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Abstract

A simple particular integral formulation is presented for the first time in a purely axisymmetric poroelastic analysis. The
axisymmetric elastostatic and steady-state potential flow equations are used as the complementary solution. The particular
integrals for displacement, traction, pore pressure and flux are derived by integrating three-dimensional formulation along
the circumferential direction leading to elliptic integrals.

Numerical results for three axisymmetric problems of soil consolidation are given and compared with their analytical
solutions to demonstrate the accuracy of the present formulation. Generally, agreement among all of those results is sat-
isfactory if one uses a few interior points, in addition to the regular boundary points.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The general theory of poroelasticity is governed by two coupled differential equations: the Navier equation
with pore pressure body force and the pore fluid flow equation as (Banerjee, 1994)
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* Co
E-m
ðkþ lÞuj;ji þ lui;jj � bp;i þ fi ¼ 0 ð1Þ
jp;jj � a p

� �b uj;j
� þw ¼ 0 ð2Þ
where ui is the displacement, p is the pore pressure, k and l are Lame’s constants, j is the effective permeabil-
ity, a ¼ b2

ku�k, ku the undrained k, b ¼ 1� K
K 0s

, K ¼ kþ 2l
3

the drained bulk modulus, K 0s the empirical constant
which in certain circumstances equals to bulk modulus of the solid constituents, fi and w are the body force
and source (if present) in the volume, and i = 1, 2(3) for two(three) dimensions. Indicial notation is employed.
Thus, commas represent differentiation with respect to spatial coordinates, while a superposed dot denotes a
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time derivative. The constants b and a can also be expressed in terms of the undrained bulk modulus Ku as
(Rice and Cleary, 1976)
b ¼ 1

B
1� K

Ku

� �
ð3Þ

a ¼ b
KuB

ð4Þ
where B is the well-known Skempton’s coefficient of pore pressure.
Because of the pore pressure loading term in Navier equation (1) and/or the transient terms of pore pres-

sure and displacement in the pore fluid flow equation (2), the direct application of the boundary element
method (BEM) to the coupled poroelastic problems generates a domain integral in addition to the usual sur-
face integrals (Banerjee and Butterfield, 1981). In order to eliminate this volume integration problem, the par-
ticular integral method has been proposed (Park and Banerjee, 2002a, 2006).

In the particular integral method a total solution is obtained as the sum of a complementary solution for
the homogeneous part of the differential equation and a particular solution for the total governing inhomo-
geneous differential equation. Thus the first concern in the method is the selection of the combination of
homogeneous and inhomogeneous parts from the governing differential equation. For 2D and 3D coupled
poroelastic analysis, Park and Banerjee (2002a) first proposed the particular integral formulation by consid-
ering the following combination:

for homogeneous part,
ðkþ lÞuc
j;ji þ luc

i;jj � bpc
;i ¼ 0 ð5Þ

jpc
;jj ¼ 0 ð6Þ
and for inhomogeneous part,
ðkþ lÞup
j;ji þ lup

i;jj � bpp
;i ¼ 0 ð7Þ

jpp
;jj � a p

� �b uj;j
� ¼ 0 ð8Þ
in the absence of the body force and source, where uc
i , pc and up

i , pp are complementary functions and partic-
ular integrals for displacement and pore pressure, respectively, and superscripts c and p indicate complemen-
tary and particular solutions, respectively. In the above combination, the solution of the steady-state coupled
poroelasticity equation is used as the complementary function. The required particular integrals for displace-
ment, traction, pore pressure and flux are derived by using a set of global shape functions (Dik = dik(A � r)2

and Kp = A � r) to approximate the time derivative terms of displacement and pore pressure in the pore fluid
flow equation.

However, one of the most important salient points in the particular integral method is that several types of
combination of homogeneous and inhomogeneous parts are possible from the governing equation if the fun-
damental solution of the homogeneous equation is available and if the particular integral can be found for the
inhomogeneous equation. With this idea, Park and Banerjee (2006) showed the success of the more efficient
and simpler combination for the particular integral formulation of 2D coupled poroelastic analysis in which
they used:

for homogeneous part,
ðkþ lÞuc
j;ji þ luc

i;jj ¼ 0 ð9Þ
jpc

;jj ¼ 0 ð10Þ
and for inhomogeneous part,
ðkþ lÞup
j;ji þ lup

i;jj � bp;i ¼ 0 ð11Þ
jpp

;jj � a p
� �b uj;j

� ¼ 0 ð12Þ
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The differences from the previous one (Eqs. (5)–(8)) and advantages of the above one (Eqs. (9)–(12)) are:

1. Simpler homogeneous part. We use elastostatic and steady-state potential flow equations, instead of steady-
state coupled poroelasticity.

2. Simpler particular integrals for displacement and traction. One can easily derive these particular integrals
by separating the coupled equation and introducing one more global shape function for pore pressure load-
ing term in the Navier equation.

3. Finally easier implementation into the computer program because of simpler homogeneous part, sim-
pler particular integrals, and the elimination of significant matrix algebra involving some coupled
terms.

Following the success of the above 2D formulation, this paper presents the simple particular integral
formulation for the purely axisymmetric coupled poroelastic analysis on the basis of Eqs. (9)–(12). The
axisymmetric elastostatic and steady-state potential flow equations are used as the complementary solution.
The particular integrals for displacement, traction, pore pressure and flux are derived by integrating three-
dimensional formulation along the circumferential direction leading to elliptic integrals. To the best of the
authors’ knowledge no such BEM formulation for axisymmetric coupled poroelastic analysis exists in the
published literature.

In order to deal with axisymmetric problems, the three-dimensional particular integral formulation for
coupled poroelastic analysis is briefly reviewed in the next section. Three examples of application for axi-
symmetric soil consolidation are presented along with their analytical solutions (AS) to test the present
formulation.
2. Three-dimensional particular integral formulation

From the combination of homogeneous and inhomogeneous parts of governing equations (9)–(12), total
solutions for displacement ui, traction ti, pore pressure p and flux q can be obtained as
ui ¼ uc
i þ up

i ð13aÞ
ti ¼ tc

i þ tp
i ð13bÞ

p ¼ pc þ pp ð13cÞ
q ¼ qc þ qp ð13dÞ
where tp
i , qp, etc. are the particular integrals for traction and flux, etc.

Then the required particular integrals can be obtained separately from Eqs. (11) and (12). By approximat-
ing the pore pressure loading term in the Navier equation and the transient terms in the pore fluid flow equa-
tion with known global shape functions, C(x,nn), Dik(x,nn) and Kp(x,nn), and fictitious density functions, /
(nn), /k

�
ðnnÞ and /p

�
ðnnÞ, such that
pðxÞ ¼
X1
n¼1

Cðx; nnÞ/ðnnÞ ð14Þ

ui
� ðxÞ ¼

X1
n¼1

Dikðx; nnÞ/k

�
ðnnÞ ð15Þ

p
� ðxÞ ¼

X1
n¼1

Kpðx; nnÞ/p

�
ðnnÞ ð16Þ
the particular integrals which satisfy Eqs. (11) and (12) can be found as (Park and Banerjee, 2002a,b, 2006)
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up
i ðxÞ ¼

X1
n¼1

U iðx; nnÞ/ðnnÞ ð17Þ

rp
ijðxÞ ¼

X1
n¼1

Sijðx; nnÞ/ðnnÞ ð18Þ

tp
i ðxÞ ¼

X1
n¼1

T iðx; nnÞ/ðnnÞ ð19Þ

ppðxÞ ¼
X1
n¼1

P kðx; nnÞ/k

�
ðnnÞ þ P pðx; nnÞ/p

�
ðnnÞ

n o
ð20Þ

qpðxÞ ¼
X1
n¼1

Qkðx; nnÞ/k

�
ðnnÞ þ Qpðx; nnÞ/p

�
ðnnÞ

n o
ð21Þ
By introducing the following set of global shape function,
Cðx; nnÞ ¼ C1A� C2r ð22Þ
Dikðx; nnÞ ¼ dikðD1A� D2rÞ2 ð23Þ
Kpðx; nnÞ ¼ K1A� K2r ð24Þ
the corresponding kernels can be derived as
Uiðx; nnÞ ¼ ðU 1A� U 2rÞyi ð25Þ

Sijðx; nnÞ ¼ dijðS1A� S2rÞ � S3

yiyj

r
ð26Þ

T iðx; nnÞ ¼ Sijðx; nnÞnjðxÞ ð27Þ
P kðx; nnÞ ¼ �ðP 1A� P 2rÞryk ð28Þ
P pðx; nnÞ ¼ ðP 3A� P 4rÞr2 ð29Þ

Qkðx; nnÞ ¼ k dikðP 1A� P 2rÞrþ ðP 1A� 2P 2rÞ yiyk

r

n o
ni ð30Þ

Qpðx; nnÞ ¼ �kð2P 3A� 3P 4rÞyini ð31Þ
where r is the distance between x and nn, A is a constant chosen to be the largest dimension of the problem
domain, and nj(x) is the unit normal at x in the jth direction.

Substituting Eqs. (14)–(31) into Eqs. (11), (12) one can obtain the following relationship among the
coefficients
U 1 ¼
b�

3
C1; U 2 ¼

b�

4
C2 ð32Þ

S1 ¼ �
4

3
lb�C1; S2 ¼ �

3

2
lb�C2; S3 ¼

1

2
lb�C2 ð33Þ

P 1 ¼
1

2
b��D1D2; P 2 ¼

1

5
b��D2

2; P 3 ¼
1

6
b���K1; P 4 ¼

1

12
b���K2 ð34Þ
where b� ¼ b
ðkþ2lÞ, b�� ¼ b

j, and b��� ¼ a
j.

Considering U1 = 2, U3 = 3 and P1 = P2 = P3 = P4 = 1 (Henry et al., 2002; Park and Banerjee, 2003), other
coefficients can easily be obtained from Eqs. (32)–(34).

3. Axisymmetric particular integral formulation

If the body forces are known in an explicit algebraic form such as in case of bodies subjected to cen-
trifugal forces or gravitational acceleration etc., the particular integrals can be constructed in the form of
a simple polynomial. For axisymmetric problems, use of such polynomial functions as functions of r and
z coordinates have been discussed in Henry et al. (1987). Unfortunately, for the present problem it is
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not possible to use the axisymmetric polynomial forms of Eqs. (22)–(31) and get reliable results. Instead
we need to express these 3D equations into a general axisymmetric form (using r, h, z coordinates) and
complete a circumferential (h) integration to get the resulting algebraic expressions which are then usable
as particular integrals. It is of considerable interest to note that Wang and Banerjee (1988, 1990) in their
developments of particular integrals in free-vibration analysis of axisymmetric solids also observed the
same to be true.

Thus in order to obtain the corresponding axisymmetric BEM formulation, the three-dimensional partic-
ular integrals, given in Eqs. (14)–(21), are first rewritten in cylindrical coordinates (r,h,z) by integrating along
the circumferential (h) direction, we get
pðxÞ ¼
X1
n¼1

Z 2p

0

C0ðx; nnÞdh/ðnnÞ ð35Þ

ua
� ðxÞ ¼

X1
n¼1

Z 2p

0

D0akðx; nnÞdh /k

�
ðnnÞ ð36Þ

p
� ðxÞ ¼

X1
n¼1

Z 2p

0

K 0pðx; nnÞdh /p

�
ðnnÞ ð37Þ

up
aðxÞ ¼

X1
n¼1

Z 2p

0

U 0aðx; nnÞdh/ðnnÞ ð38Þ

tp
aðxÞ ¼

X1
n¼1

Z 2p

0

T 0aðx; nnÞdh/ðnnÞ ð39Þ

ppðxÞ ¼
X1
n¼1

Z 2p

0

P 0kðx; nnÞdh /k

�
ðnnÞ þ P 0pðx; nnÞdh /p

�
ðnnÞ

n o
ð40Þ

qpðxÞ ¼
X1
n¼1

Z 2p

0

Q0kðx; nnÞdh /k

�
ðnnÞ þ Q0pðx; nnÞdh /p

�
ðnnÞ

n o
ð41Þ
where up
a and tp

a are, for convenience, defined in axisymmetry case
up
a

� �
¼ up

r up
z

� �T ð42Þ
tp
a

� �
¼ tp

r tp
z

� �T ð43Þ
Note that when transforming a line integral to an integral with respect to angle, one usually uses
dl ¼ ro dh ð44Þ

In Eqs. (35)–(41), the radius ro has been absorbed in the fictitious functions /(nn), /k

�
ðnnÞ and /p

�
ðnnÞ terms, so

that it does not need to appear explicitly.
Considering purely axisymmetry body in cylindrical coordinates (Fig. 1), we have
h ¼ hx � hnn

y1 ¼ rx cos h� rnn ; y2 ¼ rx sin h; y3 ¼ Z ¼ zx � znn

n1 ¼ nr cos h; n2 ¼ nr sin h; n3 ¼ nz

ð45Þ
and then
yini ¼ rx � rnn cos h
� �

nr þ Znz ð46Þ
where nr, nz = components of normal vector at point x in r and z-directions, respectively.
Substituting Eqs. (45), (46) into Eqs. (22)–(31) the integration of kernels C 0(x,nn), U 0aðx; nnÞ, T 0aðx; nnÞ,

D0akðx; nnÞ, K 0pðx; nnÞ, P 0kðx; nnÞ, P 0pðx; nnÞ, Q0kðx; nnÞ and Q0pðx; nnÞ can be achieved in terms of elliptic integrals
(see Appendix A).
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Fig. 1. Axisymmetry body in cylindrical coordinates.
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4. Numerical implementation

The boundary integral equation related to the complementary functions uc
a, tc

a, pc and qc of Eqs. (9) and (10)
can be written as (Banerjee, 1994)
CabðnÞuc
aðnÞ

CppðnÞpcðnÞ

� 	
¼
Z

C

Gabðx; nÞ 0

0 Gppðx; nÞ


 �
tc
aðxÞ

qcðxÞ

� 	
�

F abðx; nÞ 0

0 F ppðx; nÞ


 �
uc

aðxÞ
pcðxÞ

� 	� �
dCðxÞ ð47Þ
where Gab, Fab, Gpp and Fpp are the fundamental solutions for axisymmetric elastostatic and steady-state po-
tential flow equations and Cab(n), Cpp(n) represent the jump terms resulting from the singular nature of Fab

and Fpp, respectively.
After a usual discretization of boundary C, Eq. (47) can be written in matrix form as
Gab 0

0 Gpp


 �
tc
a

qc

� 	
�

F ab 0

0 F pp


 �
uc

a

pc

� 	
¼

0

0

� 	
ð48Þ
Considering the total solutions of Eq. (13) the complementary functions in Eq. (48) can be eliminated as
Gab 0

0 Gpp


 �
ta
q

� 	
�

F ab 0

0 F pp


 �
ua

p

� 	
¼

Gab 0

0 Gpp


 �
tp
a

qp

� 	
�

F ab 0

0 F pp


 �
up

a

pp

� 	
ð49Þ
If a finite number of nn, N, are chosen, the particular integrals for displacement, traction, pore pressure and
flux can be written as
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up
a

� �
¼ ½U a�f/g ð50Þ

tp
a

� �
¼ ½T a�f/g ð51Þ

ppf g ¼ ½ P k P p �
/k

�

/p

�

8<
:

9=
; ð52Þ

qpf g ¼ ½Qk Qp �
/k

�

/p

�

8<
:

9=
; ð53Þ
Substituting Eqs. (50)–(53) into (49) and considering the fictitious nodal values as
f/g ¼½C��1fpg ð54Þ

/k

�

/p

�

8<
:

9=
; ¼ D�1

ka 0

0 K�1
p

" #
ua
�

p
�

( )
ð55Þ
one can obtain the following equation
Gab 0

0 Gpp


 �
ta
q

� 	
�

F ab Map

0 F pp


 �
ua

p

� 	
¼

0 0

Mpa Mpp


 �
_ua

_p

� 	
ð56Þ
where
½Map� ¼ ½Gab�½T a� � ½F ab�½U a�
� �

½C��1 ð57Þ

½Mpa Mpp � ¼ ½Gpp� Qk Qp

� 

� ½F pp�½P kP p�

� � D�1
ka 0

0 K�1
p

" #
ð58Þ
Using an explicit time integration scheme, Eq. (56) can be expressed as
Gab 0

0 Gpp


 �
ta
q

� 	t

�
F ab Map

1
Dt Mpa F pp þ 1

Dt Mpp

" #
ua

p

� 	t

¼ � 1

Dt

0 0

Mpa Mpp


 �
ua

p

� 	t�Dt

ð59Þ
Since the right side of Eq. (59) involves known values of displacement and pore pressure specified either as
initial conditions or calculated previously, the final system equation can be written as
½B�fXg ¼ fbg ð60Þ

where X is unknown vector of displacement, traction, pore pressure and flux, b is a known vector and B is the
coefficient matrix. Therefore, the unknown displacement or traction can be obtained together with the un-
known pore pressure or flux.

As mentioned in the previous works (Park and Banerjee, 2006) the interior points can be used for a better
representation of the particular integrals. It can be also noted that the present computer program for axisym-
metric coupled poroelastic analysis is developed from the axisymmetric elastostatic and steady-state potential
flow programs available in Banerjee (1994).

5. Numerical examples

In order to test the validity and accuracy of the present formulations, three example problems are solved.
The example problems are described for consolidation problems of a saturated sphere of soil subjected to a
uniform surface load and a single poroelastic layer of a finite thickness subjected to axisymmetric loading
as well as unidirectional consolidation.

The material properties used in all example problems are : j ¼ k
cw
¼ 1:0, E = 1.0, m = 0, mu = 0.5 and B = 1.

Notice, for this set of properties, that the diffusivity is unity.
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5.1. Example 1: unidirectional consolidation

The first example is the unidirectional consolidation of a fully saturated soil. The uniform compression
traction of unity is applied instantaneously at time t = 0 and thereafter held constant with drainage occurring
only at the top surface. The soil sample is assumed to be axisymmetric with the remaining two faces which are
impermeable and restrained from normal displacement. The modeling mesh with 12 quadratic boundary ele-
ments and six interior points is shown in Fig. 2.

The analytical solutions of pore pressure p and displacement u for this example problem can be obtained as
(Biot, 1941)
pðz ¼ 0; tÞ ¼ 4

p

X1
n¼1

1

ð2n� 1Þ sin
ð2n� 1Þp

2
e�
ð2n�1Þ2p2jt

4

uðz ¼ 1; tÞ ¼ 8

p2

X1
n¼1

1

ð2n� 1Þ2
1� e�

ð2n�1Þ2p2jt
4

� �
Some computed values of pore pressure at the point (r,z) = (0, 0) and displacement at the point (r,z) = (0, 1),
for a time step of 0.0025, are shown in Figs. 3 and 4, respectively. For all figures shown hereafter, the number
in the parenthesis represents the number of elements used for the analysis. Plus (+) sign indicates the addi-
tional number of the interior points involved in the analysis. For example in Fig. 3, (12+6) means 12 quadratic
boundary elements and 6 interior points. Good agreement between analytical and numerical solutions can be
seen, with the addition of interior points.
Boundary Element

Interior Point

t=1.0, p=0

1.0

1.
0

z

r

Fig. 2. Modeling mesh for unidirectional consolidation.
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Fig. 3. Example 1: pore pressure at r = 0, z = 0.
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Fig. 4. Example 1: displacement at r = 0, z = 1.
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5.2. Example 2: Consolidation of a solid sphere

The second problem is the consolidation of a saturated solid sphere of soil subjected to a uniform load.
After Mandel (1953) discovered the difference between Biot’s and Terzaghi’s theories in the prediction of pore
pressure, the closed-form solutions for the surface displacement and the pore pressure change at the center of
the sphere were first presented by Cryer (1963). It is notable that Cryer’s formulations are constructed in terms
of non-dimensional quantities.

By using the non-dimensional quantities, by definition,
T ¼ cvt
a2
; U p ¼

up

P
; R ¼ r

a
; lc ¼

l
ðkþ 2lÞ and kc ¼

k
ðkþ 2lÞ
where a is the radius of the sphere, cv the coefficient of consolidation, Up the pore pressure, P the applied load
intensity, t the time and r the radial distance from the center, the non-dimensional pore pressure at the center
and displacement of the surface at time T are given by (Cryer, 1963)
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U Pð0; T Þ ¼
X1
n¼1

�8lþ 2ð4l� snÞ= cos
ffiffiffiffi
sn
p

sn � 12lc þ 16l2
c

e�snT

U Rð1; T Þ ¼ 1� 2
X1
n¼1

3� 4l
sn � 12lc þ 16l2

c

e�snT
where �sn are the roots of
ðsþ 4lÞ sinh
ffiffi
s
p
� 4l

ffiffi
s
p

cosh
ffiffi
s
p
¼ 0:
A quarter of sphere is analyzed here and the axisymmetric modeling mesh with 8 quadratic boundary elements
and 6 (+ mark only) or 12 (+ and circle marks) interior points is shown in Fig. 5.

Some numerical results of pore pressure at the center and displacement of the surface, for a time step of
0.0025, are shown in Figs. 6 and 7, together with the analytical solutions.

Again, good agreement can be seen, except the discrepancy of pore pressure at the early time t = 0.01. From
Fig. 6, the well-known Mandel–Cryer effect, of increasing pore pressure during the early stages of the process,
is evident.

5.3. Example 3: Consolidation of a flexible circular footing

The final example problem deals with the consolidation of a poroelastic layer of a finite thickness, resting
on a smooth impervious base and subjected to axisymmetric loading. This problem was solved by Gibson et al.
(1970).

The modeling mesh with 20 quadratic boundary elements and 21 interior points is shown in Fig. 8. Axisym-
metric load of radius a with a uniform intensity is applied instantaneously at time t = 0 and thereafter held
constant with drainage occurring only at the top surface.

The numerical result of displacement at the point (r,z) = (0, 1) with respect to time, for a time step of 0.001,
is shown in Fig. 9. A good agreement is observed between the numerical and analytical solutions.
t=1.0, p=0

z

r

a=1

Fig. 5. Modeling mesh for consolidation of a solid sphere.
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Fig. 6. Example 2: pore pressure at r = 0, z = 0.
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Fig. 7. Example 2: displacement at r = 1, z = 0.
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Fig. 8. Modeling mesh for consolidation of a flexible circular footing.
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6. Discussions and conclusions

The simple particular integral formulation has been developed for axisymmetric coupled poroelastic
analysis. The equations of axisymmetric elastostatic and steady-state potential flow have been used as the
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Fig. 9. Example 3: displacement at r = 0, z = 1.
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complementary functions. The particular integrals of displacement, traction, pore pressure and flux are
obtained by integrating three-dimensional BEM formulation along the circumferential direction and convert-
ing them into elliptic integrals.

The present formulation is first verified by comparing the results of three axisymmetric problems of soil
consolidation with their analytical solutions. Good agreement among all of those results has been obtained
by including some interior points. It has been demonstrated that axisymmetric coupled poroelastic problems
can be solved using the present simple particular integral formulation.

The present formulation needs to be extended to a multi-region form so that in a large scale practical appli-
cation, the inversion of matrices embodied in Eqs. (54), (57) and (58) does not present a major impediment in
the analyses.

Appendix A. Integrations of kernels C 0(x,nn), U 0aðx; nnÞ, T 0aðx; nnÞ, D0akðx; nnÞ, K 0pðx; nnÞ, P0kðx; nnÞ, P0pðx; nnÞ,
Q0kðx; nnÞ and Q0pðx; nnÞ

This appendix provides the details of integrations of kernels C 0(x,nn), U 0aðx; nnÞ, T 0aðx; nnÞ, D0akðx; nnÞ,
K 0pðx; nnÞ, P 0kðx; nnÞ, P 0pðx; nnÞ, Q0kðx; nnÞ and Q0pðx; nnÞ in terms of elliptic integrals.

For the general form of rx 5 rnn and zx 5 znn,
Z 2p

0

C0 dh ¼ 2pC1A� C2G1 ðA:1Þ
Z 2p

0

U 0r dh ¼ 2pU 1Arx � U 2rxG1 þ U 2rnn G2 ðA:2ÞZ 2p

0

U 0z dh ¼ ð2pU 1A� U 2G1ÞZ ðA:3Þ
Z 2p

0

T 0r dh ¼ 2pS1A� S2G1 � S3 r2
xF 1 � 2rxrnn F 2 þ r2

nn
F 3

� �h i
nr � S3Z rxF 1 � rnn F 2

� �� 

nz ðA:4Þ

Z 2p

0

T 0z dh ¼ �S3Z rxF 1 � rnn F 2

� �� 

nr þ 2pS1A� S2G1 � S3Z2F 1

� 

nz ðA:5Þ

Z 2p

0

D0rr dh ¼ �2D1D2AG2 þ D2
2L2 ðA:6Þ

Z 2p

0

D0zz dh ¼ 2pD2
1A2 � 2D1D2AG1 þ D2

2L1 ðA:7Þ
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Z 2p

0

D0rz dh ¼
Z 2p

0

D0zr dh ¼ 0 ðA:8ÞZ 2p

0

K 0p dh ¼ 2pAK1 � K2G1 ðA:9Þ
Z 2p

0

P 0r dh ¼ �P 1A rxG2 � rnn G1

� �
þ P 2 rxL2 � rnn L1

� �
ðA:10Þ

Z 2p

0

P 0z dh ¼ �Z P 1AG1 � P 2L1ð Þ ðA:11Þ
Z 2p

0

P 0p dh ¼ P 3AL1 � P 4M1 ðA:12Þ
Z 2p

0

Q0r dh ¼ k P 1AG2 � P 2L2 � P 1A rxrnn F 1 � r2
x þ r2

nn

� �
F 2 þ rxrnn F 3

n o
þ 6pP 2rxrnn

h i
nr

þ kZ P 1A rxF 2 � rnn F 1

� �
þ 4pP 2rnn

� 

nz ðA:13ÞZ 2p

0

Q0z dh ¼ kZ P 1A rxF 1 � rnn F 2

� �
� 4pP 2rx

� 

nr þ k P 1AG1 � P 2L1 þ Z2 P 1AF 1 � 4pP 2ð Þ

� 

nz ðA:14Þ

Z 2p

0

Q0p dh ¼ �k 4pP 3Arx � 3P 4 rxG1 � rnn G2

� �� 

nr � kZ 4pP 3A� 3P 4G1½ �nz ðA:15Þ
where
G1 ¼
Z 2p

0

r dh ¼ 4RE ðA:16Þ

G2 ¼
Z 2p

0

r cos hdh ¼ 4mRðB3 � B2Þ ðA:17Þ

L1 ¼
Z 2p

0

r2 dh ¼ ð2� mÞpR2 ðA:18Þ

L2 ¼
Z 2p

0

r2 cos hdh ¼ � 1

2
mpR2 ðA:19Þ

M1 ¼
Z 2p

0

r3 dh ¼ 2R3 ð2� mÞE� m2ðB3 � B2Þ
� 


ðA:20Þ

F 1 ¼
Z 2p

0

1

r
dh ¼ 4

R
B1 ðA:21Þ

F 2 ¼
Z 2p

0

cos h
r

dh ¼ � 4

R
ð2B2 � B1Þ ðA:22Þ

F 3 ¼
Z 2p

0

cos2 h
r

dh ¼ 4

R
ð4B3 � 4B2 þ B1Þ ðA:23Þ

B1 ¼ KðmÞ ðA:24Þ

B2 ¼
Z 2p

0

cos2 hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2 h

p dh ¼ E� ð1� mÞK
m

ðA:25Þ

B3 ¼
Z 2p

0

cos4 hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2 h

p dh ¼ 2Eð2m� 1Þ þ Kð1� mÞð2� 3mÞ
3m2

ðA:26Þ
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KðmÞ ¼
Z p=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2 h

p dh : the elliptic integral of first kind

EðmÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2 h

p
dh : the elliptic integral of second kind:

r ¼ R 1� mð1þ cos hÞ
2


 �1=2

; R ¼ ðrx þ rnnÞ
2 þ Z2

h i1=2

; m ¼ 4rxrnn

R2
If rx = 0 and/or rnn = 0 and zx 5 znn (in this case, m = 0 and E(m) = p/2), then the following substitutions
should be made as
G1 ¼ 2pR; G2 ¼ 0 ðA:27Þ
L1 ¼ 2pR2; L2 ¼ 0 ðA:28Þ
M1 ¼ 2pR3 ðA:29Þ

F 1 ¼
2p
R
; F 2 ¼ 0; F 3 ¼

p
R

ðA:30Þ
When rx = rnn and zx = znn (in this case, R = 2rx and m = E(m) = 1), the limiting form should be used as
Z 2p

0

C0 dh ¼ 2pC1A� 8rxC2 ðA:31Þ
Z 2p

0

U 0r dh ¼ 2pU 1Arx � 32=3U 2r2
x ðA:32ÞZ 2p

0

U 0z dh ¼ 0 ðA:33Þ
Z 2p

0

T 0r dh ¼ 2pS1A� 8rxS2 � 16=3S3rx½ �nr ðA:34ÞZ 2p

0

T 0z dh ¼ 2pS1A� 8rxS2½ �nz ðA:35Þ
Z 2p

0

D0rr dh ¼ 16=3D1D2Arx � 2pD2
2r2

x ðA:36Þ
Z 2p

0

D0zz dh ¼ 2pD2
1A2 � 16D1D2Arx þ 4pD2

2r2
x ðA:37Þ

Z 2p

0

K 0p dh ¼ 2pAK1 � 8K2rx ðA:38Þ
Z 2p

0

P 0r dh ¼ 32=3P 1Ar2
x � 6pP 2r3

x ðA:39ÞZ 2p

0

P 0z dh ¼ 0 ðA:40Þ
Z 2p

0

P 0p dh ¼ 4pP 3Ar2
x � 64=3P 4r3

x ðA:41Þ
Z 2p

0

Q0r dh ¼ k �8P 1Arx þ 8pP 2r2
x

� 

nr ðA:42Þ

Z 2p

0

Q0z dh ¼ k 8P 1Arx � 4pP 2r2
x

� 

nz ðA:43Þ

Z 2p

0

Q0p dh ¼ �k 4pP 3Arx � 32P 4r2
x

� 

nr ðA:44Þ
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