Available online at www.sciencedirect.com

ScienceDirect JUR

" “s
ELSEVIER European Journal of Mechanics A/Solids 27 (2008) 429-442

A magnetoelectric screw dislocation interacting with a circular
layered inclusion

Ming-Ho Shen *

Department of Automation Engineering, Nan Kai Institute of Technology, 568 Chung Cheng Road, Tsao Tun, 542, Nantou County, Taiwan
Received 23 June 2007; accepted 28 August 2007
Available online 31 August 2007

Abstract

Within the framework of the linear theory of magnetoelectroelasticity, the problem of a circular layered inclusion interacting with
a generalized screw dislocation under remote anti-plane shear stress and in-plane magnetoelectric loads is investigated in this paper.
The generalized dislocation can be located either in the matrix or in the circular layered inclusion. The layers are coaxial cylinders
of annular cross-sections with arbitrary radii and different material properties. Using complex variable theory and the alternating
technique, the solution of the present problem is expressed in terms of the solution of the corresponding homogeneous medium
problem subjected to the same loading. Some numerical results are provided to investigate the influence of material combinations
on the shear stress, electric field, magnetic and image force. These solutions can be used as Green’s functions for the analysis of
the corresponding magnetoelectric crack problem.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Due to magnetoelectroelastic coupling behavior, piezoelectric/piezomagnetic composite materials are extensively
used to design actuators, sensors and other electronic products in modern technology. Combining two or more dis-
tinct constituents, composite materials can take advantage of each constituent and consequently exhibit a superior
magnetoelectroelastic effect. Van Suchtelen (1972) first reported that piezoelectric/piezomagnetic composites may
exhibit a new property viz. the magnetoelectroelastic coupling effect. Later, van Run et al. (1974) observed that the
magnetoelectric coefficients of a BaTiO3—CoFe,O4 composite are two orders higher than the highest known magne-
toelectric coefficients of a Cr,O3 medium. Studies of the properties of piezoelectric/piezomagnetic composites have
been carried out by numerous investigators in recent years. Nan (1994) and Huang and Kuo (1997) proposed micro-
mechanics models to estimate the effective properties of fibrous piezoelectric/piezomagnetic composite materials. Li
(2000) and Wu and Huang (2000) studied the inclusion and inhomogeneity problems and predicted the magnetoelec-
tric coupling coefficients of the piezoelectric/piezomagnetic composites. Pan (2001) and Chen et al. (2002) proposed
micromechanics models to evaluate the effective properties of plane, layered piezoelectric/piezomagnetic composite
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materials. Wang and Shen (2003) obtained analytical solutions for the problem of inclusions of arbitrary shape in
magnetoelectroelastic composites.

Dislocation solutions or Green’s functions can serve as kernel functions for use in the singular integral equation
method. They are one of the well-established tools in the solution of numerous problems in the mechanics and physics
of solids. For example, Li and Dunn (1998a; 1998b) used three-dimensional magnetoelectroelastic Green’s functions
to study inclusion problems. Green’s functions for magnetoelectroelastic solids have been studied by several authors.
Liu et al. (2001) gave Green’s functions for an infinite two-dimensional anisotropic magnetoelectroelastic medium
containing an elliptical cavity or a crack. Li (2002) obtained explicit expressions for the magnetoelectric Green’s
functions for a transversely isotropic medium and used them to analyze the magnetoelectric inclusion and inhomo-
geneity problems. Recently, Fang et al. (2005) discussed the interaction between a generalized screw dislocation with
circular-arc interfacial rigid lines in magnetoelectroelastic solids. Hao and Liu (2006) investigated the interaction
between a screw dislocation and a semi-infinite crack in a transversely isotropic magnetoelectroelastic bimaterial.
Zheng et al. (2007) discussed the interaction between a generalized screw dislocation with circular-arc interfacial
cracks along a circular inhomogeneity in magnetoelectroelastic solids.

Because of the presence of materials such as fiber coatings or transitional layers between the inclusion and the
matrix, it is more reasonable to regard an interface as an interphase layer with finite thickness. The three-phase models
provide accurate predictions of the effective moduli of composite materials, and can be used to study the influence of
the interphase layer on the shear stress, electric field and magnetic. The importance of three-phase models in composite
mechanics research has been described by Xiao and Chen (2000), Jiang and Cheung (2001), Sudak (2003) and Liu
et al. (2003). In this paper, we study the magnetoelectroelastic interaction between a generalized screw dislocation
and a circular layered inclusion. The proposed method is based upon the technique of analytic continuation. It is
alternately applied across the two concentric interfaces in order to derive the trimaterial solution in a series form, from
the corresponding homogeneous medium solution. Following the introduction, a complex representation of anti-plane
magnetoelectroelasticity is provided in Section 2 and solutions to the corresponding homogeneous medium, circular
inclusion and circular layered inclusion problems are provided in Sections 3, 4 and 5, respectively. Several numerical
examples are given and discussed in detail in Section 6.

2. A complex representation of anti-plane magnetoelectroelasticity

Consider a magnetoelectroelastic composite composed of three dissimilar materials bonded along two concentric
circular interfaces. Each component is assumed to have the same material orientation with x3 being the poling direction
(Fig. 1). In a class of magnetoelectroelastic materials capable of undergoing out-of-plane displacement w, the in-plane
electric potential is ¢ and the in-plane magnetic potential is ¢, the governing field equations can be simplified to
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Fig. 1. A circular layered composite under magnetoelectromechanical loading.
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cuuViw +e15V2 + qi5 Vg =0, (D
e1sV2w — 11 V2 +d V2 =0, ()
qi15Viw — di1 Vi + 111 Vi =0, 3)

where VZ is the two-dimensional Laplace operator, c44 is a elastic modulus, ¢i5 a piezomagnetic constant, e;5 a
piezoelectric constant, €11 a dielectric constant and dj; a magnetoelectric constant. According to Zheng et al. (2007),
the shear stress components 731 and 732, shear strain components y3; and y3;, electric displacement components
D and D3, electrical field components £ and E;, magnetic induction components B and B, and magnetic field
components Hy and Hj can be expressed in terms of an analytical complex function vector f(z) as

w fw(Z)

Y \ —Re f:p @\ = Re[f(Z)], @
1) Jo(2)

731 —i132 C44 €15 {415

Dy —iDy { | e1s —enn —dn |5 =ct'(o), )
B —iB; q15 —di1 —pn

Y31 — iy

—E|{ +1iE, =f'(2), ©)
—H; +1iH;

where Re denotes the real part and prime indicates differentiation with respect to the complex variable z = x1 + ix;.
In order to express the boundary condition in terms of f(z) rather than its derivative f'(z), we integrate the traction ¢,
the normal electric displacement D,, and the normal magnetic induction Bj, as

t

/ Du  ds = Im[Cf(2)], )
B,

where Im denotes the imaginary part of a complex function.
3. Solution of a homogeneous medium problem

Now we examine the homogeneous medium solution fy(z) of a generalized screw dislocation in a homogeneous
medium which is subjected to remote magnetoelectromechanical loadings. Let the generalized screw dislocation with
vector b = [b;, by, bs]" and generalized line force p = [—p., p,, pp]’ be applied at a point zo, where b;, by, bg
represent the jump in displacement, electrical potential and magnetic potential across the slip plane respectively, and
Dz> Py Do Tepresent a line force, a line electric charge and a line magnetic charge respectively. Referring to the work
of Zheng et al. (2007), the complex potential corresponding to this homogeneous medium problem can be expressed
as

1
fo(z) = —(Md+ iC_lp) log(z — z0) + c'rz
2mi
=Dlog(z — z0) +C7'rg, (®)

where I' = [z5} —it5y, D{° —iD5°, B{°® —iB5°] represents the remote magnetoelectromechanical loading.
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Fig. 2. A circular inclusion under magnetoelectromechanical loading.

4. A circular inclusion in a magnetoelectroelastic solid

Consider a two-phase magnetoelectroelastic composite bonded along the circular interface r = a with a magneto-
electric loading applied in the matrix (Fig. 2). Our objective is to construct a bi-material solution in the form

fa(Z), Z 6 Su’
f(z) = )
fp(z) +10(z), z€Sp,

where S, the inner region, and S, the outer region, are occupied by material @ and b respectively, and fo(z) represents
the solution corresponding to the homogeneous medium which is holomorphic in the entire domain except for some
singular points. In order to express f, (z) and f, (z) (holomorphic in S, and Sj, respectively) in terms of f(z), continuity
of displacement, electric potential and magnetic potential across the interface, by the analytical continuation theorem,
is used to yield the requirement

— az
fa(Z)_fb<? —fo(z) =0, 7€ S,

2 2
fZ(“-) —1,(2) —f_o(“—) =0, z€eS.
Z Z

Continuity of traction and normal component of the electric displacement and magnetic induction, by the same argu-
ments, results in

(10)

2
_(a
C.f,(2) + C},fb<?> — Cpfp(z) =0, z€ 8,4,
a2 a2 an
C.f, <?> + Cpfp(z) — Cﬁo(;) =0, z€S,
where
i s af
c,=| e —&f —a |

(a) (@) (a)
415 —dyy —Hy
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(b) ) ()
dis

Caq €15
() b) (b)
C,=| €5 —&1 —dy
(b) (b) (b)
415 —diy —Hq

From Egs. (10) and (11), we have

f,(2) = o gpfo(2),

/a2 (12)
fr,(z) = ﬂabfo<—),
Z
where
@ap =2(C, +Cp)~'Cy, (13)
Bup = (Ca+Cp)~1(Cp, — Cy). (14)

For a magnetoelectric loading applied to the inner region, since the homogeneous medium solution is holomorphic
in neither the region S, nor the region Sj, it should be rewritten as
fo(z) =Dy logz + 5 (2),
where D, is defined as in Eq. (8), but the magnetoelectroelastic constants involved in D, are for material a, and
f5(z) =Dy log<1 — Z—O),
z

which is holomorphic in the outer region Sp,. By applying the continuity conditions of Re[f(z)] and Im[Cf(z)] along
the interface, and using the method of analytic continuation, one can obtain

fo(2) +1.(2), zeS,,
fz) = 2 (15)
D, 10g<5> +Dglog(a) +15(z), z € Sp,
where
s a*
@) =Bral <7) (16)

£y (2) = apafy (2),

and Dy, is defined as in Eq. (8), but the magnetoelectroelastic constants involved in Dj, are for material b.
5. A circular layered inclusion in a magnetoelectroelastic solid

In this section, we consider a three-phase magnetoelectroelastic composite (Fig. 1), whose cross-section consists
of a circular ring Sp, with outer and inner radii designated by b and a, respectively. Its inner and outer boundaries are
perfectly bonded to a circular inclusion S, and a matrix S., respectively.

5.1. Case I: A generalized screw dislocation located in the interphase layer S,

A series solution for the present three-phase magnetoelectroelastic composite with a generalized screw dislocation
located in the interphase layer S, is assumed, in the form

Zf(ln(z)s Z S Sa7
n=1
f@) =1 0@+ _f@)+)_ (), Z€ S, (17)

n=1 n=1

00
D, log(g) + Dy log(d) +feo(2) + chn(Z), z€ S,

n=1
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where D, is defined as D, in Section 4, but the magnetoelectroelastic constants involved in D, are for material c. Now,
it is required to solve for f.0(z), £, (2), for(2), fcn(z) and £,(z) (n = 1,2, 3,...), analytic in their respective regions,
in terms of fy(z), by the procedure as follows.

Step 1. Analytic continuation across the interface L.

First, we regard regions S, and Sj as being composed of the same material b, and region S, of material c. Since
fo(z) is a homogeneous medium solution and f.o(z) and f; (z) are introduced to satisfy the continuity conditions across
the interface L, Egs. (15) and (16) lead to

_ /b2
— *
fl(Z)—ﬂcbf()< Z >, ZGSaUSbv (18)
foo(2) =apfy(z),  z€S,

where f;(z) = Dy log(l — zo/z). Since we assume that region S, is made up of material b, the fields produced by
f1(z) cannot satisfy the continuity conditions at the interface L*, which lies between material a and b.

Step 2. Analytic continuation across the interface L*.

Next, we assume that region S, is composed of material @ and regions S, and S, are regarded as made up of
the same material b. f|(z) in Eq. (18) having the singular points in Sp U S, is treated as a homogeneous solution of
material b. As in Eqgs. (9) and (12), f;1(z) and f1(z) are introduced to satisfy the continuity conditions across the
interface L* as

£41(2) = aa[f1(2) +0(2)], 7 € S,

_(a? _(a? (19)
fbl(Z)=ﬂab|:f](?>+fo<?>i|, z€ S, US,..

Since this result is based on the assumption that region S, is made up of material b, the field produced by fy; (z) cannot
satisfy the continuity conditions at the interface L.

Step 3. Analytic continuation across the interface L.

We again assume regions S, and S;, be made up of the same material b and region S, of material c. As in Egs. (15)
and (16), fp1 (z) is taken to be a homogeneous solution of material b, and f>(z) and f.{ (z) are introduced to satisfy the
continuity conditions across the interface L. Accordingly, it can be shown

__[b?
£2(z) = Bepfo1 (;) 7€ 8, U Sp, 20)
fo1(2) = acpfp1(2), z€S..

Similarly, the fields produced by f>(z) do not satisfy the conditions at the interface L*.

Step 4. Repetitions of steps 2 and 3.

By repeating steps 2 and 3 for n = 2,3, 4, ..., one can express all the functions f.¢(z), £, (z), £, (z), and £, (2)
(n=1,2,3,...)in terms of fy(z) as

0 a2n _ b2n+2 1
b Y (BepBap)" [f0<,ﬁz> + ﬂwﬂ?(ﬁ‘)} 2 € Sa,

n=0 <
00 2n 2042
a — (b 1
X(:)(.Bcbﬁab)n [fo <ﬁz> + Beofy <aT g)}
n=|
S _ a2n+2 1 . b2n+2
f(z) = + Bap Z(ﬂcbﬂah)" [%(WE) + By <WZ>]’ Z € Sp, (2D
n=0
D, 10g<§> + Dy log(b) + acpfy (2)
S _ a2n+2 1 . b2n+2
+ocnBap Y (BepBap)” [f()(bT 2) + Bovly <WZ>}’ z€S..

n=0
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5.2. Case II: A generalized screw dislocation located in the matrix S,

Using the same procedure as case I, the case in which the generalized screw dislocation located in the matrix S,
has the following solution

0 2n
a
%ab Z(ﬁcbﬂah)”ocbcfo<ﬁz), Z € S,
i _[/g2nt2
f(z)= Z(ﬁcbﬂab) abcf0<b2n ) +Ba Z(ﬁc»bﬂub)n“bcf()(an;), 7€ Sp, (22)
: .
"~ b a2n+2 1
fo(2) + ﬂbcf0< ) +acoBap Z(ﬂcbﬂab) “hcf0<b72>, Z€Se.
n=0

5.3. Case IlI: A generalized screw dislocation located in the inner inclusion S,

Similarly, the solution for the case in which the generalized screw dislocation located in the inner inclusion S, can
be derived as

_ b2n+2 1
fo(2) + :Bhaf*< ) +oapBey Z(ﬁabﬂch)nabﬁ ( 2n E)’ 2 € Sa,
0

z " b2n

D, log(—) +Dgloga + Z(ﬂubﬂcb) apafy ( )
fz) = QRpITES (23)
+Bep Z(ﬁabﬂcb) o‘bcf*( o Z)’ 7€ Sp,
0

Zn b b2n

D, log<z> +Dy log<;) +D,loga +acp Z(ﬂabﬂcb) opafy < ) z€S..
n=0

Egs. (21), (22) and (23) give a general series solution of the problem associated with the three-phase circular layered
composite under arbitrary loading as the corresponding homogeneous medium solution fo(z) is solved. Applying
the derived analytical solutions and assuming the dislocation density along the crack as an unknown function, one
can obtain the standard singular integral equations for the corresponding magnetoelectric crack problem. A numerical
solution of the dislocation density function can be obtained by solving the resulting linear algebraic equations. Similar
numerical processes can be found in the literature, e.g. Chen and Hesebe (1992), Chao and Shen (1995) and Wang
and Zhong (2003).

6. Results and discussion

In this section, the fundamental series solution derived in the preceding section will be used to analyze the
following examples associated with a circular layered piezoelectric/piezomagnetic composite subjected to magne-
toelectromechanical loading. Numerical results are obtained for the composite BaTiO3—CoFe,O4, the constituents

of which are: piezoelectric BaTiO3 and piezomagnetic CoFe,O4, whose material constants are given as Zheng et al.
(2007)

e piezoelectric BaTiOs3:
cas =43 x 10°N/m?, e;5 = 11.6C/m?, q15 =0, &1 = 11.2 x 1072 C>/Nm?, di; =0, uj; =5.0 x
1070 Ns2/C2.

e piezomagnetic CoFe;04:
cas =453 x 109 N/m2, e15 =0, ¢15 =550N/Am, &1 =0.08 x 1072 C?/Nm?, di; =0, 11 = —590 x
1076 N s2/C2.
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6.1. Uniform far-field magnetoelectroelastic loading

We first consider the problem of a tri-magnetoelectric composite subjected to a uniform far-field anti-plane
shear 737. Figs. 3-5 show the variations of the shear stress 31, electric displacement D and magnetic induction
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Fig. 3. The variation of the shear stress 737 along the real axis x.
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Fig. 4. The variation of the electric displacement D along the real axis x1.
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Fig. 5. The variation of the magnetic induction By along the real axis xi.

x107
5.40 T !
b=125a o4
e = I b=150a ® ]
—————— — b=175a ®
el b =200 o
=50 MPu \ ®

l“m
5.10
5.05

5.00

495

Fig. 6. The variation of the shear stress 73| along the real axis x.

By along the real axis x; for the case when the inner inclusion and the matrix are piezoelectric BaTiO3 and the inter-
phase layer is piezomagnetic CoFe;O4. Figs. 6-8 show the variations of the shear 731, electric displacement D; and
magnetic induction B along the real axis x| for the case when the inner inclusion and the matrix are piezomagnetic
CoFe;04 and the interphase layer is piezoelectric BaTiO3. From these figures, we make the following deductions:
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Fig. 8. The variation of the magnetic induction B along the real axis xj.

1. The piezoelectric/piezomagnetic composite subjected to a far-field mechanical loading 75} will exhibit the mag-

netoelectroelastic coupling effect.
2. The shear stress 31, electric displacement D and magnetic induction B; produced in the inner inclusion are

uniform.
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3. The shear stress 131, electric displacement D; and magnetic induction B; are continuous across the interface,
which conforms to the boundary conditions.

4. When the interphase layer is piezomagnetic CoFe;QOy4, the variation of magnetic induction B; in the interphase
layer is higher than when the interphase layer is piezoelectric BaTiO3. Similarly, when the interphase layer is
piezoelectric BaTiO3, the variation of electric displacement D; in the interphase layer is higher than those when
the interphase layer is piezomagnetic CoFe;O4.

5. For large x1, the shear stress 131, electric displacement D; and magnetic induction B; will tend to the applied
loading. Further, t3; = ré’lo, D1 =0 and B =0, which also conforms to the boundary conditions.

6.2. Image force on the generalized screw dislocation

The image force acting on the dislocation is an important physical quantity for understanding the interaction of
a dislocation with inhomogeneities. The image force can be calculated by means of the generalized Peach—Koehler
formula, by Pak (1990).

Fi =b,t, +b,DI +byBI,
Fy=—b,t], —b,DT —byBT, (24)

where 7}, 7,, D], D], B] and B] are the perturbation shear stress, electric displacement and magnetic induc-
tion components at the dislocation. Suppose a generalized screw dislocation with Burgers vector b, or electric
potential jump b, is located at the point zo along the real axis in the matrix or in the circular layered inclu-
sion. Define the normalized force on the dislocation as Fyo(b;) =2maF /C44b2, Fro(b,) =2ma Fg/C44b§, Fio(by) =
2maFy /811b2, Fy(by) =2mak, /snbé. Figs. 9 and 10 respectively show the variation of normalized image force
F10(b;) with location of the dislocation, for the case (a) when the inner inclusion and the matrix are piezoelectric
(BaTiO3) and the interphase layer is piezomagnetic (CoFe;04) and (b) when the inner inclusion and the matrix are
piezomagnetic (CoFe,04) and the interphase layer is piezoelectric (BaTiO3). It is seen that the interfaces will repel the
dislocation having Burgers vector, b_, located in any region. The origin, a point near the middle of the interphase layer
and the point at infinity are three stable equilibrium positions in which the image forces are equal to zero. Figs. 11

8 ! ' ! ' ! ; !

Fiy(b.)

Fig. 9. The variation of normalized image force Fy(b;) with location of the dislocation.
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Fig. 10. The variation of normalized image force F((b;) with location of the dislocation.
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Fig. 11. The variation of normalized image force F1((by) with location of the dislocation.

and 12 show the variations of normalized image force Fio(b,) with respect to the location of the dislocation. It is
seen that the interfaces will attract the dislocation having Burgers vector, by, located in the interphase layer. A point
near the middle of the interphase layer is an unstable equilibrium position when the interphase layer is piezomagnetic
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Fig. 12. The variation of normalized image force F1(by) with location of the dislocation.

CoFe; 04, while the interfaces will repel the dislocation, by, located in the interphase layer. A point near the middle
of the interphase layer is a stable equilibrium position when the interphase layer is piezoelectric BaTiO3.

7. Concluding remarks

In this paper, the problem of a circular layered composite under magnetoelectromechanical loading is solved. Based
on the method of analytic continuation and the alternating technique, the solution is obtained as a transformation
of the solution to the corresponding homogeneous medium solution. Numerical results show that for the special
case of uniform remote loading, the shear stress, electric displacement and magnetic induction produced in the inner
inclusion are uniform. When the interphase layer is piezomagnetic CoFe,O4 the variations of magnetic induction B
in the interphase layer are higher than those when the interphase layer is piezoelectric BaTiO3. Similarly, when the
interphase layer is piezoelectric BaTiO3 the variations of electric displacement D; in the interphase layer are higher
than those when the interphase layer is piezomagnetic CoFe;O4. These important phenomena show the feasibility of
building a very sensitive sensor in magnetoelectric composites.
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