementing the central difference217

method using �t = 0.025s, the displacement response at the points B (x = L), C (x = L/4), and D (x = L/2)218

is shown in Fig. 3, where a good-quality solution can be noticed. It should be mentioned that since the point219

D at x = L/4 does not coincide with any of the seven internal nodes, its value was determined in terms of the220

values at the eight unrestrained nodes, using Eq. (4). The significance of the points C and D is due to the fact221

that the corresponding peak values equal to the half and one-fourth of that at the point B, respectively; thus222

they have been often used in literature (e.g., [10]).223

Example 4 Rod with linearly varying cross section224

Rods of tapered section, or horns, find application in power ultrasonics. In this area, the interest is in225

the resonance characteristics [4, p. 114]. Within this context, this example considers a rod of unit length226

(0 ≤ x ≤ 1) with linear cross-section variation:227

A(x) = A0(1 + x) (26)228
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Fig. 3 Example 3. Axial displacements at points B (x = L), C (x = L/2), and D (x = L/4) using the proposed lumped mass

formulation for the mesh shown in Fig. 2 and for time step �t = 0.2�l̄min/c = 0.025 s

Table 1 Example 4. Calculated eigenvalues using global collocation method in conjunction with polynomials of npolth degree

Mode Exact ω2(s−2) Errors (in %)

Degree of polynomial (npol)

2 3 4 5 6 7 8 9 10 11

1 9.7533 −17.98 7.03 −0.42 −0.01 0.00 0.00 0.00 0.00 0.00 0.00
2 39.3560 – −18.50 20.78 −2.62 0.10 0.00 0.00 0.00 0.00 0.00
3 88.7026 – – −11.75 39.46 −6.03 0.85 −0.09 0.02 0.00 0.00
4 157.7893 – – – 1.44 63.40 −9.08 2.65 −0.50 0.11 −0.02
5 246.6157 – – – – 21.13 92.45 −10.73 5.75 −1.44 0.34
6 355.1812 – – – – – 46.67 126.29 −10.52 10.26 −2.90

The governing differential equation is collocated at the npol − 1 roots of Chebyshev polynomials of the second kind (the total
number of nodes being n = n pol + 1)

Both ends of the rod are assumed to be fixed.229

The errors of the calculated eigenvalues (ω2) were taken with respect to the exact analytical solution, which230

is extracted by solving the equation [4, p. 115]:231

J0(k)Y0(2k) − J0(2k)Y0(k) = 0, (27)232

where J0 and Y0 are Bessel functions of the first and second kind and k = ω
/√

E
/

ρ is the wavenumber.233

The quality of the results is shown in Table 1, where it can be noticed that, similarly to Example 1 (cf.234

also [11]), convergence is achieved for increasing degree of the polynomial. Also, a comparison for different235

choices in the position of nodes, as well as for the conventional FEM based on a uniform mesh, is shown in236

Fig. 4, where one can notice that the choice of Chebyshev roots of the second kind is rather the best one.237

Example 5 Eigenvalues of a rod with a sudden change of cross section238

This example concerns a complex rod AB made of two other rods (AK and KB as shown in Fig. 1) of the239

same material (steel) but dissimilar lengths L1 and L2, and dissimilar cross-sectional areas A1 and A2. The240

rod is fixed at end B while the other end A is free. Following [4, p. 98], the geometric and material data were241

taken as:242

Rod lengths : L1 = 0.457 m, L2 = 2L1,

Rod diameters : D1 = 1.5D2, D2 = 2.54 cm

Wave velocities : c1 = c2 = c(=
√

E
/

ρ) = 5.08 × 103 ms−1,

243

In order to calculate the eigenvalues of the unified rod AB, the shortest (AK) and the longest (KB) rods are244

discretized using n1 and n2 nodes, respectively, where n2 − 1 = 2(n1 − 1). In other words, the displacement245

fields within AK and KB are described by Lagrange polynomials of degree (n1 − 1) and 2(n1 − 1), respectively.246
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Fig. 4 Example 4. Convergence rate of the calculated eigenvalues for a the first and b the second mode, for different choices in
the position of collocation nodes (roots of Legendre polynomial and roots of Chebyshev polynomial of the second kind), as well
as for the conventional FEM based on a uniform mesh

Table 2 Example 5. Convergence quality of calculated eigenvalues for the rod AB (fixed at B) using the proposed global
collocation method in conjunction with the coupling of the parts AK and KB shown in Fig. 1

Mode ‘Exact’ ω2(s−2) Errors (in %)

Degree of polynomial (n1 − 1) for the shortest rod AK

2 3 4 5 6
1 1.9945E+07 −0.49 −0.13 0.00 0.00 0.00
2 3.0293E+08 0.73 −0.37 −0.03 0.00 0.00
3 9.2075E+08 28.43 −3.56 −0.83 0.04 0.01
4 1.5426E+09 37.35 −6.15 −1.28 0.11 0.05
5 2.7264E+09 – −5.74 −1.14 −0.09 0.04
6 4.2452E+09 – 46.58 −8.89 −1.20 0.23
7 5.4890E+09 – 57.49 −4.56 −0.79 0.36
8 7.5739E+09 – – −10.32 −3.39 −0.13

Taking the mass matrix M as diagonal, and calculating the stiffness matrix according to Eq. (25), i.e., like247

K = KmsB + Kmm , the quality of the calculated eigenvalues is excellent, as shown in Table 2. In the absence248

of an analytical formula, ‘exact’ eigenvalues were taken as those obtained using a uniform fine mesh of 768249

(=3×256) conventional finite elements, which appeared a relative error less than 0.02% (at the eighth mode)250

compared with the half mesh density (3 × 128 = 384 elements).251

Example 6 Longitudinal collinear impact of two rods252

This example concerns the longitudinal impact of two flat-ended rods. At the instant of contact, the rod253

with the larger cross section (AK in Fig. 1) has a uniform velocity V1 = 6 × 10 ms−1, while the other rod254

(KB) is stationary. All geometric and material data were considered identical with those of Example 5.255

Based on the theoretical approach in [4, pp. 95–100], immediately after the contact (t0 = 0+), the incident256

wave splits into two parts: the first is transmitted in the direction KB while the second is reflected in the257

direction KA. Since the length of KB is twice that of AK (L2 = 2L1), nothing of particular significance258

occurs here other than the reflection of the leftward-propagating wave from the left free end at the time instant259

t1 = L1

/

c; at this instance, the rightward-propagating wave has reached the middle of KB. The next change260

is due to the simultaneous reflection of the two aforementioned waves at the points B and K, respectively, and261

so on. In order to compare with the analytical solution in [4, pp. 98], the response is presented in terms of the262

normalized particle velocity (V
/

V1) versus time; the latter is normalized with respect to the quantity L1

/

2c.263

Obviously, the aforementioned time interval L1

/

2c is the time required for the reflected wave to reach the264

middle (point M1 in Fig. 1) of the rod AK for the first time.265

The proposed lumped mass methodology was applied using n1 = 6 and n2 = 12 nodes for the rods AK266

and KB, respectively. The calculated velocity of the end point A and the middle point M1 are shown in Figs. 5267

and 6, respectively. One can notice a good agreement with the analogous response obtained using a uniform268

mesh of conventional finite elements with the same number of DOFs, as well as with the analytical solution.269
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Fig. 5 Example 6. Calculated velocity of the end point A using the proposed lumped mass global collocation in conjunction with
the roots of Chebyshev polynomial of the second kind, compared with the conventional finite-element method (FEM) and the
exact analytical solution
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Fig. 6 Example 6. Calculated velocity of the middle point M1 using the proposed lumped mass global collocation in conjunction
with the roots of Chebyshev polynomial of second kind, compared with the conventional finite element method (FEM) and the
exact analytical solution

5 Discussion270

It was found that the global approximation of the displacement field in terms of Lagrange polynomials with271

nodal points at the well-known roots of Legendre or Chebyshev polynomials, in conjunction with a previously272

proposed global collocation method [11], leads to a diagonal mass matrix that has a robust behavior. In the273

particular case of a homogeneous rod with constant cross section, this mass matrix becomes the unitary matrix274

times the mass density; in this case, since the mass density can be incorporated as a factor in the stiffness275

matrix (K), the eigenvalues are calculated using only K.276

In brief, it was found that the eigenvalues obtained using the aforementioned unitary-matrix mass for-277

mulation are identical with those previously obtained using the fully-populated ones in conjunction with a278

uniform mesh and collocation at the aforementioned roots of Legendre or Chebyshev polynomials [11]. In this279

regard, no complex eigenvalue appeared for all the test cases used in this paper. Concerning the calculated time280

response, it was found that the differences between using the proposed lumped mass and the fully populated281

mass matrix were negligible and could be hardly noticed on a graph. Moreover, it was noticed that, in the282

particular case of using a uniform mesh that happens to lead to complex eigenvalues, the corresponding time283

response solution diverged to extremely high values.284

Concerning the time response results (Figs. 3, 5, and 6), this paper was limited to the central-difference285

method, for both the global collocation and the finite-element methods. It was also found that the use of implicit286

schemes, such as ϑ-Wilson and Newmark, leads to considerably smoother numerical solutions; however, a287

detailed investigation of this is beyond the scope of this paper.288

With respect to a single rod with one fixed end and the other free, it was previously explained in [11]289

that the proposed global collocation method requires the elimination of one nodal DOF (such as Un) through290

Eq. (6); this procedure leads to one fewer primary (in other words: active or master) DOFs than in the usual291

finite-element method. Moreover, in the case of two rods, two DOFs have to be eliminated through Eq. (18),292

thus leading to two fewer primary DOFs than in the usual FEM. Not only that, but in this way the governing293

equation is not fulfilled at the free end A (or/and the junction K). Concerning the proposed collocation method,294

it should be pointed out that for the success of the proposed method the aforementioned elimination is crucial.295
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In this context, in the case of a single rod, two attempts to recover the aforementioned decrease of the296

number of active (master) DOFs by collocating once more at the location of the slave node (the free end at297

x = L) failed. In more detail, if the number of unrestrained nodal points (the fixed end at x = 0 is excluded but298

the free one at x = L is included) is n − 1, the resulting mass matrix, M, and stiffness matrix, K, are initially299

of dimension (n − 1) × (n − 1). The first attempt consisted of extracting the eigenvalues of the initial pair300

(M, K) without considering Eq. (6) at all, thus leading to a minimum eigenvalue equal to zero and to (n − 2)301

irrelevant rest values. The second attempt consisted of considering the initial pair (M, K) in conjunction with302

Eq. (6), which led to a constraint of the form Un = BUm , where B (1 × (n − 2)) is a transformation matrix303

and Um((n − 2) × 1) is the vector of the master DOFs. In this case, in order to eliminate the Un in the initial304

equation M
︸︷︷︸

(n−1)×(n−1)

· Ü(n−1)×1
︸ ︷︷ ︸

+ K
︸︷︷︸

(n−1)×(n−1)

· U
︸︷︷︸

(n−1)×1

= 0
︸︷︷︸

(n−1)×1

, the total vector U((n − 1) × 1) was written305

as U =
[

Um

Un

]

=
[

Um

BUm

]

=
[

I
B

]

· Um , where I is a (n − 2) × (n − 2) identity matrix. Therefore, the306

aforementioned initial equation had to be multiplied from the left by
[

I B
]

(least-squares procedure) and307

from the right by

[

I
B

]

, thus leading to a system of (n − 2) equations. Unfortunately, this procedure did not308

work satisfactorily, since for n = 9 and n = 11 nodes the error of the first eigenvalue was found to be −12.7%309

and −8.9%, respectively.310

6 Conclusions311

The results of this paper suggest that the global collocation method, which had been previously used to replace312

the Galerkin/Ritz formulation, can definitely be used equally well in conjunction with lumped masses, thus313

saving further computer effort. This fact is achieved by moving the degrees of freedom to the positions of the314

well-known roots of Legendre or Chebyshev polynomials. The formulation is capable of dealing with rods of315

variable cross section, and performs well in the time domain when a transient response analysis is required.316

Moreover, it was shown that, in the case of a rod with complex geometry, or in the case of impact, the coupling317

between two rods is a straightforward procedure. Ongoing research reveals that the conclusions obtained by318

one-dimensional structural problems are transferable to two- and three-dimensional problems including field319

problems.320

Appendix A: Relationship between internal nodes and the roots of Legendre or Chebyshev polynomials321

I. Legendre polynomials322

When m = 0, 1, 2, . . ., the solutions of the ordinary differential equation323

(

1 − x2
)

y′′ − 2xy′ + m(m + 1)y = 0 (A.1)324

are called Legendre polynomials and are given by325

Pm(x) = 1

2mm!
dm

dxm

(

x2 − 1
)m

. (A.2)326

When m ≥ 1, the roots of Pm(x) are the well-known Gauss points, ξi , which lie in the interval [−1,+1].327

While in the usual finite-element method the Gauss points are useful for the domain integration to evaluate the328

mass and stiffness matrices (see [1, p. 464] and [15, p. 200]), in the proposed collocation method they serve329

to determine the location of the internal nodes at (x1 ≡ 0 < xi+1 < xn ≡ L):330

xi+1 = (1 + ξi )

2
L , i = 1, . . . , m ≡ n − 2; ξi ∈ [−1,+1]. (A.3)331

For example, in the case of n = 3 nodes, we consider that m = 1, and the unique internal node is taken as332

the root of P1(x) = x , i.e., at ξ1 = 0. Similarly, in the case of n = 4 nodes we consider that m = 2, and the333

two internal nodes are taken as the roots of P2(x) = 1
2

(

3x2 − 1
)

, i.e., at ξ1 = −1/
√

3 and ξ2 = +1/
√

3, and334

so on. In the general case of n nodes, we consider that m = n − 2.335

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“419_2008_203_Article” — 2008/1/21 — 18:44 — page — #12

C. G. Provatidis

II. Chebyshev polynomials336

The Chebyshev polynomials of the second kind are defined as337

Um(x) =
sin

{

(m + 1) cos−1 x
}

sin
(

cos−1 x
) =

(

m + 1
1

)

xm −
(

m + 1
3

)

xm−2
(

1 − x2
)

338

+
(

m + 1
5

)

xm−4
(

1 − x2
)2 − · · ·339

(A.4)340

and their roots are given by341

ξ̂i = cos
iπ

(m + 1)
, i = 1, . . . , m. (A.5)342

In the proposed collocation method, for example, in the case of n = 3 nodes we consider that m = 1,343

and the unique internal node is taken as the root of U1(x), i.e., at ξ̂1 = cos
(

π
2

)

= 0. Similarly, in the case344

of n = 4 nodes we consider that m = 2, and the two internal nodes are taken as the roots of U2(x), i.e., at345

ξ̂1 = cos
(

π
3

)

= 0.5 and ξ̂2 = cos
(

2π
3

)

= −0.5, and so on. In the general case of n nodes, we consider again346

that m = n − 2.347
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