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Abstract

In this paper a fast solver for three-dimensional BEM and DBEM is developed. The technique is based on the use of
hierarchical matrices for the representation of the collocation matrix and uses a preconditioned GMRES for the solution
of the algebraic system of equations. The preconditioner is built exploiting the hierarchical arithmetic and taking full
advantage of the hierarchical format. Special algorithms are developed to deal with crack problems within the context
of DBEM. The structure of DBEM matrices has been efficiently exploited and it has been demonstrated that, since the
cracks form only small parts of the whole structure, the use of hierarchical matrices can be particularly advantageous. Test
examples presented show that, with the proposed technique, substantial increase in number of elements over the crack sur-
faces leads only to moderate increases in memory storage and solution time.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) has been developed over the last three decades as a powerful numer-
ical tool for the analysis and solution of many physical and engineering problems (Wrobel, 2002; Aliabadi,
2002). Today it represents a viable alternative to other numerical approaches, such as the finite element
method (FEM).

The main advantage of boundary element techniques is the reduction in the degrees of freedom needed to
model a given physical system. Such reduction is allowed by the underlying boundary integral formulation
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which requires, for its numerical solution, only the discretization of the boundary of the analyzed domain.
This results not only in a reduction in size of the system matrix, but also in faster data preparation.

However, as the size of the problem increases, the time required to solve the final system of equations
increases considerably. The system matrix obtained by the application of the boundary element method is fully
populated and not symmetric. This results in increased storage memory requirements as well as increased solu-
tion time with respect to the finite element method. Since the matrix is fully populated the memory required to
store its coefficients is of order O(N?), where N denotes the number of unknowns. On the other hand, the solu-
tion of the system requires O(N?*) operations if direct solvers are used or O(M x N?) if iterative solvers are
employed, where M denotes the number of iterations.

Much research has been devoted to the improvement of BE solution methods. In the early 1980s, Rokhlin
(1985) developed an iterative strategy for the solution of the integral equations arising in classical potential
theory. This work introduced the idea of coupling iterative solvers and the harmonic expansion of the kernels
on suitable clusters of far field boundary elements, in order to reduce the computational cost of the solution
process. In particular, the method was aimed at reducing the number of operations required to evaluate the
matrix—vector products occurring in the application of iterative solvers and resulted in an O(N) algorithm for
the solution of the original equations.

Similar algorithms for the reduction of the computational complexity of the solution process were also
developed in other fields of investigation not directly related to the boundary element method. Particularly
interesting is the algorithm devised by Barnes and Hut (1986) for the treatment of the gravitational N-
body problem. They developed an O(NInN) strategy based on the preliminary hierarchical subdivision
of the space into cubic cells and on the following approximation of the mutual action between cells
through a recursive scheme. A similar approach was presented by Greengard and Rokhlin (1987), who
used multipole expansions to approximate potential and force fields of various nature generated by sys-
tems of many particles.

Although these algorithms were mainly developed for N-body problems, they can be extended to the treat-
ment of boundary value problems, due to their similar underlying mathematical structure. The boundary ele-
ment method is in fact based on calculation of influence coefficients of the solution matrix by integration of the
fundamental solution collocated on some source point, which represents a certain mutual influence between
couples of points, over some surface elements. From this point of view the approaches developed by Rokhlin
(1985) and Greengard and Rokhlin (1987) are analogous, as already pointed out by the authors themselves.

Starting from these early works, fast multipole methods (FMMs) have been developed to solve efficiently
boundary element formulations for different kinds of problems. Nishimura et al. (1999) used FMMs in con-
nection with a generalized minimum residual method (GMRES) (Saad and Schultz, 1986) to solve 3D crack
problems for the Laplace equation. Fast algorithms have also been used for the treatment of elastic problems.
Fu et al. (1998) developed a FMM boundary element method for 3D many-particle elastic problems based on
spherical harmonic expansions of the kernel functions, while Popov and Power (2001) used Taylor expansions
to obtain an O(N) algorithm for 3D elasticity as well.

Another interesting method intended for enhancing the matrix—vector multiplication was the panel cluster-
ing approach developed by Hackbusch and Nowak (1989).

Although above techniques are very effective and provide a valuable tool for the fast solution of boundary
element problems, their main disadvantage is that the knowledge of the kernel expansion is required in order
to carry out the integration; all the terms of the series needed to reach a given accuracy must be computed in
advance and then integrated, which can lead to a significant modification of the integration procedures in stan-
dard BEM codes.

From an algebraic point of view however, the integration of a degenerate kernel, i.e. of a kernel expanded in
series, over a cluster of elements corresponds to the approximation of the corresponding matrix block by a low
rank block. This idea paved the way to the development of purely algebraic techniques for the approximation
of large BEM matrices, like the mosaic-skeleton method (Tyrtyshnikov, 1996, 2000; Goreinov et al., 1997). Of
particular interest was the observation, due to Tyrtyshnikov (1996), that low rank approximations could be
built from only few entries of the original block. Successively Bebendorf (2000) proposed a method for the
construction of such approximations, based on the computation of selected rows and columns from the ori-
ginal blocks. The technique was further developed by Bebendorf and Rjasanow (2003) and was referred to as
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adaptive cross approximation (ACA). Such an algorithm allows a relatively simple generation of the approx-
imation and enables both storage and matrix—vector multiplication in almost linear complexity.

The subdivision of the matrix into a hierarchical tree of sub-blocks and the blockwise approximation by
low rank blocks is the basis for the hierarchical representation of the collocation matrix (Hackbusch, 1999;
Hackbusch and Khoromskij, 2000). Analogously to FMMs, the use of the hierarchical format is aimed at
reducing the storage requirement and the computational complexity arising in the boundary element method.
Having represented the coefficient matrix in hierarchical format, the solution of the system can be obtained
either directly, by inverting the matrix in hierarchical format, or indirectly, by using iterative schemes with
or without preconditioners (Grasedyck, 2005; Bebendorf, 2005). Both choices rely on the use of formatted
matrix operations, i.e. on a suitable arithmetic for hierarchical matrices developed to take advantage of this
special format (Grasedyck and Hackbusch, 2003; Bérm et al., 2003).

The use of iterative techniques, however, takes particular advantage of the employment of the hierarchical
format. Different iterative solvers for algebraic systems of equations stemming from 2D and 3D BEM prob-
lems have been investigated. While early studies (Mullen and Rencis, 1987) had not shown good results, fol-
lowing works (Mansur et al., 1992; Valente and Pina, 1998) confirmed the applicability of iterative solution
procedures to BEM systems and showed the potentiality for operations count reduction with respect to Gauss
elimination especially for large systems; on the other hand they reported serious lack of convergence for the
worst ill-conditioned cases, when mixed boundary conditions are present, thus pointing out the need for pre-
conditioning the system. Barra et al. (1992) tested the performance of the GMRES algorithm, developed by
Saad and Schultz (1986), for the solution of two-dimensional elasticity BEM equations, observing a more
rapid convergence with respect to other iterative strategies, especially when preconditioning was used. They
mentioned the possibility of developing new preconditioners based on the inherent nature of the BEM. Prasad
et al. (1994) discussed the performance of several Krylov subspace methods and related such performance to
the structure of the BEM matrices for some two and three-dimensional thermal and elastic problems, high-
lighting the effect of the relative magnitude of the coefficients of the system matrix on the convergence of
the algorithms. Moreover, they pointed out that the use of suitable preconditioning improves the eigenvalues
clustering and the diagonal dominance of the matrix, thus resulting in enhanced convergence. Their analysis
demonstrated that preconditioned Krylov methods, especially preconditioned GMRES, could be competitive
or superior to direct methods. The importance of the diagonal dominance for the iterative solution of BEM
equations has been shown by Urekew and Rencis (1993), while Merkel et al. (1992) focused on eigenvalues
clustering and its effect on the convergence of iterative solvers applied to the solution of some thermal and
elastic industrial problems. Some issues in the analysis of larger three-dimensional BEM systems through pre-
conditioned GMRES were evidenced by Leung and Walker (1997), who also proposed a strategy to overcome
some limitations and extend the applicability of the algorithm to systems with some thousands of unknowns.
Barra et al. (1993) proposed a strategy for the construction of preconditioners for GMRES solved BEM prob-
lems, while Wang et al. (2005) investigated a class of preconditioners for fast multipole BEMs.

All the aforementioned studies have demonstrated the importance of preconditioners for an effective iter-
ative solution. A general survey on preconditioners for improving the performance and reliability of Krylov
subspace methods has recently been presented by Benzi (2002), who pointed out that the intense research on
preconditioners has blurred the distinction between direct and iterative solvers. The importance of the subject
has also been stressed by Saad and van der Vorst (2000), in their survey of iterative solvers for linear systems.

In this context, the use of the hierarchical format for BEM matrices, in conjunction with Krylov subspace
methods, constitutes a recent and interesting development. The method proves to be efficient in dealing with
large BEM systems and offers a quite natural approach to the construction of effective preconditioners.

Hierarchical matrices and their arithmetic have been extensively studied and assessed and their appli-
cation has proved successful for the analysis of some interesting realistic problems. Apart from some
benchmark tests reported in the papers devoted to the development of the technique, see for example
the work of Bebendorf and Rjasanow (2003), interesting applications to various electromagnetic problems
have been proposed by Kurz et al. (2002), Zhao et al. (2005) and Ostrowski et al. (2006). Bebendorf and
Grzhibovskis (2006) have recently extended the use of ACA to the analysis of elastic problems through
Galerkin BEM. However, no application of hierarchical matrices to elastic crack problems is reported
in the literature.
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In this paper, the development of a fast DBEM based on hierarchical matrices for the analysis of three-
dimensional elasticity cracks problems is presented. First, the basic formulation of the DBEM for 3D frac-
ture mechanics problems is briefly reviewed and the features of DBEM matrices are discussed. Next the
main steps for building the hierarchical representation of the solution matrix are illustrated. Some consid-
erations about the application of the hierarchical format to boundary element formulations of 3D crack
problems are pointed out. Some applications complete the work and demonstrate the capability of the
method.

2. The 3D dual boundary element method

The dual boundary element method is a general and efficient technique for modeling both two-dimensional
(Portela et al., 1992, 1993) and three-dimensional (Mi and Aliabadi, 1992, 1994) crack problems in the frame-
work of the BEMs (Aliabadi, 1997a,b). The method is based on the use of two independent boundary integral
equations, namely the displacement integral equation, collocated on the external boundary and on one of the
crack surfaces, and the traction integral equations, collocated on the other crack surface and introduced to
overcome the problems originating from the coincidence of the crack nodes.

Assuming continuity of displacements at the boundary nodes, the boundary integral representation for the
displacements u; is given by

(X0 (xo) + / T (x0, 1)1t (x) T = / U,y (x0, x)1(x)dT (1)

r
where U;; and T; represent the Kelvin displacement and traction fundamental solutions at the boundary point
x when collocating at the point x, ¢;; are coefficients depending on the boundary geometry and computed
through rigid body considerations and the symbol f stands for Cauchy principal value integral, whose pres-
ence is consequence of the O(r~2) strength of the 7, integrands.
The displacement equation (1) is collocated on the boundary I' and on one of the crack surfaces. When
collocated at the crack node xj, it assumes the form

e () e )+ { Ty () dr = [ Uty 00 (x)ar @)
r
where x; and x; are the two coincident crack nodes. For smooth crack surfaces at the point xj, it is

cij(xg) = ci(xg) = (1/2)d;. . o o o
The traction integral equation collocated at the point x;, where continuity of strains is assumed, is given by

e o (33) = o ) o T ) ()47 = my o) | U ) T o)

r

r

where the kernels U;; and T, contain derivatives of U;; and T;, respectively, n; are the component of the
outward normal at the point x and ¥ stands for Hadamard principal value integral, originating from the pres-
ence of the O(r~3) kernels 7.

Egs. (1)—(3) provide the boundary integral model for the analysis of general crack problems. The discrete
model is built on them starting from a suitable discretization of the external boundary and the crack surfaces
into a set of boundary elements over which the displacements and the tractions, as well as the geometry, are
expressed by means of suitable shape functions and nodal values (Aliabadi, 1997b).

Care must be taken in the choice of suitable boundary elements, in order to fulfill the conditions for the exis-
tence of the singular integrals. In particular the existence of Cauchy and Hadamard principal values requires H61-
der continuity of the displacements and their derivatives at the collocation points. Such restrictions can be
satisfied through the use of special boundary elements. In this work, the same modeling strategy as that adopted
by Mi and Aliabadi (1992, 1994) is used. The continuity of the displacement derivatives, which is the stronger
constraint required for the existence of the integrals in the traction equation, is guaranteed by using discontinuous
eight-node quadratic elements for the modeling of hoth the crack surfaces. The boundary, on which only the dis-
placement equation is collocated, is modeled by using continuous eight-node quadratic elements. Further infor-
mation on slightly different discretization procedures can be found in Cisilino and Aliabadi (1997, 2004).
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2.1. DBEM systems of equations

The DBEM leads to a system of equations that can be written in the form

H,, H,, Hy up G G Gy 1
H;, Hu Hg u; | = | Gay Guw Ga ty (4)
S S S, u; D, D, D, t,

where the subscripts denote the boundary of the domain (b), the crack surface where the displacement integral
equation is collocated (d) and the crack surface where the traction integral equation (¢) is collocated. The
blocks Hy; and Gy, for example, contain the coefficients computed by integrating 7;; and U;; over the ele-
ments lying on the displacement crack surface (d) while collocating the integral equation on the boundary
nodes (b). The blocks S and D are obtained from the integration of the kernels 7T and U, when the traction
integral equation is collocated on the related crack surface.

After the application of the boundary conditions, assuming free crack surfaces, the final system is written

Ay, Hpy Hy | | X Y,
Ay Hy Hg u | = | Yy (5)
B, Si S[l u; Y,

where the vector X, contains unknown boundary displacements or tractions and the vectors Y are obtained,
after applying the boundary conditions, as a linear combination of the columns of the blocks H, G, D and S
corresponding to the prescribed displacement and traction nodal values. The blocks A, and A, contain a mix
of columns from the corresponding blocks Hy, and G,;,, Hy, and G, while B;, mixes columns from D, and
Sw.

The coefficient matrix in Eq. (5) has some important features stemming from the inherent BEM character-
istics and the special computational strategy used. The matrix is in fact fully populated, non-symmetric and
not definite. Such features are common to the matrices generally produced by the BEM. Moreover, the off-
diagonal blocks Hy and S,; are characterized by the presence of high-strength terms. Such terms originate
from the geometrical coincidence of the two crack surfaces, that implies the presence of singular terms in
the related blocks. When collocating on the displacement crack surface, for example, both the collocation
point x; and the geometrically coincident point x; are singular, thus generating high-strength terms in both
H,; and H,,. Moreover it is to be noted that the blocks D and S, originating from the collocation of the hyper-
singular boundary integral equation, i.e. the traction equation, contain terms whose strength is considerably
higher with respect to those contained in the blocks H and G.

The solution of fully populated, non-symmetric and not definite systems, especially when accuracy and reli-
ability are of primary concern, is usually tackled by direct methods, such as Gauss elimination, as they are easy
to implement, robust and tend to require predictable time and storage resources. However, when dealing with
large three-dimensional systems, involving several thousands of equations, the use of direct solvers becomes
too expensive, scaling poorly in terms of operations count and memory requirements. In such cases iterative
solvers may represent a preferable choice, becoming mandatory for very large systems (Benzi, 2002).

The application of hierarchial matrices in conjunction with iterative solvers to DBEM matrices of the form
given in Eq. (5) is discussed in the next section.

3. Hierarchical matrices for DBEM

In this section, the use of hierarchical matrices for the approximation and solution of systems of equations
produced by the DBEM is discussed. Before going into the details of the method, it is useful to give a summary
of the conditions that must be met, and the steps that must be carried out, to obtain the hierarchical
representation.

The overall objective of this special format is to reduce the storage requirements as well as to speed up the
operations involving the matrix, by representing the matrix itself as a collection of blocks, some of which
admit a particular approximated representation that can be obtained by computing only few entries from
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the original matrix. These special blocks are called low rank blocks. The blocks that cannot be represented in
this way must be computed and stored entirely and are called full rank blocks.

Low rank blocks constitute an approximation of suitably selected blocks of the discrete integral operator
based, from the analytical point of view, on a suitable expansion of the kernel of the continuous integral oper-
ator (Tyrtyshnikov, 1996; Goreinov et al., 1997; Bebendorf, 2000; Bebendorf and Rjasanow, 2003). This
expansion, and consequently the existence of low rank approximants, is based on the asymptotic smoothness
of the kernel functions, i.e. on the fact that the kernels U;;(xy,x) and T (xo,x) are singular only when
xo = x. For more precise information about asymptotic smoothness the interested reader is referred to the
works of Bebendorf (2000), Bebendorf and Rjasanow (2003) and especially to the paper of Bebendorf and
Grzhibovskis (2006), where the application to elastic solids is considered, laying ground to the applicability
of ACA to the class of problems considered in the present work. Here it is only mentioned that the asymptotic
smoothness represents a sufficient condition for the existence of low rank approximants and that it does not
exclude strongly or hyper-singular kernels, like U, (xo,x) and T;;(xo,x). Moreover, the regularity of the
boundary over which the approximation is carried out is not requested.

Once the conditions for the approximants existence have been assessed, the subdivision of the matrix into
low and full rank blocks is based on geometrical considerations. Every block in the matrix is characterized by
two subsets of indices, corresponding, respectively, to the row and column indices. In the standard collocation
BEM every row index is associated to a degree of freedom of a collocation node, while every column index is
associated to a degree of freedom of a discretization node, whose coefficient is computed by integrating on
those elements to which the node itself belongs. Every block is then related to two sets of boundary elements,
the one containing the collocation points corresponding to the row indices, here denoted by €, , and the one
grouping the elements over which the integration is carried out, denoted by Q,, that contains the nodes cor-
responding to the columns. If these two sets of boundary elements are separated, then the block will be rep-
resented and stored in low rank format, while it will be entirely generated and stored in full rank format
otherwise. The blocks meeting the requirement of separation are called admissible. A schematic of the process
leading to the boundary subdivision, and the correspondence with the suitable matrix block, is illustrated in
Fig. 1. In the figure, both the cluster of collocation points, related to a set of rows of the collocation matrix,
and the cluster of integration elements, which contain the nodes related to the columns of the matrix, are
shown. As schematically illustrated, the admissibility condition is actually checked choosing suitable boxes
framing the two clusters. This strategy is dictated by the need of reducing the computational costs of the
boundary subdivision and especially the following admissibility check.

Cluster of integration elements Q.

Cluster of collocation nodes €,

Cluster
diameter

Cluster
diameter

Framing box

Indices corresponding to the

Indices corresponding n?des bel.onging to the
to the collocation nodes integration elements

Corresponding matrix block

Fig. 1. Schematic of the boundary subdivision process.
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The entire process leading to the subdivision in sub-blocks and to their further classification is based on a
previous hierarchical partition of the matrix index set aimed at grouping subsets of indices corresponding to
contiguous nodes and elements, on the basis of some computationally efficient geometrical criterion. This par-
tition is stored in a binary tree of index subsets, or cluster tree, that constitutes the basis for the following con-
struction of the hierarchical block subdivision, that will be stored in a quaternary block tree. Such a process of
hierarchical subdivision and tree generation will be further illustrated in the following sections; here it is
important to focus on the fact that the block (quaternary) tree stems from the index (binary) tree.

As the admissible blocks have been located, their approximation can be computed. While in fast multipole
or panel clustering methods the knowledge of the explicit form of the kernel expansion is required in order to
approximate the integral operator, low rank blocks can be generated directly by computing some entries from
the original blocks, through ACA algorithms. It is important to highlight that the ACA allows to reach adap-
tively the a priori selected accuracy. These features make such a technique particularly appealing, as it is not
necessary to modify or rewrite the routines for the boundary integration in previously developed codes.

Once the basic hierarchical representation has been set up, the collocation matrix can be treated in dif-
ferent ways to obtain the system solution. It is worth noting that the representation obtained by ACA is
not yet optimal in terms of storage requirements. The low rank blocks can be in fact recompressed, taking
advantage of the reduced singular value decomposition (SVD) (Bebendorf, 2001), that allows a further
storage reduction without accuracy penalties. Moreover, since the initial matrix partition is generally
not optimal (Hackbusch et al., 2004), once the blocks have been generated and recompressed, the entire
structure of the hierarchical block tree can be modified by a suitable coarsening procedure (Grasedyck,
2005). These consecutive manipulations have the objective of further reducing the storage requirements
and speeding up the solution maintaining the preset accuracy. It is important to note that such recompres-
sion schemes can be applied sequentially immediately after the blocks generation. When a block has been
generated, it can be immediately recompressed. Afterwards, a collection of four contiguous recompressed
blocks can be tested for coarsening. This fact implies that the needed memory is less than that required
for storing the ACA generated matrix.

As an optimal coarsened representation is obtained, the solution of the system can be tackled either by
direct solvers or iterative methods. In both cases, the efficiency of the solution relies on the use of a special
arithmetic, i.e. a set of algorithms that implement the operations on matrices represented in hierarchical for-
mat, such as addition, multiplication, and inversion (Grasedyck and Hackbusch, 2003). For a direct solution,
the computation of the hierarchical LU decomposition of the collocation matrix is needed to carry out an
effective hierarchical inversion (Bebendorf, 2005). Iterative solutions, on the other hand, are mainly based
on the efficiency of the matrix—vector product, but can be noticeably sped up by the use of suitable precon-
ditioners. An effective preconditioner for BE matrices based on hierarchical LU decomposition has recently
been proposed by Bebendorf (2005).

In the following the mentioned points will be further developed and the main algorithms involved will be
discussed. The modifications required to take into account the presence of cracks will be pointed out.

3.1. Boundary subdivision and cluster tree

The construction of a partition of the matrix index set is the basis for the following definition of the hier-
archical block tree. The objective of the partition is to subdivide the index set into subsets (or clusters) of indi-
ces corresponding to contiguous boundary element nodes. Such process leads to the identification of separate
or not separate couples of boundary element groups. In the case of three-dimensional elastic problems, as
three different indices are associated to each discretization point, it is preferable to partition the set of the
boundary nodes indices itself. The process starts from the complete set of indices 7 = {1,2,...,n}, where n
denotes the number of collocation points. This initial set constitutes the root of the tree. Each cluster in the
tree, called tree node, not to be confused with geometrical discretization nodes, is split into two subsets, called
sons, on the basis of some selected criterion. The common tree node from which two sets originate is called the
parent. The tree nodes that cannot be further split are the /eaves of the tree. Usually a node cannot be further
split when it contains a number of indices equal to or less than a minimum number n.;,, called cardinality of
the tree, previously fixed.
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However the procedure must be slightly modified for the analysis of cracked configurations through the
DBEM. The crack can be either embedded or emanate from a surface, but in any case it is located inside
the boundary surface and its geometry is usually clearly distinguishable from the geometry of the boundary.
This circumstance naturally induces a first distinction, dictated by the geometry, between boundary and crack
nodes. Moreover, as already mentioned, crack modeling requires special considerations: the crack is discret-
ized by using discontinuous elements, collocating displacement equations on the nodes belonging to one crack
surface and traction equations on the other. As different integral operators, or kernels, correspond to displace-
ment and traction integral equations, it is then appropriate to further distinguish between the nodes on one
crack surface and the nodes on the other one; this fact results in the two sons of the crack nodes cluster being
subdivided into the cluster containing the nodes on which displacement equations are collocated and the one
corresponding to the nodes on which the traction equations are collocated. This subdivision and the sets of
node indices stemming from this process are graphically represented in Fig. 2. The algorithm used for the con-
struction of the cluster tree is reported in Appendix A, Algorithm 1.

3.2. Block tree and admissibility condition

The block tree is built recursively starting from the complete index set / x I (both rows and columns) of the
collocation matrix and the previously found cluster tree. The objective of this process is to split hierarchically
the matrix into sub-blocks and to classify the leaves of the tree into admissible (low rank) or non-admissible
(full rank) blocks. The classification is based on a geometrical criterion that assesses the separation of the clus-
ters of boundary elements associated to the considered block. Such a criterion takes into consideration the
features of the boundary mesh. For 3D DBEM, eight-noded continuous and discontinuous quadrilateral ele-
ments are used. Let Q,, denote the cluster of elements containing the discretization nodes corresponding to the
row indices of the considered block and €, the set of elements over which the integration is carried out to com-
pute the coefficient corresponding to the column indices. The admissibility condition can be written

min(diam®,,, diamQ,) < 5 - dist(£,,, 2,) (6)

where n > 0 is a parameter influencing the number of admissible blocks on one hand and the convergence
speed of the adaptive approximation of lowrank blocks on the other hand (Bérm et al., 2003).

Since the actual diameters and the distance between two clusters are generally time consuming to be exactly
computed, the condition is usually assessed with respect to bounding boxes parallel to the reference axes (Gie-
bermann, 2001; Grasedyck, 2005), as already mentioned commenting on Fig. 1. In this case Q,, and ©, in Eq.
(6) are replaced by the boxes O, and Q,. The bounding box clustering technique adopted in the present work
is generally used for its simplicity, although it produces non-optimal partitions that can be improved by suit-
able procedures, as will be illustrated in the following. Other clustering techniques able to produce better ini-
tial partitions have been proposed in the literature. The construction using the principal component analysis
(Bebendorf, 2006) significantly improves the quality of the initial partition.

The algorithm for the block tree generation is graphically illustrated in Fig. 3. Starting from the root (the
entire matrix), each block is subdivided into four sub-blocks until either the admissibility condition is satisfied

{Root, all nodes}

/\

{Boundary nodes} {Crack nodes}
{...} {...} {Displacement nodes} {Traction nodes}
{...} {...} {...} {...}

Fig. 2. Index sets induced by presence of cracks.
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Root

n

Fig. 3. Graphical illustration of the block splitting procedure.

Leaves

or the block is sufficiently small that it cannot be further subdivided. The clear grey boxes represent low rank
blocks while the dark grey boxes are the full rank ones. The presence of cracks requires some extra consider-
ations. As illustrated in Fig. 2, when a crack is present, the second level of the cluster tree has two nodes, the
first corresponding to the discretization nodes on the boundary and the other corresponding to those on the
crack. While it is absolutely acceptable to check the admissibility condition for the matrix block corresponding
to collocation on the boundary nodes and integration on the two coincident crack surfaces considered as a
whole, the vice versa is not true. When generally collocating on the crack nodes, two different kinds of bound-
ary integral equations are being evoked, namely displacement equations and traction equations. These corre-
spond to different integral operators that should be approximated separately. Besides the admissibility
condition (6), the supplementary constraint that the block corresponding to collocation on the nodes of the
crack cluster as a whole and integration on the boundary is inadmissible must be considered. In other words,
referring to Eq. (5), if the condition (6) is satisfied, it is admissible to approximate the two submatrices H,, and
H,, through a single approximate low rank block, while it is not admissible to check the condition (6) for the
sub-matrix comprised of Ay and By,. This further condition may induce a characteristic asymmetric structure
on the hierarchical block tree, as shown in Fig. 4. Notice that the dashed line appearing between the two white
blocks does not separate it into two sub-blocks, but is drawn only to point out the lost block tree symmetry.
Finally, it is important to consider specifically the assessment of the condition (6) when clusters of boundary
elements and crack elements are involved at the same time. As mentioned above, the admissibility condition is
generally checked considering framing boxes; however cracks are always contained by the external boundary
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Fig. 4. Structure of the hierarchical matrix including crack surfaces.
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and the common procedure, being the boxes one inside the other, could lead to the premature classifica-
tion of some perfectly admissible blocks as inadmissible. To avoid such a circumstance, a special proce-
dure has been devised. When the distance between a cluster of crack elements and a cluster of boundary
elements is being computed, only the crack elements are framed by a box, and the distance between the
two clusters is computed considering the boundary cluster element by element. This procedure avoids the
premature skipping of admissible blocks, especially in the very favorable case of embedded cracks. The
element by element distance check, if carried out only when crack elements are involved, does not result
too expensive computationally.

The extended admissibility condition is used in the algorithm for the generation of the block tree reported
in Appendix A, Algorithm 2.

3.3. Low rank blocks and ACA algorithm

Let M be an m x n admissible block in the collocation matrix. It admits the low rank representation
M~M,=A4-B"= Za, b’ (7)

where A is of order m x k and B is of order n x k, where k is the rank of the new representation. The approx-
imating block M satisfies the relation ||M — M|| < ¢||M||., where || - || represents the Frobenius norm and ¢
is the set accuracy. Sometimes it is useful to represent the matrix using the alternative sum representation,
where a; and b; are the ith columns of 4 and B, respectively. The approximate representation allows storage
savings with respect to the full rank representation and speeds up the matrix—vector product (Grasedyck and
Hackbusch, 2003).

Different ACA algorithms can be used to generate the approximate blocks. The original algorithm was pro-
posed by Bebendorf (2000) and was further developed by Bebendorf and Rjasanow (2003). Grasedyck (2005)
proposed the so called ACA+ algorithm and compared its performances to those of the standard scheme.
Bebendorf and Grzhibovskis (2006) proposed a strategy for overcoming some problems that may arise when
populating some low rank blocks involving the interaction, through double layer kernels, of sets of coplanar
elements. Useful illustrations of the basic ACA scheme can be found in the works of Kurz et al. (2002) and
Bebendorf and Kriemann (2005), while the reader is referred to the work of Grasedyck (2005) for ACA+. In
the present work, also a slightly different scheme has been used to circumvent some problems originating when
computing some particular blocks, as illustrated in the following.

The above-mentioned schemes allow to reach adaptively the a priori set accuracy ¢ and are substantially
based on the computation of selected columns and rows of the original block that, suitably manipulated, fur-
nish exactly the columns a; and b; appearing in Eq. (7). Different schemes often differ for the choice of the
pivots, that can have a noticeable effect on the convergence and quality of the approximation (Bebendorf
and Kriemann, 2005). Once a new column a; and row b[.T have been generated and added to those previously
computed, the convergence toward the required accuracy is checked against a suitable stopping criterion. If
the criterion is satisfied the computation is stopped, else a new couple column-row is generated and stored.

The stopping criterion is based on the assessment of the convergence of the approximating block in terms of
the Frobenius norm (Bebendorf, 2000; Kurz et al., 2002). Since the original blocks are not accessible, only the
partial approximations M, with k running, are used to check the convergence. The Frobenius norm can be
computed by the following recursive formula

M7 = 1M 1||F+2Z aa;)(by bi) + llagl 7164 7 (8)

i=

where @, and b, represent the column and row computed at the kth iteration. A suitable stopping criterion can
be expressed as

el 1Dell - < el Mkl - ©)

that prescribes to stop the iteration when the inequality is satisfied for a required preset accuracy e.
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The construction of the approximating block not only reduces the storage needed to represent an admissi-
ble block, but also reduces the assembly time for the set-up of the collocation matrix, as the integration is car-
ried out only on those elements that allow the population of the required columns and rows.

With reference to the form of the DBEM system of Eq. (5), some additional consideration on the construc-
tion of the approximating blocks is convenient.

The blocks contained in A;, and Ay include a mix of columns from the blocks H,, and G;, and H,, and
G, respectively, and require some attention. Moreover, some of the columns from the corresponding H and
G blocks may give a contribution to the right hand side. Let us suppose that, following the application of the
boundary conditions, the low rank block M belonging to the sub-matrix A, is comprised of many H columns
and few G columns and that few G columns contribute to the right hand side, see Fig. 5. In this case, it may be
not convenient to generate the approximation of the entire G block (the white block belonging to G, in
Fig. 5); on the contrary it is more effective to generate the approximation of the entire H block through
ACA, then to annihilate the terms in the rows b! corresponding to the columns to be replaced with the G col-
umns, and eventually to compute exactly the few needed G columns and add them to the representation (7),
using row vectors filled with zeros and ones placed in the positions corresponding to the columns to be
replaced; the others G columns, among the few exactly computed, contribute to the right hand side, through
appropriate coefficients.

The choice between computing a block through ACA and computing few columns exactly relies on the
number of columns from a block H and G that are actually needed for the construction of a specific A block.
If the number of needed columns is much less than the average rank, it is convenient to compute the columns
exactly, since the ACA representation of the few columns would require more columns (and rows) than their
exact representation.

Analogous considerations hold for the block B, that mixes columns from S, and D,,.

The blocks contained in H,; and H,, do not require special considerations and can be computed through
standard ACA. However, it is interesting to observe that, if the crack is sufficiently far from the boundary,
both these sub-matrices belongs to a single big low rank block: this is the block for which the numerical com-
pression works better.

The blocks contained in Hyy, Hy, S, and S, often stem from the integration of T;; and T over clusters of
coplanar elements (case of plane crack). In such circumstance the standard ACA may fail, as shown by Gra-
sedyck (2005) with a counterexample for partial pivoting. To avoid this potential problem, and the consequent
loss of accuracy, ACA-+ can be used for the approximation of these blocks. In this work, however, a different
strategy, based on the computation of more than one rows at each ACA iteration, has been used. The strategy
is referred to as big-volume search (Tyrtyshnikov, 2000; Bebendorf and Kriemann, 2005) and, although slightly
more expensive then standard ACA, has proven to be very reliable in the performed numerical experiments.
Briefly, the search of the pivot is not limited to a single row per iteration, but is extended to more rows that are
generated and stored at every ACA step. The efficiency of the scheme is hence based on the availability of
more matrix entries.

3.4. Block recompression and tree coarsening

After the blocks have been generated, a further reduction of the required memory can be achieved by suit-
able recompression schemes (Bebendorf, 2001; Grasedyck, 2005), so that the amount of memory required for
the final storage is lower than that needed for the ACA generated matrix. Moreover the recompression
schemes further speed up the computation, maintaining the desired preset accuracy e.

Abb be be Yb

Fig. 5. Construction of an A block.
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Two different recompression schemes can be applied: one acts on the single leaves while the other modifies
the entire tree structure, through a process of reabsorption of the leaves.

The block recompression, i.e. the first scheme, is sometimes referred to as truncation (Grasedyck and Hack-
busch, 2003; Bérm et al., 2003) and is based on the SVD of low and full rank blocks. Since the size of the full
rank leaves is bounded by n,,, their SVD can be efficiently computed by suitable available efficient algo-
rithms, like the TAPACK dgesvd.f; for the low rank leaves, on the other hand, it is possible to perform a
reduced SVD (Bebendorf, 2001). Once the SVD has been performed, the singular values for which the condi-
tion g; < €0y holds, if existing, can be discarded together with the corresponding columns and rows without
accuracy penalties. Such procedure operates on single blocks, reducing the size of low rank blocks and con-
verting the full rank blocks satisfying the previous condition into low rank blocks. It is important to emphasize
the role of the accuracy ¢ that appears in all the computations. The requested accuracy could also be lowered,
if a less accurate representation of the matrix would be needed for special purposes. The importance of this
fact will become apparent in the construction of a preconditioner for iterative solvers.

Besides the blockwise SVD it is possible to apply a further recompression, referred to as tree coarsening,
aimed at modifying the entire tree structure. The coarsening tries to unify groups of four leaves that are sons
of the same block tree node. If some conditions are met, the SVD decomposition of the unification of the four
blocks is computed and, if after discarding the smaller singular values along with the corresponding columns
and rows, the result requires less storage, the four blocks are unified, or reabsorbed, in the parent tree node.
Note as this scheme can be applied when four adjacent sub-blocks have been generated and recompressed. The
procedure that performs the coarsening has been presented by Grasedyck (2005).

Two points are stressed here: (a) the block recompression is applied immediately after the block generation
and not after the generation of the entire matrix and this allows an actual reduction of the storage require-
ments; (b) the recompression schemes provide a valuable tool for the construction of an effective precondition-
er (Bebendorf, 2005), based on the computation of a coarse approximation of the collocation matrix, as
described in the following.

3.5. Hierarchical arithmetic

To carry out operations on hierarchical matrices, it is necessary to define a suitable hierarchical arithmetic.
The operations involving the entire hierarchical matrices (operations between matrices, trees or sub-trees) are
based on elementary operations between low or full rank blocks (operations between blocks or leaves). Often
such operations, involving the SVD, require a truncation with respect to a previously set accuracy, which
acquires thus a fundamental importance in all the considered algorithms. A/l the hierarchical operations are
defined with respect to a set accuracy.

The main difficulty when implementing such algorithms is distinguishing between the full range of possible
different cases. The multiplication, for example, is defined with respect to the two block factors and the so
called target block. Each of these blocks could be subdivisible or not subdivisible and, if not subdivisible,
i.e. leaf, could be low or full rank. Each of these cases requires separate treatment aimed at reducing the over-
all complexity of the operation.

Rigorous information on addition between hierarchical matrices, truncation with respect to a given
accuracy, matrix—vector multiplication, matrix—matrix multiplication and hierarchical inversion can be
found in the works of Hackbusch (1999) and Grasedyck and Hackbusch (2003), where also some algo-
rithms are given and their arithmetic complexity is analyzed. A collection of useful algorithms for practical
implementation is given by Borm et al. (2003). The hierarchical LU decomposition, based on the previous
arithmetic, is discussed by Bebendorf (2005). The interested reader is referred to the mentioned works for
details.

3.6. System solution
The solution of the system can be obtained either directly, through hierarchical matrix inversion (Gra-

sedyck and Hackbusch, 2003), or indirectly, through iterative solvers that exploit the efficient matrix—vector
product in low rank format (Bebendorf, 2005, 2006).
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The iterative solvers can be used with or without preconditioners. When the condition number is high
and slows down the convergence rate, as is often the case when dealing with BEM systems, a precondi-
tioner can be computed taking full advantage of the representation in hierarchical format. If Ax = b is the
system to be solved, then a left preconditioner is an easily invertible matrix P such that the condition
number of the system P~'Ax = P~'b results lower than the original one, improving thus the convergence
rate of the iterative solver.

The hierarchical representation offers the opportunity to build naturally an effective preconditioner (Beben-
dorf, 2005; Grasedyck, 2005). A coarse preconditioner can be obtained by first generating a coarse approxi-
mation A(¢,) of the original collocation matrix A(e;), where the relationship ¢, > ¢ holds, ¢ denoting the set
accuracy for the hierarchical representation. This coarse approximation, with reduced memory storage, can
then be decomposed through hierarchical LU decomposition to give the preconditioner P. The resulting
system

(LU) '4x = (LU) b (10)

has a lower condition number and the convergence rate of iterative solvers is noticeably improved. It should be
noted that in Eq. (10) there is no need to compute the matrix product (LU) "4, as it is more efficient to use
directly the forward and backward substitution for the inversion of the matrix LU in iterative solution
schemes. Backward and forward substitutions take in fact full advantage of the hierarchical matrix—vector
multiplication and this is the reason why the preconditioner is LU decomposed.

In this work, the GMRES (Saad and Schultz, 1986) with a coarse hierarchical left preconditioner has been
used as solver.

3.7. Some details about code implementation

In the present work, subroutines and functions for the treatment of hierarchical matrices have been imple-
mented in FORTRAN 90. Different modules have been implemented to deal with the diverse tasks involved in
the hierarchical treatment of the boundary element elastostatic problems. The basic module Hdata imple-
ments all the needed data structures; the module Htree contains all the procedures that build the cluster
and block trees starting from the boundary information; the module Hse tup implements all the subroutines
that set up the hierarchical matrix computing low and full rank blocks, also forcing the boundary conditions;
the module Hb1ocks implements all the procedures that work on single blocks, like the full and reduced SVD;
eventually, the module Harithmetics implements the arithmetics on the trees (addition, multiplication, LU
decomposition and inversion).

The basic data structure is called BlockNode (Fig. 6) and allows the natural treatment of either the full or
low rank blocks of the hierarchical matrix.

The field IndexSet identifies the position of the block in the full matrix, identifying rows and columns on
the basis of a previously defined index partition; the field Identifier can be assigned three different values
that allow to establish if the block has sons, i.e. if it is not a leaf, or, in case it is a leaf, if it is low or full rank;
the pointers parent, sonll, sonl?2, son2l and son22 are needed to build and maintain the structure of
the quaternary hierarchical tree. It is worth stressing again that some operations, like the coarsening of the
block tree, rely on the possibility of moving through the tree in both directions, i.e. from root to leaves
and from leaf to root.

If the block is a leaf, on the basis of the value taken by Identifier the suitable data structure is allocated
to store the information. If the block is full rank then the array FBL is allocated, its dimension being inferred
by IndexSet. On the other end, if the block is low rank, then the pointers HeadColums, TailColums,
HeadRows and TailRows are associated: they point to the head and tail of two different lists of vectors col-
lecting, respectively, the columns and rows of the low rank representation.

4. Numerical experiments

In this section results obtained by applying the developed computational scheme are discussed. All the com-
putations have been performed using an Intel® Core™ 2 Duo Processor T5500 (1.66 GHz) and 2 GB of RAM.
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TYPE BlockNode
INTEGER, DIMENSION(6) :: IndexSet
INTEGER :: Identifier
INTEGER :: Rank
TYPE(BlockNode) , POINTER :: parent
TYPE(BlockNode), POINTER :: sonil
TYPE(BlockNode), POINTER :: sonl2
TYPE(BlockNode), POINTER :: son21
TYPE(BlockNode), POINTER :: son22
TYPE(vector), POINTER :: HeadColumns
TYPE(vector), POINTER :: TailColumns
TYPE(vector), POINTER :: HeadRows
TYPE(vector), POINTER :: TailRows
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: FBL

END TYPE BlockNode

Fig. 6. Basic data structure for hierarchical matrices.

4.1. Uncracked elastic bracket

A mechanical element, Fig. 7, is first analyzed, to obtain some insight into the structure of the hierarchical
collocation matrix for structures without cracks. The mechanical bracket has the two central cylinders
clamped and is anti-symmetrically loaded at the holes, in such a way that the resulting load is a moment lying
along the central axis. A mesh with 1032 elements and 3094 nodes has been considered. The standard method
required 350 s for the generation of the collocation matrix and 1484 s for the solution of the system through
Gauss elimination. These times have been compared with the related times required by the fast method, to
obtain both the assembly speed up ratio and the solution speed up ratio at different parameter settings. In par-
ticular, the standard assembly time has been compared with the time needed for the ACA generation of the
collocation matrix, while the standard solution time has been compared with the fast solution time, which is
comprised of the collocation matrix compression and coarsening time, of the preconditioner generation, coars-
ening and LU decomposition time and of the GMRES iteration time.

A first set of analyses has been performed to investigate the effect of the preconditioner accuracy on the
convergence of the iterative solution. For this purpose, the accuracy of the collocation matrix has been set

Fig. 7. Analyzed 3

configuration.
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to & = 107>, the admissibility parameter has been chosen as # = /2 and the minimal blocksize has been set to
Nmin = 36. The GMRES relative accuracy is 1078,

With these settings, the hierarchical collocation matrix is stored using only 35.61% (after coarsening) of the
memory required for the allocation of the original matrix. The matrix is generated through ACA in 198 s, i.e.
57% of the standard assembly time, and it is recompressed and coarsened in 216 s. It may be of interest to
mention that, in this specific application, 60% of the collocation matrix has been generated through ACA
in 55 (28% of the hierarchical assembly time). The remaining 40% of the collocation matrix is in full rank
format and its evaluation requires the remaining 72% of the hierarchical assembly time, mainly due to the
computation of the singular integrals whose evaluation is needed to populate such blocks. The approximate
solution accuracy is ||x — %||,2/|lx|| > = 2.9 x 10~*. Both the collocation matrix coarsening time and the solu-
tion accuracy are independent from the preconditioner accuracy. The GMRES converges towards the same
approximate solution, whose accuracy depends only on the accuracy of 4 (the collocation matrix) and b (right
hand side).

Table 1 reports the storage memory needed to store the preconditioner, expressed as percentage of the full
collocation matrix, the time required to set up and decompose the preconditioner, the time and the number of
iterations required by the GMRES to converge and, finally, the solution speed up ratio, defined as the ratio
between the fast solution time and the standard solution time. Times are expressed in seconds. It is interesting
to note as the time required to set up the preconditioner and for its LU decomposition grows when the pre-
conditioner required accuracy grows (as &, becomes smaller the required accuracy increases). On the other
hand, quite naturally, the number of GMRES iterations and the iterative solution time decrease when ¢,
decreases. In the extreme case of the preconditioner retaining the same accuracy as that of the collocation
matrix, the preconditioner LU decomposition can be used for a direct solution. It is worth noting, however,
that a very coarse preconditioner (¢, = 10~") provides the fastest solution, as is evident from the reported solu-
tion speed up ratios, while both the unpreconditioned GMRES and the Jacobi preconditioned GMRES fail to
converge.

Fig. 8 shows the blockwise structure of the collocation matrix as generated by ACA, the coarsened collo-
cation matrix and the structure of the coarsest effective preconditioner (e, = 107"). The number of blocks
obtained for the selected minimal blocksize goes from 3547 in the ACA generated matrix to 2545 in the coars-
ened matrix, while the preconditioner counts 1063 blocks. Every block is filled with a tone of grey proportional
to the ratio between the memory required for low rank representation and the memory in full rank format.
Full rank blocks are black while almost white blocks are those for which the numerical compression works
better. It is worth noting the reduction in the number of blocks obtained going from the ACA generated
matrix to the coarsened matrix. The big difference in the number of blocks is due to the suboptimal choice
of the admissibility parameter #, as will be discussed in the following. It is worthwhile to remember also that

Table 1

Storage, times and speed up ratios for different preconditioner accuracies

&p Storage (%) Setup (s) LU (s) GMRES (s) Iterations Speed up
No. Prec. 0.00 0.0 0.0 3470.8% 5000* 2.49*
Jacobi 0.00 0.0 0.0 3474.6° 5000° 2.49°
5% 107! 1.45 23.9 12.7 3906.0° 5000° 2.80°
1x107! 4.95 28.4 45.5 10.0 29 0.19
5% 1072 6.54 31.5 63.2 8.7 25 0.21
1x1072 10.59 47.3 117.7 4.0 10 0.25
5% 1073 12.62 58.5 153.2 3.9 9 0.28
1x1073 17.31 82.1 252.6 3.0 6 0.36
5% 107 19.38 90.8 303.4 2.6 5 0.40
1x107™* 25.20 104.2 476.7 2.5 4 0.53
5% 107° 27.89 97.9 586.2 2.1 3 0.60
1x107° 35.61 3.1¢ 988.2 2.3 3 0.81

* Reached GMRES relative accuracy: 3.0 x 10~° (no convergence).
® GMRES relative accuracy: 3.0 x 1072,

¢ GMRES relative accuracy: 6.1 x 1075,

4 Only the time for copying the collocation matrix.
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Fig. 8. Block-wise representation of the ACA generated matrix, the coarsened matrix and the preconditioner.

the required memory is not that needed for the ACA generated matrix, but directly that (lower) required by
the coarsened matrix. Here the two different compressions are shown to illustrate the mechanism of coarsen-
ing, but the operation can be performed recursively while populating the blocks.

Table 2 reports memory requirements before and after coarsening, assembly time and assembly speed up
ratio, solution time (compression and coarsening, preconditioner generation and LU decomposition,
GMRES) and solution speed up ratio and the accuracy of the final solution at different values of the colloca-
tion matrix requested accuracy. The tests have been performed by setting ¢, = 1.0 x 107" and n = V2.

Memory requirements, assembly times and solution times decrease when the preset accuracy decreases, as
the average rank of the approximation is reduced. However, reducing the requested accuracy obviously
reduces also the approximation quality of the final solution. From an engineering point of view, the selection
of a suitable criterion for selecting the collocation matrix accuracy is of fundamental importance. Note that
the L?> norm used in Table 2 does not give insight into the quality of the approximation for engineering pur-
poses. A node by node check of the solution has confirmed however that, for a selected accuracy
¢ = 1.0 x 107>, the average errors are of order 0.1-1.0%. Bigger percentage errors can occur for degrees of
freedom whose standard solution values are smaller than the requested accuracy. This consideration suggests
to set the accuracy at the same order of magnitude as that of the smaller quantities of interest in the analysis.

Table 3 reports the memory storage before and after coarsening, the number of blocks before and after
coarsening, the assembly time and assembly speed up ratio, the coarsening time and the solution speed up
ratio at different values of the admissibility parameter. The other parameters have been set to & = 107°
and ¢, = 10~". The time for generating and manipulating the preconditioner is independent from 7. On the
contrary, the time required for coarsening the matrix strongly depends on it. The choice of 5 directly affects
the quality of the ACA generated matrix and a good choice allows to obtain a matrix closer to the optimal
matrix produced by the coarsening procedure, as can also be noted from the reduction in the number of
blocks. This is the reason of the influence on the coarsening time. Note as the matrices obtained after coars-
ening require almost the same memory, regardless to the initial ACA generated matrix storage: the coarsening
produces in fact an almost optimal hierarchical matrix, reducing the differences related to the choice of 7.
However, though a larger part of the matrix is generated through ACA, which should lead to a reduction
in the assembly time, the average rank of the approximation increases, as the new admissible blocks converge

Table 2

Influence of the collocation matrix accuracy

& Storage A (%) Storage B (%) Assembly (s) Speed up Solution (s) Speed up HXH;"T‘LLZ
1076 57.49 45.59 218.3 0.62 319.1 0.21 6.0 x 1076
1073 53.62 35.61 197.6 0.57 300.2 0.20 29x 107
107 50.09 25.17 180.5 0.52 269.6 0.18 5.6 %1073
1073 47.15 17.28 169.0 0.48 201.9 0.14 3.4 %1072

1072 44.17 10.56 159.1 0.45 150.8 0.10 1.6 x 107!
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Table 3
Influence of the admissibility parameter

n Storage A (%) Storage B (%) No. of blocks Assembly (s) Speed up Coarsening (s) Speed up
V2 53.62 35.61 3547-2545 197.6 0.57 216.2 0.20
3 45.04 34.61 2581-2284 209.2 0.60 117.5 0.13
4 43.73 34.17 2341-2152 218.3 0.62 98.9 0.12
5 43.52 33.63 2257-2044 220.5 0.63 111.2 0.13

more slowly to the preset accuracy. This aspect may have a negative effect on the assembly time, that is how-
ever balanced by more relevant reduction in the solution time. Fig. 9 shows the structure of the ACA matrix
for two different values of #. It is evident that for 5 = 4 more blocks become admissible than for 1 = /2.

4.2. Embedded crack

As second configuration a cylinder with an embedded crack is considered, Fig. 10. The cylinder is subjected
to uniaxial stress acting on the two bases, so to produce a mode I crack load. A mesh with 800 elements and
3652 nodes is considered. The standard technique requires 805 s to assemble the collocation matrix and 2394 s
to solve the system. It is worth noting that the numerical integration of the singular, strongly singular and
hypersingular kernels occurring during the assembly of the collocation matrix requires, in this case, 60% of
the standard integration time. Since singular integrals occur near the diagonal blocks, which are full rank
in the hierarchical representation, such percentage represents the lower bound for the hierarchical assembly

Fig. 9. Block-wise structure of the ACA matrix for n = v/2 and 5 = 4.

Gy
e

Fig. 10. Cylinder with embedded crack and crack basic mesh.
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time. First, a parametric analysis on the influence of the preconditioner accuracy is performed, as in the pre-
vious case. For this first set of computations, the collocation matrix accuracy is set to ¢ = 1073, the admissi-
bility parameter is # = 6 and ny;, = 36. With this parameters choice the collocation matrix is generated in
689 s, i.e. 85% of the standard assembly time, it is compressed and coarsened in 168 s and is stored using
23.70% of the original space. The accuracy of the final solution is ||x — ¥|,2/||x||,> = 1.2 x 10~*, which is very
good in terms of point by point accuracy. Table 4 reports the preconditioner storage, the preconditioner setup
and LU decomposition times (in seconds), the GMRES solution time, the number of GMRES iterations and
the solution speed up ratio. Again, it can be observed that the required memory, the setup time and the LU
decomposition time grow as the required preconditioner accuracy grows. On the contrary, the number of
GMRES iterations, and the GMRES time as consequence, decreases as the accuracy grows. Moreover, it is
important to note as, also in this case, the best speed up ratio is obtained with the coarsest preconditioner
(e, = 1.0), while a fine preconditioner could be used as a direct solver. Finally, it should be noted that the con-
struction of the hierarchical preconditioner is actually necessary, as the unpreconditioned GMRES as well as
the Jacobi preconditioned GMRES fail to converge.

The influence of the admissibility parameter has been investigated and the results are reported in Table 5.
The analysis is performed setting &, = 10~ and &, = 1.0. The same considerations as in the previous case hold.
Finally, three different meshes have been analyzed to obtain some insight into the behavior of the solver at
varying numbers of degrees of freedom. The first mesh has 66 elements and 400 nodes, the second 300 elements
and 1352 nodes and the third uses 800 elements and 3652 nodes. The settings are &, = 1073, g =1.0,n=06.
Table 6 reports the results obtained for the three different meshes in terms of memory ratio, assembly speed
up ratio, solution speed up ratio and number of GMRES iterations. Also the times for standard assembly and
standard solution are reported, expressed in seconds. It appears evident as the advantages of the described
technique become more relevant with larger meshes. While memory savings are always obtained also for
coarse meshes, the assembly and solution speed up ratios are less than one only beyond certain threshold,
under which the direct solver performs better. Fig. 11 shows the comparison in terms of required memory
and solution time between standard and fast DBEM. It is worth noting the almost linear behavior of the fast
DBEM with respect to the number of degrees of freedom.

Table 4

Storage and times for different preconditioner accuracies

&p Storage (%) Setup (s) LU (s) GMRES (s) Iterations Speed up
No. Prec. 0.00 0.0 0.0 3642.1% 5000* 1.52%
Jacobi 0.00 0.0 0.0 3644.3° 5000° 1.52°
1 x10° 0.86 15.2 0.4 92.4 306 0.12
5% 107! 2.42 15.7 115.2 60.1 197 0.15
1x 107! 5.00 17.9 163.9 12.9 40 0.15
1 x 1072 9.06 26.5 273.2 5.9 16 0.20
1x107? 13.39 47.4 448.6 3.8 8 0.28
1x10™ 18.32 68.6 802.8 2.5 4 0.43
1x107° 23.69 2.7¢ 1371.6 2.3 3 0.64

2 The relative GMRES accuracy was 5.9 x 107> (no convergence reached).
® The GMRES relative accuracy was 8.8 x 1072,
¢ Only the time for copying the collocation matrix.

Table 5

Influence of the admissibility parameter

n Storage A (%) Storage B (%) No. of blocks Assembly speed up Coarsening (s) Solution speed up
2 43.94 23.72 4735-2380 0.85 229.7 0.14

4 38.10 23.72 4003-2380 0.85 185.4 0.12

6 35.85 23.70 3643-2338 0.86 168.2 0.12

8 35.15 23.67 3433-2314 0.86 162.4 0.11




L Benedetti et al. | International Journal of Solids and Structures 45 (2008) 2355-2376 2373

Table 6
Memory savings and speed up ratios
Elements Nodes Storage (%) Standard assembly (s) Speed up Standard solution (s) Speed up Iterations
66 400 69.78 79.4 1.07 32 1.23 49
300 1352 40.74 215.5 1.04 122.8 0.28 113
800 3652 23.70 805.5 0.86 2398.8 0.12 306
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Fig. 11. Comparison between standard and fast DBEM.

Fig. 12. Block-wise representation of the ACA generated matrix, the coarsened matrix and the preconditioner.

Fig. 12 shows the blockwise structure of the collocation matrix for the finest mesh as generated by ACA,
the coarsened collocation matrix and the structure of the preconditioner. The number of blocks goes from
3643 in the ACA generated matrix to 2338 in the coarsened matrix and 430 blocks in the preconditioner. It
is interesting to point out how the low rank blocks corresponding to collocation on the boundary and inte-
gration on the crack and vice versa are clearly distinguishable. The geometry and mesh features have a numer-
ical counterpart in the blockwise structure of the hierarchical matrices.

5. Conclusions

In this paper, a new fast solver for three-dimensional BEM and DBEM was successfully developed and
implemented. The method was shown to be very effective and reliable in terms of accuracy. Moreover, it
allows a considerable reduction in both the amount of memory needed for storing the system coefficients
and the time required for the system solution. In particular, it has been shown that both storage memory
and solution time vary almost linearly with respect to the number of degrees of freedom, thus providing
considerable savings for large systems in comparison to direct solvers. It has also been demonstrated that
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hierarchical matrices are particularly suitable for crack problems. This is due to cracks normally being isolated
surfaces which are far from most of the remaining boundary, hence corresponding to large low rank blocks.
This allows, as demonstrated, to increase the number of elements on the crack surfaces with only modest
increases in storage memory and solution time.

Appendix A. Algorithms for hierarchical DBEM

The algorithms needed for dealing with the presence of cracks in the framework of the fast DBEM based on
the use of hierarchical matrices are described in this Appendix.

The first is the algorithm for the generation of the hierarchical cluster tree. It is similar to the one intro-
duced by Giebermann (2001) and used in Grasedyck (2005) and is aimed at generating a geometrically bal-
anced cluster tree, after the initial subdivision between boundary nodes, displacement crack nodes and
traction crack nodes. It requires, as input, a set of indices associated to a set of collocation points, the set
of the coordinates of such points and the minimum number of points allowed in a subset, i.e. the cardinality.
The output of the procedure is the entire structure of the binary tree, from the root to the leaves. Note that
(x;), indicates the ith coordinate of the jth collocation point, while the operator #(-) gives the number of ele-
ments in a set.

The algorithm for the generation of the quaternary block tree is also given. It takes into account the pos-
sible presence of cracks, following the considerations developed in Section 3.2.

The output of the procedure, when it is initially called passing the block corresponding to the entire matrix,
is the block tree from the root to the leaves, that are classified in low and full rank.

Algorithm 1. Recursive SplitCluster (s, X, i)

if s is the tree root cluster then
define sy = {i € s : x; € set of boundary nodes}
define s, = {i € s : x; € set of crack nodes}
else if s is the cluster of all the crack nodes then
define s; = {i € s : X; € set of displacement crack nodes}
define s, = {i € s : x; € set of fraction crack nodes}
else if #s < n,,;; then
set sons(s) = {0}
return
else
for i=1,3 do
M, = max{(x)), : ] € 5}
m; = min{(x;); : j € s}
end for
find j such that M; — m; is the largest
define s1 = {i € 51 (x;); < (M; +m;)/2}
define s = s — 59

end if
set sons(s) = {s1,s2}
for i=1,2
call SplitCluster(s;, X, i)
end for

Algorithm 2. Recursive SplitBlock(Bsx;, fmin)

if s is the cluster of all the crack nodes then

set sons(Byx) = {Bgx: : 0 € sons(s),t € sons(t)}
else if B, is admissible then

set By, as a low rank block

set sons(Byx;) = {0}
else if #s < nyi, or #t < ny;, then

set By, as a full rank block



L Benedetti et al. | International Journal of Solids and Structures 45 (2008) 2355-2376 2375

set sons(Byx,) = {0}
else

set sons(Byx;) = {Box: : 0 € sons(s),t € sons(t)}
end if
if sons(Byx,) # {0} then

for all B, € sons(Bsx,) do

call SplitBlock(B,x-)

end for

end if
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