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Abstract

Boundary element formulations incorporating consistent transient potential theory, satisfying exact energy balance, and dynamic

equilibrium satisfaction with respect to the co-ordinate axis directions and moments, including inertial forces, elastoplastic deformations

and thermal loadings, are presented. The procedures are quite general and can be implemented into existing boundary element codes. The

required expressions for the transient potential analysis and the dynamic formulation are discussed, and we include two examples that

take into account linear and non-linear material behaviour to illustrate the potential of the proposed methodology.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

As a typical mixed interpolation technique, the solutions
produced by the boundary element method (BEM) do not
inherently satisfy the equilibrium equations. Hence, early
researchers, first faced with this problem, imposed approx-
imate equilibrium via modified variational procedures such
as Lagrange multipliers [1–3], mainly interested in a
successful combination of BEM and the popular finite
elements whose stiffness matrices already present this
desirable condition built in. To a great extent, in these
early implementations the ultimate goal was the computa-
tion of symmetric and rigid body motion satisfying BEM
stiffness matrices, allowing for a consistent combination
between the two techniques. But the recognition of
equilibrium as a desirable feature in pure BEM solutions
had already called the attention of other BEM researchers
e front matter r 2007 Elsevier Ltd. All rights reserved.
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such as Kuhn et al. [4], who introduced this feature, in
approximate fashion, through an over determined system
of equations producing equilibrium in a least-square
approximate fashion.
Notwithstanding the fact that for any starting BEM

discretization, equilibrium is approached with mesh refine-
ment or element improved interpolation, lack of proper
balance can in some cases spoil the convergence rate
otherwise obtained with suitable consistent modifications
as discussed in a previous publication by Telles and de
Paula [5], in which such general benefit in solution
behaviour has been seen illustrated for problems involving
steady-state potential and elastostatics. This formerly
introduced original idea was later extended to accom-
modate inertial forces and plastic deformations as well
by Soares, et al. [6] and has been the object of a number
of connected publications, e.g. of Dumont [7] and He
et al. [8].
In this paper, the BEM formulation with exact

equilibrium satisfaction previously presented by the
authors is extended to accommodate first transient
temperature distribution within the scope of potential
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theory (i.e., diffusion equation) and then its implementa-
tion to thermal–elastoplastic dynamic problems. The
starting motivation to follow this approach has been the
extension of the benefits of equilibrium, previously verified
for potential and elastostatics, to all possibly elastody-
namic problems, including frequency and time domains
with thermal, transient and steady-state loading.

2. Basic equations

The heat conduction equation for a homogenous
isotropic medium is given by

T ;ii � ðrc=KÞ _T þ _s ¼ 0, (1)

where T stands for a relative temperature state; _s is a source
term and r, c and K are the mass density, specific heat per
unit volume and thermal conductivity, respectively. Infer-
ior commas and over dots indicate partial space and time
derivatives, respectively.

The basic equations concerning thermo-dynamic model-
ling of solids read

sij;j � r €ui þ rbi ¼ 0, (2)

dsij ¼ Dijklðd�kl � d�0klÞ þ gij dT , (3)

where Eq. (2) is the momentum balance equation and
Eq. (3) is the constitutive law (written in incremental form).
The Cauchy stress, using the usual Cartesian index
notation, is represented by sij; ui stands for the displace-
ment component and bi for the body force component. In
addition, Dijkl is a tangential tensor defined by suitable
state variables and the direction of the increment. The
incremental strain (deij) components are defined in the
usual way from the displacement, i.e., deij ¼ (1/2)(dui,

j+duj, i) and �0ij refers to a generic ‘‘initial’’ strain state
(elastoplastic analysis). In Eq. (3), gij is the thermo-
elasticity tensor defined by gij ¼ a(E/(1�2n))dij for 3D
and 2D plane strain state problems or gij ¼ a(E/(1�n))dij

for 2D plane stress problems, where E is Young’s modulus,
n is Poisson’s rate, a is the coefficient of thermal expansion
and dij is the Kronecker delta.

In addition to Eqs. (1)–(3), boundary and initial
conditions have to be prescribed in order to completely
define the problem.

3. Thermal analysis

Considering heat conduction problems, the direct BE
formulation leads to the following integral equation
(source terms are omitted for simplicity) [9]:

cðxÞTðx; tÞ ¼
Z
G

T�ðx; xÞRðx; tÞdGðxÞ

�

Z
G

R�ðx;xÞTðx; tÞdGðxÞ

�

Z
O

T�ðx; xÞðrc=KÞ _Tðx; tÞdOðxÞ, ð4Þ
where G and O stand for the boundary and the domain of
the body, respectively; c(x) depends on the boundary
geometry and T*(x, x) and R*(x, x) (i.e., temperature and
its normal derivative) represent the fundamental solution
to the problem at x (field point) due to unit sources at x
(source point).
To introduce energy equilibrium satisfaction into the

thermal BEM formulation, the standard fundamental
solution T*(x, x) is modified, adding to it a constant
term k:

T̄
�
ðx;xÞ ¼ T�ðx;xÞ þ k. (5)

The implementation of T̄
�
ðx;xÞ generates an extra term

in the right-hand side of Eq. (4). After discretization of
boundary and domain and taking into account the
fundamental solution (5), Eq. (4) leads to the following
system of equations:

HT ¼ GR�M _Tþ VQ, (6)

where H and G are the standard boundary element
influence matrices and M is the standard domain influence
matrix. V and Q are terms associated with the equilibrium
satisfaction; they arise due to the constant term added in
Eq. (5). Vector V is defined by

V ¼ ½ 1 1 � � � 1 �T (7)

and Q is given by

Q ¼ k

Z
G

Rðx; tÞdGðxÞ
� �

� k

Z
O
ðrc=KÞ _Tðx; tÞdOðxÞ

� �
¼ kNTR� kPT _T, ð8Þ

where matrices N and P are computed by simple
integration of the interpolation functions along the
boundary and the domain, respectively. For equilibrium
satisfaction, one should have

NTR ¼ PT _T. (9)

Writing Eqs. (6) and (9) together, in a less concise
manner, one has

Hbb 0

Hdb I

0 0

2
664

3
775 Tb

Td

" #
¼

Gbb

Gdb

NT

2
664

3
775½Rb�

�

Mbb Mbd

Mdb Mdd

PT
b PT

d

2
664

3
775

_Tb

_Td

" #
þ

Vb

Vd

0

2
664

3
775Q, ð10Þ

in which the subscripts b and d denote boundary and
domain associated coefficients and unknowns, respectively.
Multiplying the first set of equations (10)by NTG�1bb , results
in

NTG�1bb HbbTb ¼ NTRb �NTG�1bb Mb
_TþNTG�1bb VbQ. (11)
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Taking into account Eq. (9), Q can be isolated in
Eq. (11), as follows:

Q ¼ l�1ðNTG�1bb HbbTb þNTG�1bb Mb
_T�PT _TÞ, (12)

where l is the term originally multiplying Q in Eq. (11),
using boundary only matrices.

Substituting Eq. (12) into Eq. (6) and rearranging, a
reduced system of equations can finally be obtained:

H̄bb

H̄db

0

I

" #
Tb

Td

" #
¼

Gbb

Gdb

" #
½Rb� �

M̄b

M̄d

" #
½ _T� (13a)

or, in a concise manner:

H̄ T ¼ GR� M̄ _T, (13b)

where the modified matrices H̄ and M̄ are given by

H̄bb ¼ Hbb � Vbl
�1NTG�1bb Hbb (14a)

H̄db ¼ Hdb � Vdl
�1NTG�1bb Hbb (14b)

M̄b ¼Mb � Vbl
�1NTG�1bb Mb þ Vbl

�1PT (15a)

M̄d ¼Md � Vdl
�1NTG�1bb Mb þ Vdl

�1PT (15b)

and l ¼ NTG�1bb Vb. (16)

Considering heat conduction problems, Eq. (13a)
represents the final system of equations (with energy
equilibrium satisfaction) to be solved. An interesting
feature of this solution is that it corresponds to the
boundary element results with an infinite k value (Eq. (5))
added to the fundamental solution. For details regarding
boundary elements with equilibrium satisfaction, applied
to only steady-state potential problems, the reader is
referred to [5].
4. Mechanical analysis

The basic displacement and stress integral equations
associated with the initial stress formulation of dynamic
elastoplasticity and thermal analyses are defined as follows
(body force terms omitted for simplicity) [9–11]:

cðxÞuðx; tÞ ¼
Z
G
u�ðx; xÞpðx; tÞdGðxÞ

�

Z
G
p�ðx;xÞuðx; tÞdGðxÞ

�

Z
O
u�ðx; xÞr€uðx; tÞdOðxÞ

þ

Z
O

e�ðx; xÞðrpðx; tÞ

þ yTðx; tÞÞdOðxÞ, ð17Þ
rðx; tÞ ¼
Z
G
u0

n
ðx;xÞpðx; tÞdGðxÞ �

Z
G
p0

n
ðx; xÞuðx; tÞdGðxÞ

�

Z
O
u0

n
ðx;xÞr€uðx; tÞdOðxÞ þ

Z
O

e0�ðx;xÞðrpðx; tÞ

þ yTðx; tÞÞdOðxÞ þ gðrpðx; tÞ þ yTðx; tÞÞ, ð18Þ

where u*(x, x), p*(x, x), e*(x, x), u0*(x, x), p0* and e0*(x, x)
are fundamental tensors. Vectors u(x, t) and p(x, t) describe
the distribution of the displacement and traction compo-
nents of the problem to be solved; rp(x, t) represents the
‘‘initial (plastic) stress’’ components and T(x, t) stands for
the relative temperature state as in Section 3. The free term
g is due to the correct derivative of the initial stress domain
integral [10] and y stands for a matrix representation of
tensor gij.
As before, in order to introduce the equilibrium into the

BEM formulation, the standard fundamental solution
u*(x, x) is modified: now traction equilibrium is attained
by introducing rigid body translations in the directions of
the co-ordinate axes and moment equilibrium is achieved
by superimposing rigid body rotations to the fundamental
solution. The modified fundamental solution that arises is
given by

ū�ðx; xÞ ¼ u�ðx; xÞ þ kðIþ rHÞ, (19)

where k is a constant amplitude, r is the distance between
the source and field points, I is the identity matrix and H is
a rotational matrix [5,6].
The implementation of ū�ðx;xÞ, as before, generates

extra terms in the right-hand side of Eq. (17). After
boundary and domain discretization, Eq. (17), taking into
account the fundamental solution (19), can be written as
the following system of equations:

HU ¼ GP�M €UþWðOp
þ YTÞ þ VQ, (20)

where H and G are the standard boundary element
influence matrices and M and W are the standard domain
influence matrices (mass and initial stress matrices,
respectively). V and Q are terms associated with the
equilibrium satisfaction and they arise due to the extra
terms added in Eq. (19). Matrix V is defined by

V ¼

1þ X 2ðx1Þ �X 1ðx1Þ 1

X 2ðx1Þ 1� X 1ðx1Þ 1

� � � � � � � � � � � � � � � � � � � � � � � � � � �

1þ X 2ðx2Þ �X 1ðx2Þ 1

X 2ðx2Þ 1� X 1ðx2Þ 1

..

. ..
. ..

.

2
6666666664

3
7777777775
, (21)

where X1 and X2 stand for the co-ordinate axes (2D
problems) and xi corresponds to each nodal point i. Q is a
vector whose components are associated with equilibrium
in the X1 and X2 directions and moment equilibrium with
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respect to the origin of these global axes:

Q ¼ k

R
G p1ðx; tÞdGðxÞR
G p2ðx; tÞdGðxÞR
G½X 1ðxÞp2ðx; tÞ � X 2ðxÞp1ðx; tÞ�dGðxÞ

2
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3
775þ

� k

R
O r €u1ðx; tÞdOðxÞR
O r €u2ðx; tÞdOðxÞR
O r½X 1ðxÞ €u2ðx; tÞ � X 2ðxÞ €u1ðx; tÞ�dOðxÞ

2
664

3
775

¼ kNTP� kPT €U, ð22Þ

where matrices N and P are computed by simple
integration of the interpolation functions and their
products by co-ordinates along the boundary and the
domain, respectively. For equilibrium satisfaction, one
should have

NTP ¼ PT €U. (23)

As in the previous section, a reduced system of equations
can be obtained from Eqs. (20) and (23), as follows: (i)
multiply the first set of Eq. (20)by NTG�1bb and isolate Q

(one should note that NTG�1bb GbbP ¼ PT €U, according to
Eq. (23)), (ii) back substitute the expression obtained for Q
in Eq. (20) and rearrange.

As a result of the above-described steps, the following
final reduced system of equations is achieved:

H̄U ¼ GP� M̄ €Uþ W̄ðOp
þ YTÞ, (24)

where the modified matrices H̄; M̄ and W̄ are given by

H̄bb ¼ Hbb � Vbk
�1NTG�1bb Hbb, (25a)

H̄db ¼ Hdb � Vdk
�1NTG�1bb Hbb, (25b)

M̄ ¼M� Vk�1NTG�1bb Mb þ Vk�1PT, (26)

W̄ ¼W� Vk�1NTG�1bb Wb, (27)

and

k ¼ NTG�1bb Vb. (28)

One should observe that the equilibrium satisfaction
is introduced by modifying the fundamental solution
(Eq. (19)), adding to it rigid body movements. Once only
rigid body movements are added, the stress integral Eq.
(18) remains the same as that of the non-self-equilibrated
formulation. After boundary and domain discretization,
Eq. (18) can be written as the following standard system of
equations:

O ¼ G0P�H0U�M0 €UþW0ðOp
þ YTÞ, (29)

where matrices H0 and G0 correspond to the boundary
integrals while matrices M0 and W0 correspond to the
inertial and initial stress domain integrals (the free term
depicted in Eq. (18) is included in W0). Vectors O and Op

stand for the stress and ‘‘plastic stress’’ nodal values,
respectively.
Eqs. (13), (24) and (29) must be taken into account in
order to solve the thermo-mechanical problem considering
a boundary element formulation with equilibrium satisfac-
tion. Some details about the implementation and numerical
solution of these equations, adopted in the present work,
are discussed in the next section.

5. Numerical implementation and applications

In each time-step of the present solution process, the
thermal analysis is initially carried out and once the relative
temperature field is evaluated, it is used as an input
parameter to the mechanical analysis. The mechanical
problem is solved in the sequence taking into account an
iterative process to evaluate the stress components. Once
the real stress state is achieved, the displacements are
evaluated and updated, regarding the ‘‘initial’’ stress state
contribution.
In the present work, linear boundary elements are

adopted to discretize the boundary and linear triangular
cells are adopted to discretize the domain. The integrals
related to the computation of matrices N and P (both for
the thermal and mechanical analyses) are evaluated
analytically. The Houbolt scheme [12] is considered in
order to deal with the time-domain solution of the thermal
and mechanical transient equations (parabolic and hyper-
bolic problem, respectively). The Newton–Raphson meth-
od is employed to treat the non-linear problem solution
and the stress equation is the only one used for the non-
linear iterations [10]. The Moore–Penrose pseudo-inverse
technique [13]is adopted to evaluate matrix G�1bb directly
from matrix Gbb (one should observe that matrix Gbb can
be singular, as for instance, when double nodes are
considered). The inversion of matrix k is trivial and is
obtained analytically (for 2D mechanical problems, k is
3� 3 whereas for thermal problems it is a scalar).
If one compares the proposed BEM formulation to a

classical BEM approach, it is noticed that prior to the start
of the time marching scheme (which is the very same for
both) there is an increase in the computer effort to obtain
the required matrix equations (i.e, evaluating a Ā matrix is
more expensive than evaluating a A matrix). This increase,
however, may be compensated by the fact that the built-in
equilibrium satisfaction tends to improve the solution.
Hence it requires less discretization (mesh refinement) for
equivalent accuracy. Such behaviour is explored in the
second example presented next.

5.1. Example 1

In this first example, a cantilever beam is analysed,
taking into account a pure mechanical behaviour and a
thermo-mechanical behaviour. A sketch of the model is
depicted in Fig. 1. The properties of the beam are:
E ¼ 200N/m2; n ¼ 0.2; r ¼ 0.1 kg/m3; K ¼ 4.0 J/m/s/1C;
c ¼ 1.0 J/kg/1C; a ¼ 0.1/1C. Essential and natural bound-
ary conditions are prescribed, for the isolated mechanical
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Fig. 2. Model discretization: (a) BEM mesh, (b) FEM mesh.
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Fig. 3. Vertical displacement time history at point A considering

elastodynamic and thermo-elastodynamic analyses.
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Fig. 1. Geometry and boundary conditions for the first example model.
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problem, as ūiðx ¼ 0; y; tÞ ¼ 0, p̄iðx; y ¼ 0; tÞ ¼ 0,
p̄iðx; y ¼ b; tÞ ¼ 0, for i ¼ 1, 2;p̄1ðx ¼ a; y; tÞ ¼ 0 and
p̄2ðx ¼ a; y; tÞ ¼ ApF ðtÞ, where Ap ¼ �1.0N/m and F(t) is
the Heaviside step function. As for the thermal problem,
natural and essential boundary conditions are prescribed:
R̄ðx ¼ 0; y; tÞ ¼ 0, R̄ðx ¼ a; y; tÞ ¼ 0, R̄ðx; y ¼ b; tÞ ¼ 0 and
T̄ðx; y ¼ 0; tÞ ¼ AT f ðtÞ, where AT ¼ 5.0 1C and f(t) is the
Heaviside step function. The geometry of the model is
defined as a ¼ 2m and b ¼ 1m.

The cantilever beam is analysed considering the BEM
(with and without equilibrium satisfaction) and the FEM.
The meshes adopted for each method are depicted in Fig. 2,
48 linear boundary elements (four double nodes) and
256 linear triangular cells are considered for the BEM
(Fig. 2(a)) and 128 linear quadrangular finite elements are
considered for the FEM (Fig. 2(b)). The same time
discretization step is adopted for the BEM and for the
FEM and the selected time-step is Dt ¼ 0.00275 s.
The time history solutions for the vertical displacements

at point A (x ¼ a, y ¼ b/2) are shown in Fig. 3 for both
boundary and finite element procedures. The results are
depicted considering pure elastodynamic and thermo-
elastodynamic analyses. As can be observed, improved
results are obtained taking into account equilibrium
satisfaction within the BEM formulation. Though the
improvement of results may be small for some linear or
sufficiently discretized models, it can become quite
significant when non-linear behaviour or poorly discretized
models are considered, as illustrated in the next example.

5.2. Example 2

In this example, a cantilever beam is analysed taking into
account different spatial discretization and linear or non-
linear thermo-mechanical behaviour. A sketch of the model
is presented in Fig. 4. The properties of the beam are:
E ¼ 100N/m2; n ¼ 0.3; r ¼ 0.1 kg/m3; K ¼ 10.0 J/m/s/1C;
c ¼ 1.0 J/kg/1C; a ¼ 0.25/1C. For the mechanical problem,
the essential and natural boundary conditions are
ūiðx ¼ 0; y; tÞ ¼ 0, p̄iðx ¼ a; y; tÞ ¼ 0, p̄iðx; y ¼ 0; tÞ ¼ 0 and
p̄iðx; y ¼ b; tÞ ¼ 0, for i ¼ 1, 2. The natural and essential
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Fig. 6. Vertical displacement time history at point A considering elastic

and elastoplastic analyses: (a) Mesh 1, (b) Mesh 2.

Fig. 5. Model discretization: (a) Mesh 1, (b) Mesh 2.
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boundary conditions for the thermal problem are defined
as R̄ðx ¼ 0; y; tÞ ¼ 0, R̄ðx; y ¼ 0; tÞ ¼ 0, R̄ðx; y ¼ b; tÞ ¼ 0
and T̄ðx ¼ a; y; tÞ ¼ AðyÞf ðtÞ, where A(y) ¼ (2y/b) 1C and
f(t) is the Heaviside step function. The geometry of the
model is given by a ¼ 12m and b ¼ 6m.

The cantilever beam is analysed considering the BEM
(with and without equilibrium satisfaction) with two
different spatial discretization refinement levels. The
meshes adopted are depicted in Fig. 5: in the first
discretization scheme (mesh 1), 36 linear boundary
elements (four double nodes) and 144 linear triangular
cells are considered (Fig. 5(a)); in the second discretization
(mesh 2), 60 linear boundary elements (four double nodes)
and 400 linear triangular cells are included (Fig. 5(b)). The
time-steps adopted are Dt1 ¼ 0.01 s (mesh 1) and
Dt2 ¼ 0.006 s (mesh 2).

The time history solutions for the vertical displacements
at point A (x ¼ a, y ¼ b/2) are shown in Fig. 6, taking into
account linear (elastic) and non-linear (elastoplastic)
analyses. As one can observe, considering a relatively poor
discretization, the BEM formulations with and without
equilibrium satisfaction produce results with a good
difference from each other. Nevertheless, the formulation
with equilibrium is seen closer, in the average sense, to the
results obtained with the refined discretization procedures.
One should also observe that when non-linear behaviour is
added, the differences produced by the two BEM
formulations are amplified. In this case, the classical
BEM formulation may give rise to inadequate results and
the present proposed formulation should be adopted.
6. Conclusions

In the present work, a boundary element formula-
tion with energy balance satisfaction has been intro-
duced and the proposed methodology is applied to
model heat conduction problems (diffusion equation).
Taking into account dynamic applications, a boundary
element formulation with equilibrium satisfaction with
respect to the co-ordinate axis directions and moments,
also considering inertia forces, has likewise been pre-
sented and both scalar and vector self-equilibrated
formulations have been produced together, treating in
consistent form thermo-mechanical problems, including
plasticity.
The developed methodology improves the accuracy of

the BEM, as illustrated by the numerical examples
presented. The merit of the proposed procedure is high-
lighted when poor discretized or non-linear (elastoplastic)
models are considered. The generality and ease of usage of
the procedure, when implemented into existing boundary
element codes, are also worth noticing.
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