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AVERAGING TECHNIQUES FOR THE A POSTERIORI BEM
ERROR CONTROL FOR A HYPERSINGULAR INTEGRAL

EQUATION IN TWO DIMENSIONS∗
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Abstract. Averaging techniques or gradient recovery techniques are frequently employed tools
for the a posteriori finite element error analysis. Their very recent mathematical justification for
partial differential equations allows unstructured meshes and nonsmooth exact solutions. This paper
establishes an averaging technique for the hypersingular integral equation on a one-dimensional
boundary and presents numerical examples that show averaging techniques can be employed for an
effective mesh-refining algorithm. For the discussed test examples, the provided estimator estimates
the (in general unknown) error very accurately in the sense that the quotient error/estimator stays
bounded with a value close to 1.
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1. Introduction. This paper is devoted to the numerical treatment of the hy-
persingular integral equation

Wu = f on Γ(1.1)

on the relatively open boundary piece Γ of ∂Ω ⊆ R2 with the hypersingular integral
operator

(Wu)(x) =
1

π

∂

∂nx

∫
Γ

u(y)
∂

∂ny
log |x− y| dsy.(1.2)

Here, nx, ny denote the outer unit normal vectors in x and y, respectively, and dsy
denotes the surface integration on Γ with respect to the variable y. For finite element
methods it has recently been shown that any averaging technique [ZZ] yields reliable
error estimators [CB, AC, CFuI, CFuII, CFuIII, C2]. This paper establishes analo-
gous results for the Galerkin boundary element method (BEM) for the hypersingular
integral equation (1.1). The main idea, also employed in [HSWW], goes back at least
to an Oberwolfach conference in the 1980s. The first application to integral equations
provides an a posteriori error analysis for Symm’s integral equation [CP]. Compared
with [CP], the technical details in this paper—such as an approximation result in
H1/2(Γ)—are more involved; cf. Theorem 3.3 below. An overview of other types of
a posteriori error estimates for the Galerkin BEM can be found in [CFa].
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Let H denote the Hilbert space which allows the solution of (1.1) for a given
f ∈ H∗; see section 2 for the precise setting. Let TH be a given triangulation of Γ
with mesh-size H, and let Th be obtained by uniform refinements of TH . We consider
the discrete spaces S1

0 (Th) and S2
0 (TH) consisting of all globally continuous and Th-

piecewise affine (resp., TH -piecewise quadratic) splines (with respect to the arclength)
which are in H. The corresponding Galerkin projections (with respect to the energy
scalar product 〈〈· , ·〉〉; cf. (2.11)) are denoted with Gh and GH , respectively.

Let u denote the (in general unknown) exact solution and uh = Ghu ∈ S1
0 (Th) be

its Galerkin approximation, and consider the error estimator

ηM := |||uh − GHuh||| = min
vH∈S2

0 (TH)
|||uh − vH |||,(1.3)

where |||v||| := 〈〈v , v〉〉1/2 denotes the energy norm. Then, Theorem 4.2 implies that

CeffηM − higher-order terms ≤ |||u− uh||| ≤ CrelηM + higher-order terms,(1.4)

where the higher-order terms depend only on the smoothness of the exact solution u.
More precisely, (1.4) holds provided that u is TH -piecewise in H2+ε for some ε > 0.
For the lower estimate in (1.4), we call the error estimator ηM efficient. For the upper
estimate in (1.4), we say that ηM is reliable.

Remark 1. In order to define spaces Hm(TH) of all TH -piecewise Hm-functions,
one has to assume further regularity of the boundary piece Γ provided that m > 1.
For the analysis below, we restrict our discussion to polygonal boundary pieces.

In contrast to the L2 norm on Γ, which satisfies ‖ · ‖2
L2(Γ) =

∑
γ∈TH

‖ · ‖2
L2(γ),

the energy norm is nonlocal. Thus, the error estimator ηM cannot be used directly
for an adaptive mesh-refinement algorithm. Let H indicate the coarse triangulation
TH and associated quantities vH , GH as well as the (local) mesh-size as a weight in
L2(Γ) norms, e.g., in (1.5) below. Replacing the (best approximation) operator GH in
the definition of ηM by an arbitrary averaging operator AH onto S2

0 (TH), we obtain
reliable error estimators ηA := |||uh −AHuh|||. By use of an inverse estimate provided
in section 3.3, one verifies that

μA := ‖H1/2(uh −AHuh)′‖L2(Γ) ≤ CinvηA.(1.5)

Here and throughout the paper, (·)′ = ∂/∂s denotes differentiation with respect to
the arclengths along edges. In particular, this provides efficient error estimators

μM := ‖H1/2(uh − GHuh)′‖L2(Γ) and μΠ := ‖H1/2(u′
h − ΠHu′

h)‖L2(Γ),(1.6)

where ΠH denotes the L2 projection onto P1(TH), i.e., the TH -piecewise affine func-
tions. Moreover, there also holds ηM ≤ CμM with some constant C > 0; i.e., μM

is also reliable. Since the L2 norm is local, the μ-estimators can be employed for an
adaptive mesh-refinement.

The paper is organized as follows: Section 2 collects the preliminaries on the
functional analytic setting of the hypersingular integral equation. Section 3 provides
the necessary background on finite element approximation. We prove a local inverse
estimate for the H1/2(Γ) norm and recall an approximation result from [C1] which
is applied to the nodal interpolation operator. Section 4 is the core of this article
and proves the reliability and efficiency results for the introduced error estimators.
Section 5 provides details on the numerical implementation and the new adaptive
mesh-refinement strategy. Four numerical experiments in section 6 conclude the work.
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The examples cover a wide range, from an example with smooth solution (covered
by the theory in section 4), to two examples with weak corner singularities, up to
a final example on a slit which lacks almost any regularity. Even for this case, the
proposed adaptive strategy recovers the optimal experimental convergence rate (in
terms of number of elements).

2. Preliminaries on the functional analytic setting.

2.1. Fractional-order Sobolev spaces. Let Ω be a bounded domain in R2

with Lipschitz boundary ∂Ω. Given 0 < α ≤ 1, the Sobolev space Hα(∂Ω) is the set
of all real-valued functions on ∂Ω which are the traces of functions in Hα+1/2(R2)
to ∂Ω,

Hα(∂Ω) := {u|∂Ω : u ∈ Hα+1/2(R2)}.(2.1)

Moreover, it is consistent to define H0(∂Ω) := L2(∂Ω) and to define Sobolev spaces
of negative order by duality:

H−α(∂Ω) := Hα(∂Ω)∗ := dual of Hα(∂Ω),(2.2)

with corresponding norms and duality brackets 〈· , ·〉 which extend the L2(∂Ω) scalar
product. For the hypersingular integral equation on ∂Ω, one considers the subspaces
Hα

0 (∂Ω) to factor the constant functions out:

Hα
0 (∂Ω) := Hα(∂Ω)/R = {u ∈ Hα(∂Ω) : 〈1 , u〉 = 0},(2.3)

where 1 denotes the constant function. For a (relatively) open subset ω ⊆ Γ and
α ≥ 0, we define the fractional-order Sobolev space Hα(ω) by extension:

Hα(ω) := {u|ω : u ∈ Hα(∂Ω)},(2.4)

where the norm of u ∈ Hα(ω) is defined as the minimal norm of an extension, i.e.,

‖u‖Hα(ω) := inf{‖û‖Hα(∂Ω) : û ∈ Hα(∂Ω) with û|ω = u}.(2.5)

Furthermore, there are Sobolev spaces H̃α(ω),

H̃α(ω) := {u ∈ Hα(∂Ω) : supp(u) ⊆ ω},(2.6)

associated with the usual Hα(ω) norm. The corresponding spaces of negative order
are again defined by duality:

H−α(ω) = H̃α(ω)∗ and H̃−α(ω) = Hα(ω)∗.(2.7)

Remark 2. Note that H̃α(∂Ω) = Hα(∂Ω). For ω � ∂Ω, there holds only H̃α(ω) ⊆
Hα(ω) with

‖u‖Hα(ω) ≤ ‖u‖
H̃α(ω)

for u ∈ H̃α(ω).(2.8)

Remark 3. Note that according to Sobolev’s inequality in one dimension each
function u ∈ Hα(ω) with α > 1/2 is continuous. Moreover, each function u ∈ H1(ω)
is absolutely continuous; i.e., there holds the fundamental theorem of calculus.
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2.2. Hypersingular integral operator and energy norm. Let Γ be either
the closed boundary Γ = ∂Ω or a (relatively) open boundary piece ω ⊆ ∂Ω. We recall
the mapping properties of the hypersingular integral operator (1.2).

Remark 4. (a) For a closed surface Γ = ∂Ω, the hypersingular integral operator
is a bijective, linear, and bounded operator

W : Hα
0 (∂Ω) → Hα−1

0 (∂Ω)(2.9)

for all indices 0 ≤ α ≤ 1. It is elliptic for α = 1/2.
(b) For an open surface Γ � ∂Ω, the hypersingular integral operator is linear and

bounded as operator

W : H̃α(Γ) → Hα−1(Γ)(2.10)

for all indices 0 ≤ α ≤ 1 and bijective provided that 0 < α < 1. For α = 1/2, W is a
bijective and elliptic operator.

To abbreviate the notation for the energy case α = 1/2, we define the Sobolev

space H to be either H
1/2
0 (∂Ω) in the case that Γ = ∂Ω is closed or H̃1/2(Γ) provided

that Γ � ∂Ω is an open arc. In both cases, W : H → H∗ is bijective and elliptic,
whence W induces a scalar product on H,

〈〈u, v〉〉 := 〈Wu, v〉 for u, v ∈ H,(2.11)

and the corresponding energy norm

|||u||| := 〈〈u, u〉〉1/2(2.12)

is an equivalent norm on H = H
1/2
0 (∂Ω) and H = H̃1/2(Γ), respectively. According

to the Lax–Milgram lemma, given f ∈ H∗ there is a unique solution u := W−1f in H
of (1.1).

3. Preliminaries on finite element approximation. This section recalls the
Galerkin discretization of (1.1) in the Hilbert space H and provides some estimates for
the discrete ansatz functions. Throughout we adopt the notation from the previous
section.

3.1. Galerkin discretization. Let T = {Γ1, . . . ,Γn} be a triangulation of
Γ. Each element Γj of the triangulation T is supposed to be a connected (affine)
boundary piece. The set of all nodes of the triangulation T is denoted with N . Let
h ∈ L∞(Γ) denote the local mesh-size h|Γj

:= hj := diam(Γj). For an integer p ≥ 0,
Pp(T ) denotes the space of all piecewise polynomials of total degree ≤ p (defined
on a reference element Γref = [0, 1]). Furthermore, we define globally continuous
splines Sp(T ) := Pp(T ) ∩ C(Γ) ⊆ H1(Γ) ⊆ Hα(Γ). Finally, define Sp

0 (T ) to be either
{vh ∈ Sp(T ) : 〈1 , vh〉 = 0} provided that Γ = ∂Ω or {vh ∈ Sp(T ) : vh|∂Γ = 0}
in case Γ � ∂Ω. Here, ∂Γ denotes the set of the two endpoints of Γ. The subspace
Sp

0 (T ) satisfies Sp
0 (T ) ⊆ H and will be used for a Galerkin discretization.

If S is a finite dimensional subspace of H, the discrete Galerkin approximation
uh ∈ S is uniquely determined by the linear system of equations

〈〈uh, vh〉〉 = 〈f , vh〉 for all vh ∈ S.(3.1)

The Galerkin projection G : H → S, defined by Gu ∈ S with

〈〈Gu, vh〉〉 = 〈〈u, vh〉〉 for all vh ∈ S,(3.2)

is the orthogonal projection onto S with respect to the energy norm.
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3.2. Standard approximation estimate. Given a regular triangulation T ,
real numbers α,m ∈ R with m ≥ α, and an integer p ≥ 1, define p̂ := min{p+1,m}−
1/2. Define the T -piecewise Sobolev space

Hm(T ) := {v ∈ L2(Γ) : v|Γj ∈ Hm(Γj) for all Γj ∈ T }

with norm ‖v‖2
Hm(T ) =

∑n
j=1 ‖v|Γj

‖2
Hm(Γj)

. Let G denote the Galerkin projection

onto Sp
0 (T ). Then, there exists some constant C1 > 0 (depending only on Γ, α,m,

and p) such that

|||v − Gv||| ≤ C1h
p̂
max ‖v‖Hm(T )(3.3)

for all v ∈ H ∩Hm(T ) and hmax := maxΓj∈T hj [SaS, sections 4.1.9 and 4.1.11].

3.3. Local inverse estimate. This subsection establishes an inverse estimate in
the energy norm (see Corollary 3.2), following the arguments from [GHS]. The proof
uses the fact that the Sobolev spaces can be obtained from interpolation: H1(Γ) can
equivalently be defined as the completion of the Lipschitz continuous functions Lip(Γ)

with respect to the norm ‖u‖2
H1(Γ) = ‖u‖2

L2(Γ) + ‖u′‖2
L2(Γ). If one defines H̃1(Γ) as

the completion of {u ∈ Lip(Γ) : u|∂Γ = 0}, the Sobolev spaces Hα(Γ) and H̃α(Γ)
satisfy

Hα(Γ) = [L2(Γ);H1(Γ)]α and H̃α(Γ) = [L2(Γ); H̃1(Γ)]α,

where the brackets [·]α denote complex interpolation with exponent 0 ≤ α ≤ 1

[BL, McL]. Note that interpolation leads to the same spaces Hα(Γ) and H̃α(Γ),
respectively, but only to equivalent norms. We will use the symbol � whenever an
estimate holds up to a norm equivalence constant.

Remark 5. In the context of Sobolev spaces on domains ω ⊆ Rd, one writes H1
0 (ω)

instead of H̃1(ω), but this would conflict with our definition of H1
0 (ω) in (2.3).

Proposition 3.1. There is a constant C2 > 0 (depending only on α, p,Γ) such
that

‖h1−αv′h‖L2(Γ) ≤ C2‖vh‖Hα(Γ) for all vh ∈ Sp(T ).(3.4)

Sketch of proof. We first consider the case α = 0. For an element Γj ∈ T , there
holds ‖v′h‖L2(Γj) ≤ C3 h

−1
j ‖vh‖L2(Γj) [GHS, Proposition 2.9]. The constant C3 > 0

depends only on the degree p. The summation over all Γj ∈ T leads to

‖hv′h‖L2(Γ) ≤ C3‖vh‖L2(Γ).(3.5)

The combination of (3.5) with the trivial estimate ‖v′h‖L2(Γ) � ‖vh‖H1(Γ) allows an
interpolation argument for the operator

Tα :
(
Sp(T ), ‖ · ‖Hα(Γ)

)
→

(
Pp−1(T ), ‖h1−α(·)‖L2(Γ)

)
, vh �→ v′h.(3.6)

T0 is continuous with operator norm ≤ C3, and T1 is continuous with operator norm
� 1. In particular, Tα is well defined and continuous with operator norm � C1−α

3 .
Note that the interpolation space of (L2, ‖h(·)‖L2(Γ)) and (L2, ‖ · ‖L2(Γ)) for the index
0 ≤ α ≤ 1 is given by (L2, ‖h1−α(·)‖L2(Γ)) [BL, section 5.4].

Remark 6. The given proof of the inverse estimate covers a wider range of prob-
lems: The same arguments hold for d = 3 (i.e., v′h is replaced by the surface gradient
∇vh) and arbitrary 1 ≤ q ≤ ∞ instead of the Hilbert case q = 2.
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For α = 1/2, the norm equivalence on H and (2.8) prove the existence of local
inverse estimates in the energy norm.

Corollary 3.2. There is a constant Cinv > 0 which depends only on Γ and p
such that

‖h1/2v′h‖L2(Γ) ≤ Cinv|||vh||| for all vh ∈ Sp
0 (T ).(3.7)

Remark 7. Since we will deal later with two discrete spaces, we are going to
use superindices to indicate the mesh and the polynomial degree; e.g., Ch,p

inv denotes
the constant in the inverse estimate (3.7) for Sp

0 (T ), where T is a mesh with (local)
mesh-size h ∈ L∞(Γ).

3.4. Local first-order approximation property. In this section we prove
that the (slightly modified) nodal interpolation operator Ih onto S1(T ), for sufficiently
smooth functions v ∈ H, has a first-order approximation property with respect to the
energy norm.

Theorem 3.3 (see [C1]). Suppose that Ω is a bounded Lipschitz domain in R2

and Γ = ∂Ω or Γ � ∂Ω. Then, there is constant Cα > 0 depending only on α and Γ
and

C4 :=

{
Cα if α �= 1/2,

Cα (log(1 + κ))1/2 if α = 1/2
(3.8)

for the local mesh-ratio

κ := max{hj/hk : Γj is a neighbor of Γk},(3.9)

such that there holds the localized estimate

‖v‖Hα(Γ) ≤ C4 ‖h1−αv′‖L2(Γ)(3.10)

for each v ∈ H1(Γ) with at least one zero on all elements in T .
For each node z ∈ N , let φz ∈ S1(T ) be the nodal basis function, i.e., T -piecewise

affine (with respect to the arclength) and globally continuous with φz(z) = 1 and

φz(z
′) = 0 for z′ ∈ N\{z}. Then, the nodal interpolation operator Îh : C(Γ) → S1(T )

is defined by

Îhv :=
∑
z∈N

v(z)φz.(3.11)

In particular, Îhv is well defined for any v ∈ Hα(Γ) and α > 1/2. From this, we may
define

Ih : C(Γ) → S1
0 (T ), Ihv :=

{
Îhv for Γ � ∂Ω,

Îhv − |Γ|−1
∫
Γ
Îhv ds for Γ = ∂Ω.

(3.12)

Corollary 3.4. For any function v ∈ H1
0 (Γ) in the case Γ = ∂Ω (resp., v ∈

H̃1(Γ) in the case Γ � ∂Ω), there holds with some constant Capx � C4 (with C4

from (3.8))

|||v − Ihv||| ≤ Capx‖h1/2(v − Ihv)
′‖L2(Γ) ≤ Capx‖h1/2v′‖L2(Γ).(3.13)
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Proof for Γ � ∂Ω. Since w := v − Ihv has a zero on each element, namely
w(z) = 0 for all nodes z ∈ N , we may apply Theorem 3.3 together with the continuity
of W : H1/2(Γ) → H−1/2(Γ) to obtain

|||w||| ≤ C‖w‖H1/2(Γ) ≤ CC4‖h1/2w′‖L2(Γ).

The second inequality is proved elementwise: Note that there holds
∫
Γj

w′ ds = 0.

Therefore, (Ihv)
′ ∈ P0(T ) satisfies (Ihv)

′|Γj
= (1/hj)

∫
Γj

v′ ds. The elementwise L2-

orthogonality shows that

‖w′‖2
L2(Γj)

= ‖v′‖2
L2(Γj)

− ‖(Ihv)′‖2
L2(Γj)

≤ ‖v′‖2
L2(Γj)

.

A summation of these estimates over TH concludes the proof:

‖h1/2w′‖2
L2(Γ) =

n∑
j=1

hj‖w′‖2
L2(Γj)

≤
n∑

j=1

hj‖v′‖2
L2(Γj)

= ‖h1/2v′‖2
L2(Γ).

Proof for Γ = ∂Ω. We define w := v− Ihv ∈ H1
0 (Γ) and ŵ := w+ (1/|Γ|)

∫
Γ
w ds.

Since W1 = 0 for the constant function 1, we have |||w||| = |||ŵ|||. Because of
∫
Γ
v ds = 0,

there holds ŵ = v − Îhv. With ŵ′ = w′, we may thus apply the same arguments as
in the case Γ � ∂Ω to prove (3.13).

Corollary 3.5. Let S be a finite dimensional subspace of H1
0 (Γ) for Γ = ∂Ω and

of H̃1(Γ) for Γ � ∂Ω, respectively. Provided that S1
0 (T ) ⊆ S, the Galerkin projection

Gh onto S satisfies

|||v − Ghv||| ≤ Capx min
{
‖h1/2(v − Ghv)

′‖L2(Γ), ‖h1/2v′‖L2(Γ)

}
(3.14)

for all v ∈ H1
0 (Γ) (resp., v ∈ H̃1(Γ)) with the constant Capx > 0 from Corollary 3.4.

Proof. According to the best approximation property of Gh and Corollary 3.4,
there holds

|||v − Ghv||| ≤ |||v − Ihv||| ≤ Capx‖h1/2v′‖L2(Γ).(3.15)

Then w := v − Ghv satisfies v − Ghv = w − Ghw from the idempotency of the
projection Gh. The application of (3.15) with v replaced by w yields |||v − Ghv||| ≤
Capx‖h1/2w′‖L2(Γ).

4. A posteriori error control by averaging techniques. This section aims
to provide a new class of error estimators for the hypersingular integral equation and
states their reliability and efficiency.

4.1. Assumptions and notation. Let Th = {Γ1, . . . ,Γn} and TH = {γ1, . . . ,
γN} be triangulations of Γ with (local) mesh-sizes h and H, respectively, and let
Sh := S1

0 (Th) and SH := S2
0 (TH) be defined in section 3.1. As in Corollary 3.4, let

Ih : H1(Γ) → Sh denote the nodal interpolation operator onto Sh with approximation

constant Capx > 0, and let CH,2
inv > 0 denote the constant in the inverse estimate (3.7)

for SH . We assume that the mesh-size h is small enough when compared to H; more
precisely,

CapxC
H,2
inv max

γj∈TH

(‖h‖L∞(γj)/Hj)
1/2 =: L < 1.(4.1)

Moreover, the analysis in the subsequent sections requires an additional regularity
assumption on the exact solution u ∈ H of (1.1), namely,

u ∈ Hm(TH) for some m > 2.(4.2)
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4.2. General results. Let u ∈ H denote the unique solution of (1.1), and let
uh ∈ Sh be its Galerkin approximation with respect to S = Sh in (3.1). The Galerkin
projection GH onto SH (i.e., the orthogonal projection onto SH with respect to the
energy norm) is compared with an arbitrary (not necessarily linear or continuous)
operator

AH : L2(Γ) → SH .(4.3)

The main results of this section are stated in Theorem 4.2 and Corollaries 4.3–4.5.
Proposition 4.1. Under assumption (4.1), there holds

|||u− uh||| ≤ |||(1l − GH)(u− uh)|||/(1 − L).(4.4)

Proof. Define h̃ ∈ P0(TH) by h̃|γj := ‖h‖L∞(γj) for each element γj ∈ TH . For
the Galerkin error e := u− uh, the approximation property (3.13) of Ih yields

|||(1l − Ih)GHe||| ≤ Capx‖h1/2(GHe)′‖L2(Γ) ≤ Capx‖h̃1/2(GHe)′‖L2(Γ).

Now, we use the inverse estimate (3.7) for GHe ∈ SH and infer that

‖h̃1/2(GHe)′‖L2(Γ) ≤ ‖(h̃/H)1/2‖L∞(Γ)‖H1/2(GHe)′‖L2(Γ)

≤ CH,2
inv ‖(h̃/H)1/2‖L∞(Γ)|||GHe|||.

The combination with the best approximation property |||GHe||| ≤ |||e||| shows that

|||(1l − Ih)GHe||| ≤ L|||e|||.

Using the Galerkin orthogonality and a Cauchy inequality, we obtain for IhGHe ∈ Sh

〈〈e,GHe〉〉 = 〈〈e,GHe− IhGHe〉〉 ≤ |||e||| |||(1l − Ih)GHe||| ≤ L|||e|||2.

A further application of the Cauchy inequality concludes the proof:

|||e|||2 = 〈〈e,GHe〉〉 + 〈〈e, e− GHe〉〉 ≤ |||e|||
(
L|||e||| + |||(1l − GH)e|||

)
.

Theorem 4.2. Assume (4.1)–(4.2). Then the error estimator

ηM := |||uh − GHuh|||

is reliable in the sense of

|||u− uh||| ≤
(
ηM + |||(1l − GH)u|||

)
/
(
1 − L

)
(4.5)

and efficient in the sense of

ηM ≤ |||u− uh||| + |||(1l − GH)u|||.(4.6)

(Compared with |||u − uh||| and ηM , the term |||(1l − GH)u||| is generically of higher
order.)

Proof. According to (3.3), the error in the energy norm is of order

|||u− uh||| = O(hp̂
max) with p̂ := min{2,m} − 1/2 = 3/2.
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Furthermore, for smooth u we have

|||(1l − GH)u||| = O(H q̂
max) with q̂ := min{3,m} − 1/2 > 3/2.

Since m > 2, |||(1l − GH)u||| is of higher order. The combination of Proposition 4.1
with a triangle inequality shows that

|||u− uh||| ≤
(
|||(1l − GH)u||| + |||(1l − GH)uh|||

)
/
(
1 − L

)
.

This proves reliability. A simple triangle inequality,

ηM ≤ |||(1l − GH)(u− uh)||| + |||(1l − GH)u||| ≤ |||u− uh||| + |||(1l − GH)u|||,

shows efficiency since (1l−GH) is an orthogonal projection with respect to the energy
norm.

Replacing the best approximation operator GH by the operator AH , we immedi-
ately obtain the following corollary.

Corollary 4.3. We always have ηM ≤ ηA := |||uh − AHuh|||; i.e., under the
assumptions (4.1)–(4.2) the error estimator ηA is reliable.

To develop an adaptive mesh-refining algorithm, we have to provide an error
estimator which can be localized. More precisely, we will estimate the nonlocal H
norm by the (weighted) local H1 seminorm, namely μM := ‖H1/2(uh−GHuh)′‖L2(Γ).

Corollary 4.4. As S1
0 (TH) ⊆ SH , there holds with the constant Capx > 0 from

Corollary 3.4

ηM ≤ CapxμM .(4.7)

Therefore, μM is reliable under assumptions (4.1)–(4.2).
Proof. The proof follows immediately from the approximation property of the

Galerkin projection (3.14).
Corollary 4.5. Suppose that SH ⊆ S2(Th). Then, there holds

μA := ‖H1/2(uh −AHuh)′‖L2(Γ) ≤ C5C
h,2
inv ηA(4.8)

with the constant C5 := max{‖H‖L∞(Γj)/hj : Γj ∈ T } and the constant Ch,2
inv > 0 for

an inverse estimate on S2(Th). With ΠH denoting the L2 projection onto P1(TH),
the error estimators μM and μΠ := ‖H1/2(u′

h − ΠHu′
h)‖L2(Γ) satisfy

μΠ ≤ μM ≤ C5C
h,2
inv ηM(4.9)

and therefore are efficient under assumptions (4.1)–(4.2).
Proof. The estimate (4.8) follows from the inverse estimate (3.7), and so does

the second estimate in (4.9). Note that ΠH is the elementwise L2 projection. This
proves ‖u′

h − ΠHu′
h‖L2(γj) ≤ ‖u′

h − (GHuh)′‖L2(γj) for any γj ∈ TH . Summing the
H-weighted L2 norms over all elements γj ∈ TH , we prove (4.9).

Remark 8. Note that the assumption SH = S2
0 (TH) ⊆ S2(Th) is quite weak and

satisfied if Th is obtained from TH by some (local) refinements.

4.3. Reliability of μAμAμA for the L2L2L2 projection. As proved in Corollary 4.5,
there holds μA ≤ C5C

h,2
inv ηA under weak assumptions on TH . To obtain the converse

estimate ηA ≤ C6 μA with a constant C6 which depends on neither the mesh-sizes nor
the number of elements, one has to prove

|||vh −AHvh||| ≤ C6‖H1/2(vh −AHvh)′‖L2(Γ) for all vh ∈ Sh.(4.10)
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One then obtains the equivalence of the error estimators μA and ηA and, in particular,
the reliability of μA under the assumptions (4.1)–(4.2). This is done for the L2

projection AH onto SH in the following proposition.
Proposition 4.6. Let AH be the L2-orthogonal projection onto SH . Under the

assumptions of Corollary 4.5, the error estimator μA from (4.8) satisfies

C−1
6 ηA ≤ μA ≤ C5C

h,2
inv ηA.(4.11)

Proof for Γ = ∂Ω. Since the L2 projection PH : H1
0 (Γ) → S2(TH) satisfies

0 = 〈1 , (1l − PH)uh〉 = 〈1 , uh〉 − 〈1 ,PHuh〉 = −〈1 ,PHuh〉,

there holds PHuh ∈ SH . Consequently, PHuh = AHuh and (1l − AH)uh is L2-
orthogonal to S2(TH). Let γj ∈ TH be a coarse grid element with nodes z, z′ ∈ NH .
We define the bubble function βj(x) := φH,z(x)φH,z′(x) for x ∈ Γ as the product of
the corresponding hat functions. Then, βj ∈ S2(TH) is positive on the interior γj .
With v := (1l −AH)uh there holds

0 = 〈βj , v〉 =

∫
γj

βjv ds.(4.12)

Therefore, v has at least one zero in γj so that Theorem 3.3 can be applied for
TH .

Proof for Γ � ∂Ω. The bubble functions vanish in all nodes z ∈ NH and hence sat-
isfy βj ∈ SH for all 1 ≤ j ≤ n. Therefore, (4.12) holds and we can apply Theorem 3.3
again.

Remark 9. The approximation argument in the proof of Proposition 4.6 works
for sufficiently smooth ũ ∈ H instead of uh ∈ Sh; e.g., uh may be replaced by some ũ
in H1

0 (Γ) (resp., H̃1(Γ)).
In the case that Γ � ∂Ω is an open boundary piece, it is easy to construct operators

which satisfy (4.10) since we only have to satisfy the zero boundary conditions for
discrete functions at the endpoints of Γ.

Remark 10. Suppose that Γ � ∂Ω. Let AH be the pointwise interpolation
operator satisfying

AHuh ∈ S2(TH) and AHuh(z) = uh(z) for z ∈ {aj ,mj , bj},

where aj and bj denote the nodes of γj and mj denotes the element’s midpoint. Note
that AHuh vanishes at the endpoints of Γ. Therefore, AHuh ∈ SH and according to
Theorem 3.3 there holds (4.10).

Remark 11. Suppose that AH is idempotent; i.e., A2
H = AH . Then, an ele-

mentary algebraic manipulation shows that (4.10) follows from the approximation
estimate

|||vh −AHvh||| ≤ C5‖H1/2v′h‖L2(Γ)

for all vh ∈ SH .

5. Numerical realization. As in the previous section, we write Sh = S1
0 (Th)

and SH = S2
0 (TH). The finer mesh Th is obtained from the coarser TH by uniform

refinements; see section 5.5 for details. This ensures SH = S2
0 (TH) ⊆ S2(Th) as in

Corollary 4.5.
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5.1. Neumann problem and hypersingular integral equation. In the nu-
merical experiments we consider examples where the right-hand side f in (1.1) comes
from a Neumann problem

ΔU = 0 in Ω and ∂U/∂ν = g on Γ = ∂Ω(5.1)

with given Neumann data g on Γ (plus boundary conditions at infinity if Ω is un-
bounded) and the normal derivative ∂U/∂ν, where ν denotes the outer unit vector on
∂Ω. This problem is equivalent to the hypersingular integral equation (1.1), where f
takes the form

f = (1l −K∗)g(5.2)

with the adjoint double-layer potential operator K∗, defined as Cauchy principal value
by

(K∗g)(x) := − 1

π

∫
Γ

C g(y)
(y − x) · ν(x)

|x− y|2 dsy for x ∈ Γ.(5.3)

Up to an additive constant, the exact solution of (1.1) is just the Dirichlet data U |Γ
of U on the boundary Γ. More precisely, there holds u = U |Γ − 〈U |Γ , 1〉/〈1 , 1〉.

5.2. Computation of the discrete solution for Γ = ∂ΩΓ = ∂ΩΓ = ∂Ω. The problem to
solve (1.1) in the Hilbert space Hα

0 (Γ) can equivalently be formulated as follows [CoS,
CaS]: Given (f, b) ∈ Hα−1(Γ) × R, find (u, a) ∈ Hα(Γ) × R such that

Wu + a = f and 〈1 , u〉 = b.(5.4)

The corresponding discrete formulation reads as follows: Find (uh, ah) ∈ S1(T ) × R
such that

〈Wuh + ah , vh〉 = 〈f , vh〉 for all vh ∈ S1(Th) and 〈1 , uh〉 = b.(5.5)

Notice that 〈1 , u−uh〉 = 0, whence u−uh ∈ Hα
0 (Γ), and 〈1 , f −ah〉 = 〈1 ,Wuh〉 = 0;

i.e., ah = 〈f , 1〉/〈1 , 1〉 and f − ah ∈ Hα−1
0 (Γ). In particular, for b = 0 and f ∈

Hα−1
0 (Γ), the solution of (5.4) (resp., (5.5)) is just the solution of (1.1) (resp., (3.1)).

The benefit of the generalized formulation is that we are allowed to consider the full
discrete space S1(Th) instead of S1

0 (Th). This simplifies the implementation since one
can use the usual nodal hat functions instead of a basis of S1

0 (Th).
Let Nh denote the set of all nodes of Th and, with n := |Nh|, define the (sym-

metric) stiffness matrix A by

Ajk = 〈〈φj , φk〉〉 for 1 ≤ j, k ≤ n,(5.6)

with φj , φk ∈ S1(Th) denoting the hat functions corresponding to the jth and kth
node, and

Aj,n+1 = An+1,j = 〈1 , φj〉, An+1,n+1 = 0.(5.7)

With the right-hand side

bj = 〈f , φj〉 for 1 ≤ j ≤ n,(5.8)
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the discrete solution uh of (3.1) has the basis representation

uh =

n∑
j=1

xjφj ,(5.9)

where the coefficient vector x ∈ Rn+1 solves the linear system Ax = b with bn+1 := 0.
Moreover, there holds xn+1 = ah with ah from (5.5).

Remark 12. (a) The hypersingular integral operator (1.2) and the single-layer
potential

(V u)(x) := − 1

π

∫
Γ

u(y) log |x− y| dsy(5.10)

are linked through Nédélec’s equation (recall (·)′ = ∂/∂s)

〈Wu, v〉 = 〈V u′ , v′〉 for all u, v ∈ H.(5.11)

(b) According to (a), the entries of A in (5.6) can be computed analytically
using (5.11) and exact integration for the single-layer potential; see [Ma].

5.3. Computation of the discrete solution for Γ � ∂ΩΓ � ∂ΩΓ � ∂Ω. Let Kh := Nh\∂Γ
denote the set of all interior nodes of T . Then, the implementation for an open curve
is less involved since the hat functions φj with j ∈ Kh form the nodal basis of S1

0 (Th).
With n := |Kh|, we compute A and b as in (5.6) and (5.8), respectively. Then, the
discrete solution uh is represented as in (5.9) with x ∈ Rn satisfying Ax = b.

Remark 13. For implementational reasons, the matrix A and the right-hand side
b are computed for all hat functions, i.e., Nh, and the resulting linear system is solved
only on a subblock corresponding to Kh.

5.4. Computation of the right-hand side for academic examples. If the
exact solution u ∈ H is known, the entries for the right-hand side vector (cf. (5.8)),
can easily be obtained by use of Remark 12: According to (5.11), there holds

bj = 〈f , φj〉 = 〈Wu,φj〉 = 〈u′ , V φ′
j〉.

Notice that the integrand b(x) = u′(x)(V φ′
j)(x) may have logarithmic singularities.

For the numerical experiments, we used the quad function implemented in MATLAB,
which is based on an h-adaptive Simpson formula and Romberg extrapolation.

5.5. Adaptive algorithm. All mesh-refinements are performed with the fol-
lowing adaptive algorithm from [CP] based on the refinement indicators μM,j , μA,j ,
and μΠ,j defined as follows: Given the coarse mesh TH = {γ1, . . . , γN} and the L2

projections Π1
H : Sh → S1

0 (TH) and Π2
H : Sh → S2

0 (TH), we define, for j = 1, . . . , N ,

μM,j := H
1/2
j ‖u′

h − (GHuh)′‖L2(γj),(5.12)

μA,j := H
1/2
j ‖u′

h − (Π2
Huh)′‖L2(γj),(5.13)

μΠ,j := H
1/2
j ‖u′

h − Π1
H(u′

h)‖L2(γj),(5.14)

i.e., μM =
(∑N

j=1 μ
2
M,j

)1/2
, μA =

(∑N
j=1 μ

2
A,j

)1/2
, and μΠ =

(∑N
j=1 μ

2
Π,j

)1/2
, re-

spectively.

Algorithm 5.1. Choose an initial mesh T (0)
H , k = 0, 
 ∈ N≥2, and 0 ≤ θ ≤ 1.
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(i) Obtain T (k)
h = {Γ1, . . . ,Γn} from T (k)

H = {γ1, . . . , γN} by uniform splitting of

each element γj ∈ T (k)
H into 
 elements of equal length.

(ii) Compute the approximation u
(k)
h for the current mesh T (k)

h .
(iii) Compute error estimators ηM and ηA and refinement indicators μM,j, μA,j,

and μΠ,j.
(iv) Mark element γj provided the corresponding refinement estimator satisfies

μM,j ≥ θ max {μM,1, . . . , μM,N} (or μM,j replaced by μA,j and μΠ,j, respectively).

(v) Halve all marked elements γj ∈ T (k)
H and so generate a new coarse mesh

T (k+1)
H , update k, and go to (i).

Remark 14. The choice of θ = 0 in Algorithm 5.1 leads to uniform mesh-
refinement, whereas we used θ = 1/2 for adaptive mesh-refinement in the subsequent
numerical examples. The parameter 
 ∈ N≥2 is chosen between 2 and 4 and is empir-
ically discussed later.

Remark 15. Since the local mesh-ratio κ(T (h)
h ) defined in (3.9) enters the constant

Capx and thus affects the reliability of our estimators, we mark further elements

for refinement to guarantee κ(T (k)
H ) ≤ 2κ(T (0)

H ). Note that there holds κ(T (k)
h ) =

κ(T (k)
H ).

5.6. Computation of the error estimators. Let φ1, . . . , φn be a basis of Sh

and Φ1, . . . ,ΦN be a basis of SH and define the matrices A ∈ Rn×n
sym , B ∈ RN×N

sym , and

C ∈ RN×n by

Ajk := 〈〈φj , φk〉〉, Bjk := 〈〈Φj ,Φk〉〉, and Cjk := 〈〈Φj , φk〉〉.(5.15)

Let x ∈ Rn be the coefficient vector of uh ∈ Sh and y ∈ RN the coefficient vector of
GHuh ∈ SH . Note that the vector y is the solution of the linear system By = Cx.
Then, Galerkin orthogonality yields

η2
M = |||uh − GHuh|||2 = |||uh|||2 − |||GHuh|||2 = x · Ax − y · By = x · (Ax − CTy).

The computation of the error estimator ηA involves the L2 mass matrices B̂ ∈ RN×N
sym

and Ĉ ∈ RN×n defined by

B̂jk := 〈Φj ,Φk〉 and Ĉjk := 〈Φj , φk〉.(5.16)

If AH denotes the L2 projection onto SH , the coefficient vector ŷ ∈ RN of AHuh is
the solution of the linear system B̂y = Ĉx. Then, ηA reads as

η2
A = |||uh −AHuh|||2 = x · Ax − ŷ · (2Cx − Bŷ).

Remark 16. (a) In case Γ = ∂Ω, it is convenient to extend A, B, and B̂ by a
side-constraint analogously to (5.7) and then to consider a basis of S1(Th) and S2(Th)
instead of Sh and SH , respectively.

(b) The entries of A,B,C are computed analytically by use of Remark 12 for
φj being a hat function in S1(Th) and Φj being either a hat function in S1(TH) or
a bubble function in S2(TH), i.e., the product of two hat functions with overlapping
support.

(c) The entries of B̂ are computed analytically by transforming the arising inte-
grals to the reference element [0, 1], where the hat functions are given by t and 1 − t
and the corresponding bubble is t(1 − t).
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(d) The entries of Ĉ are easily computed since a fine grid element Γj ∈ Th lies in
precisely one coarse grid element γk ∈ TH . If we use the arclength parametrization of
γk, Γj then corresponds to a subinterval [a, b] ⊆ [0, Hk].

(e) The error estimators μM and μA are computed TH -elementwise as indicated
in (5.12).

6. Numerical experiments. This section reports on four numerical experi-
ments to study the accuracy of the introduced error estimators and the performance
of the proposed adaptive strategy. All experiments have been conducted using MAT-

LAB. All examples are academic in the sense that the exact solution is always known
and we can compare the convergence of the error Eh = |||u − uh||| with the conver-
gence of the error estimators. All experiments were performed with the parameter

 = 2, 3, 4 in Algorithm 5.1. Since the numerical outcome looks similar, we restrict
the presentation to the simplest case 
 = 2. The right-hand side for the Galerkin
method is always computed as explained in section 5.4.

The first two examples are related to Neumann problems; cf. section 5.1. The
solution for the example in section 6.1 is smooth and satisfies the regularity as-
sumptions of section 4 so that the higher-order term in the error estimates satis-
fies |||u − GHu||| = O(h5/2). The solution for the example in section 6.2 corresponds
to a classical finite element test problem on the (rotated) L-shaped domain which
lacks H2-regularity. For the generic corner singularity U(r, ϕ) = rα cos(αϕ) with
α = 2/3 for the reentrant corner 3π/2, the corresponding Neumann data are (piece-
wise) smooth. In the example in section 6.3, we therefore consider the same example
with α = 3/7. Then, the Neumann data are singular at the reentrant corner and
uniform mesh-refinement leads to a suboptimal convergence rate for the numerical
solution of the hypersingular integral equation. This can be overcome by use of adap-
tive mesh-refinement. Finally, the example in section 6.4 considers a slit problem on
the slit Γ = [−1, 1] × {0}. The right-hand side simplifies since the adjoint double
layer potential vanishes; i.e., we do not have to deal with further quadrature errors
to compute the right-hand side. The exact solution lies in H̃1−ε(Γ) for any ε > 0.

6.1. Neumann problem with smooth solution. We consider the Neumann
problem (5.1) on the halved unit square Ω = [0, 1/2]2 with exact solution

U(x, y) = sinh(2π x) cos(2π y)(6.1)

and solve the corresponding hypersingular integral equation Wu = f with right-hand
side f = (1 −K∗)g and g = ∂U/∂ν. Note that

∫
Γ
U(x) dsx = 0. Therefore, the exact

solution u of the hypersingular integral equation is just the trace on the boundary u =
U |Γ. The computation of the right-hand side for the Galerkin method is performed as
shown in section 5.4 with the arclength derivative u′ = ∇U(x) ·τ(x) for the tangential
vector τ(x) on Γ. Figure 1 shows initial mesh and the corresponding discrete solution
uh (for 
 = 2 in Algorithm 5.1) as a function of the arclength parameter 0 ≤ s ≤ 2,
where s = 0 corresponds to the point (0, 0) and counter-clockwise parametrization of
the boundary Γ = ∂Ω. The exact solution u is shown for comparison. Figure 2 shows
the error

Eh := |||u− uh||| = (|||u|||2 − |||uh|||2)1/2,

where |||u||| = 258.4278864 (obtained from Aitkin’s Δ2 extrapolation of the sequence
on uniformly refined meshes) as well as the introduced error estimators for uniform
mesh-refinement. The values are plotted over the number n(k) of elements in the
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Fig. 1. Initial coarse mesh T (0)
H in the Neumann problem in section 6.1 with N = 4 elements

(nodes indicated by o) (top) and the corresponding fine mesh T (0)
h for � = 2 in Algorithm 5.1; i.e.,

n = 8 (nodes indicated by x). The related discrete solution uh on T (0)
h (bottom) is plotted over

the arclength s = 0, . . . , 2 of Γ. The exact solution u (i.e., the trace of U from (6.1)) is shown for
comparison (bottom).

kth fine grid T (k)
h . As is to be expected, uniform mesh-refinement leads to optimal

experimental convergence rate

κ(k)(Eh) := log(E
(k−1)
h /E

(k)
h ) / log(n(k)/n(k−1)).(6.2)

Here, E
(j)
h denotes the error corresponding to the jth mesh (i.e., on the fine mesh

in the jth step of Algorithm 5.1) with n(j) elements. The experimental convergence
rate is visualized in Figure 2 through the slope of the interpolated values plotted
in double-logarithmic scale. From the regularity of the exact solution u = U |Γ one
expects convergence rate 3/2 for the error Eh and 5/2 for the error EH := |||u−GHu|||
in a Galerkin scheme with S2

0 ansatz functions (cf. section 3.2), and this is in fact
observed in Figure 2. Note that the assumptions of Theorem 4.2 are satisfied and
ηM is an upper bound for the error Eh up to terms of higher order O(h5/2). We



AVERAGING TECHNIQUES FOR HYPERSINGULAR IE 797

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

1

      7/6     

1

      3/2     

1

      5/2     

number of fine−grid elements

er
ro

r 
an

d 
es

tim
at

or
s

Eh (unif.)

ηM (unif.)

μM (unif.)

ηA (unif.)

μA (unif.)

μΠ (unif.)

EH (unif.)

Fig. 2. Error Eh = |||(1l − Gh)u||| and error estimators ηM , μM , ηA, μA, and μΠ for � = 2
and uniform mesh-refinement in the Neumann problem in section 6.1. For comparison, we further
show the SH -error EH = |||(1l − GH)u||| which is of higher order: As expected from section 3.2, we
observe κ(Eh) = 3/2 and κ(EH) = 5/2. The estimators ηA and μA lack the efficiency, showing an
experimental convergence rate less than 3/2. On the other hand, we observe reliability of μΠ. Note
that ηM is a very accurate estimator for Eh in the sense that both curves almost coincide.

see that ηM is a very accurate estimate for Eh: The curves for Eh and ηM almost
coincide. (See also Table 1, where we provide some numbers for 
 = 1, . . . , 8.) The
error estimator μM is expected and observed to be reliable (for uniformly refined
meshes) and efficient: The curve of μM is parallel to that of Eh and ηM . The same
holds for the error estimator μΠ which was only proved to be efficient in Corollary 4.5.
The error estimators μA and ηA show reliability but obviously lack the efficiency: The
curves for μA and ηA are parallel (as expected from Proposition 4.6) with slope 7/6.
The failing efficiency estimate probably results from the lack of H1 stability of the L2

projection AH : H1(Γ) → S2
0 (T ) ⊆ H1(Γ).

Figure 3 visualizes the error Eh and the error estimator μΠ for uniform and adap-
tive mesh-refinement. As for uniform mesh-refinement, we obtain the experimental
reliability of μΠ: The curve of Eh and the corresponding curve of μΠ are always paral-
lel. Even for μA-adaptive mesh-refinement, where the error curve shows some zigzag
behavior, this is imitated by the curve of μΠ. All mesh-refining strategies recover
the optimal convergence rate κ(Eh) = 3/2. Although adaptive mesh-refinement is
not necessary for this example, the absolute values of Eh recommend the use of μM -
or μΠ-adaptive mesh-refinement. This is caused by the vanishing solution u(x, y) for
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Table 1

Index � = |||u−uh|||/ηM for the Neumann problem in section 6.1 with respect to the number |TH |
of coarse grid elements and the refinement parameter � in Algorithm 5.1. One expects that � tends to
1 for #TH , � → ∞ (cf. Theorem 4.2): In this case, the higher-order term |||u− GHu||| tends to zero,
and the constant 1/(1−L) tends to 1. Note that we used Aitkin’s extrapolation rowwise to compute
|||u||| since the extrapolated value is affected by the quadrature errors to compute the right-hand side;
cf. section 5.4.

� = |Th|/|TH |
|TH | 2 3 4 5 6 7 8

4 2.98e+00 6.54e-01 3.75e-01 2.53e-01 1.85e-01 1.43e-01 1.15e-01
8 1.18e+00 8.49e-01 6.06e-01 4.46e-01 3.41e-01 2.70e-01 2.20e-01
16 1.09e+00 9.50e-01 8.08e-01 6.70e-01 5.52e-01 4.58e-01 3.84e-01
32 1.07e+00 9.96e-01 9.37e-01 8.65e-01 7.84e-01 7.02e-01 6.24e-01
64 1.07e+00 1.01e+00 9.87e-01 9.60e-01 9.28e-01 8.88e-01 8.43e-01
128 1.07e+00 1.02e+00 1.00e+00 9.91e-01 9.91e-01 9.68e-01 9.51e-01
256 1.07e+00 1.02e+00 1.00e+00 9.85e-01 1.04e+00 1.09e+00 9.91e-01
512 1.06e+00 1.03e+00 1.00e+00 9.70e-01 1.09e+00 1.20e+00 1.00e+00
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Fig. 3. Error Eh = |||(1l − Gh)u||| and error estimator μΠ in the example in section 6.1 for
uniform (unif.) and adaptive (ad.) mesh-refinement and � = 2. Besides the efficiency of μΠ

proven in Corollary 4.5 one observes reliability of μΠ: In all cases, the curves of Eh and μΠ are
parallel—even for μA-adaptive mesh-refinement.

x = 0. We do not need any boundary elements there. The μA-adaptive mesh-
refinement leads to absolute values of Eh which are even worse than the uniform
mesh-refinement.
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Some adaptively generated meshes are shown in Figure 4. For μM - and μΠ-
adaptive mesh-refinement, we see a strong refinement around the arclength parameter
s = 1/2 and s = 1, where the exact solution has strong gradients; cf. Figure 1.

Finally, Figure 5 provides a comparison of the different estimators in dependence
on the mesh-refining strategy. To make the subplots comparable we always print the
outcome for uniform mesh-refinement. For all mesh-refining strategies, we see that
ηA and μA are equivalent and reliable but lack the efficiency. The convergence rates
for ηA and μA for adaptive mesh-refinement become even worse than for uniform
mesh-refinement. On the other hand, we prove experimentally the reliability of μM

(and μΠ) even for non–quasi-uniform meshes.

6.2. Neumann problem with slightly singular solution. For a fixed pa-
rameter α > 0, we consider the Neumann problem (5.1) on the L-shaped domain Ω
shown in Figure 6 with exact solution

U(x) = Re(xα) = rα cos(αϕ) in polar coordinates x = r (cosϕ, sinϕ).(6.3)

With the Dirichlet data U |Γ, the exact solution u of (1.1) in H1
0 (∂Ω) is given by

u = U |Γ − 〈U |Γ , 1〉/〈1 , 1〉. Numerical quadrature yields 〈U |Γ , 1〉/〈1 , 1〉 = 0.2095275.
The exact solution u is plotted over the arclength in Figure 6 for comparison with
the discrete Galerkin solution. As in the previous section, the right-hand side in the
Galerkin scheme is computed by use of the exact solution; cf. section 5.4. The gradient
of U(x) reads in polar coordinates as

∇U(x) = αrα−1

(
cos(ϕ) cos(αϕ) + sin(ϕ) sin(αϕ)
sin(ϕ) cos(αϕ) − cos(ϕ) sin(αϕ)

)
.(6.4)

For the numerical experiment we choose α = 2/3, which corresponds to the typical
corner singularity at a reentrant corner with angle 3π/2. The Neumann problem then
leads to U �∈ H2(Ω). Nevertheless, the Dirichlet data are smooth as can be seen in
Figure 6. Thus, we observe optimal experimental convergence rate 3/2 [in terms of
number of elements] even for uniform mesh-refinement. Figure 7 visualizes the error
Eh and the error estimators ηM and μΠ for uniform and adaptive mesh-refinement.
As in the example in section 6.1, we observe that both error estimators are reliable
and efficient. μM - and μΠ-adaptive mesh-refinement lead to optimal experimental
convergence rate κ(Eh) = 3/2 and even the absolute values of Eh are superior to the
values obtained from uniform mesh-refinement. The μA-adaptive mesh-refinement
leads to a curve with absolute values Eh even worse than for uniform mesh-refinement.

Some adaptively generated meshes are shown in Figure 8 for comparison. The
meshes generated by μM -related and μΠ-related mesh-refinement are very similar.
This can also be observed from the plot in Figure 7, where the curves corresponding
to μM and μΠ, respectively, almost coincide.

Independent of the mesh-refining strategy, the estimator ηM provides an accurate
estimate for the error Eh: The curves for Eh and ηM , which are related to the same
mesh-refinement, coincide.

6.3. Problem with singular solution. We consider the same example as in
section 6.2 but now with α = 3/7, which leads to a singular exact solution u. Figure 9

shows the discrete solution uh on the initial mesh T (0)
h and, for comparison, the

Dirichlet data U |Γ (up to an additive constant). Note that we subtracted the constant
〈U |Γ , 1〉/〈1 , 1〉 = 0.4205278 from the Dirichlet data to obtain the unique solution u
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Fig. 5. Error Eh = |||(1l − Gh)u||| and error estimator μΠ in the example in section 6.1 for
� = 2 and uniform (unif.) (resp., different adaptive (ad.)) mesh-refining strategies. In any case,
we observe that the error estimators ηM , μM , and μΠ are reliable and efficient. All mesh-refining
strategies lead to optimal convergence rate κ(Eh) = 3/2, and ηM and Eh almost coincide. The error
estimators ηA and μA lack the efficiency.
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Fig. 6. Initial coarse mesh T (0)
H in the example in section 6.2 with N = 8 elements (nodes

indicated by o) (top) and the corresponding fine mesh T (0)
h for � = 2 in Algorithm 5.1, i.e., n = 16

(nodes indicated by +). The related discrete solution uh on T (0)
h (bottom) is plotted over the arclength

s = 0, . . . , 2 of Γ. The exact solution u is shown for comparison (bottom). Note that, due to the
resolution of the bottom figure, there is almost no visible difference between u and uh.

of (1.1) in H1
0 (∂Ω). As can be seen, the exact solution now yields a singularity at the

reentrant corner at arclength s = 0 and s = 2, respectively.
Uniform mesh-refinement leads to a suboptimal experimental convergence rate of

3/7 for the error Eh. Figure 10 visualizes the error Eh as well as the error estimators
ηM and μΠ for uniform, and μM -, μA-, and μΠ-adaptive, mesh-refinement. The μM -
and μA-adaptive strategies recover the optimal convergence rate 3/2, which is exper-
imentally obtained from the very start; i.e., there is no preasymptotic behavior as is
normally observed for adaptive methods. The adaptively generated meshes, visualized
in Figure 11, look very similar for both strategies, and the related Eh-curves coincide.
This is very different for the μA-adaptive mesh-refinement. After a small preasymp-
totic phase (for n ≤ 40) and compared with the uniform mesh-refinement, we observe
an improvement of the experimental convergence rate. However, the μA-adaptive
strategy does not seem to recover the optimal convergence rate. The μA-adaptively
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Fig. 7. Error Eh = |||(1l − Gh)u||| and error estimator μΠ in the example in section 6.2 for
uniform (unif.) and adaptive (ad.) mesh-refinement and � = 2. Besides the efficiency of μΠ

proven in Corollary 4.5 one observes reliability of μΠ. The error estimator ηM estimates Eh very
accurately: The values almost coincide independent of the mesh-refining strategy. Whereas μM - and
μΠ-adaptive mesh-refinement lead to improved absolute values for the error Eh, the Eh-curve for
μA-adaptive mesh-refinement is above the curve corresponding to uniform mesh-refinement; i.e.,
the absolute value of Eh for a fixed number of unknowns is even worse than for uniform mesh-
refinement.

generated meshes show some further mesh-refinement where the exact solution u has
some local maxima (cf. Figures 9 and 11), which is not necessary when compared
with the optimal results for μM - and μΠ-adaptive mesh-refinement.

The error estimation by ηM is not as good as that observed in the preceding
examples. This is probably due to the fact that the term |||u − GHu||| now is not a
higher-order term.

6.4. Slit problem with exact solution. Our last example is concerned with
the hypersingular integral equation (1.1) with constant right-hand side f ≡ 1 on the
slit Γ = [−1, 1] × {0}. The exact solution u is given by

u(x, 0) =
√

1 − x2 for (x, 0) ∈ Γ.(6.5)

There holds u ∈ H̃1−ε(Γ) for all ε > 0, but u �∈ H̃1(Γ). The energy norm of u can be
computed analytically, |||u||| =

√
π/2. Figure 12 shows the experimental results of our

computations. As in the previous examples, the error estimators ηM , μM , and μΠ show
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Fig. 9. Initial coarse mesh T (0)
H in the example in section 6.3 with N = 8 elements (nodes

indicated by o) (top) and the corresponding fine mesh T (0)
h for � = 2 in Algorithm 5.1. The related

discrete solution uh on T (0)
h as well as the exact solution u is plotted over the arclength s = 0, . . . , 2

of Γ (bottom).

efficiency and reliability independent of the mesh-refining strategy. Uniform mesh-
refinement leads to a suboptimal experimental convergence rate κ(Eh) = O(h1/2).
This can be improved by use of μM - and μΠ-adaptive mesh-refinement. Both adaptive
strategies recover the optimal convergence rate. As in the example in section 6.3, μA-
adaptive mesh-refinement leads to an improved convergence rate of the error, but this
is still suboptimal.

7. Conclusions.

7.1. Empirical results. The overall impressions of our numerical experiments,
partly repeated from the preceding subsections, give us the subsequent empirical
results.

(a) μΠ is the most simple estimator (from the conceptual and implementational
point of view); it is theoretically shown only to be efficient, but performs efficiently
and reliably in our numerical examples.
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Fig. 10. Error Eh = |||(1l − Gh)u||| and error estimators ηM , μM , and μΠ for uniform (unif.),
μM -adaptive (μM -ad.), and μΠ-adaptive (μΠ-ad.) mesh-refinement in the example in section 6.3
with � = 2 in Algorithm 5.1.

(b) The error control of ηM is extremely accurate at least if the exact solution u
has some regularity. The error estimation is far superior in comparison with the other
error estimators.

(c) Algorithm 5.1 steered by the refinement indicators μM and μΠ, respectively,
leads to the optimal experimental convergence rate of the Galerkin method whenever
the regularity of the exact solution leads to a reduced convergence order for uniform
mesh-refinement.

(d) For AH , the L2 projection onto SH , the error estimators ηA and μA lack the
efficiency. Although μA-adaptive mesh-refinement leads to an improvement of the
experimental convergence rate for the singular examples, this adaptive strategy does
not regain the optimal convergence rate.

(e) The numerical outcome appears to be very sensitive with respect to imple-
mentational details. The estimators ηM , μM , and ηA involve stiffness matrices with
respect to S2

0 , while μΠ relies on the much more robust L2 projection.

7.2. Theoretical results. The heart of our analysis is Proposition 4.1 and,
obtained from this, the efficiency and reliability of the error estimator ηM = |||uh −
GHuh||| up to terms of higher order. Those higher-order terms depend only on the
regularity of the exact solution u which is in general unknown.
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Fig. 12. Error Eh = |||(1l − Gh)u||| and error estimators ηM and μΠ for uniform (unif.) and
adaptive (ad.) mesh-refinement in the example in section 6.4 with � = 2 in Algorithm 5.1.

The proof of Proposition 4.1 has essentially two ingredients: first, an approxima-
tion operator Ih : SH → Sh which has a local first-order approximation property, and
second, a local inverse estimate in SH . Whereas we provided the inverse estimate
for two- and three-dimensional problems, we did not provide the operator Ih in the
latter case. For two dimensions, one can simply choose IhvH to be the nodal inter-
polant. For three dimensions, one choice is (a slightly modified) Clément interpolation
operator [FFP].

From the best approximation property of the Galerkin projection, one obtains
that each averaging operator AH : Sh → SH yields a reliable error estimator ηA =
|||uh −AHuh|||.

Since the energy norm |||·||| is nonlocal, the obtained estimators cannot be employed
for an adaptive mesh-refinement directly. We use localization in terms of the weighted
H1 seminorm μA = ‖H1/2(uh − AHuh)′‖L2(Γ). An inverse estimate shows the lower
bound C−1μA ≤ ηA. The verification of ηA ≤ C μA needs some approximation
property of AH and holds, e.g., for the Galerkin projection AH = GH .

7.3. Future development. There remain several open questions for future re-
search.

(a) From a comparison with the finite element method, the most natural error
estimator is μΠ = ‖H1/2(u′

h −ΠHu′
h)‖L2(Γ) with ΠH the L2 projection onto P1(TH).
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The proof of the reliability seems to need a different analytical technique, which is far
beyond the scope of this paper.

(b) As for Symm’s integral equation [CP], an analytical justification of Algo-
rithm 5.1 would be desirable. The analytical verification of the introduced error
estimators needs high regularity assumptions on u which are in general not satisfied
and—according to our experiments—not necessary in praxis.

(c) The justification of ηM for the higher-order term |||(1l − GH)u||| reads more
precisely as follows, where L < 1 denotes the constant from (4.1): Provided that

1

1 − L

|||u− GHu|||
|||u− uh|||

=: �hH < 1,(7.1)

Theorem 4.2 states that |||u− uh||| ≤ 1
1−L ηM + �hH |||u− uh||| and thus

|||u− uh||| ≤
1

(1 − L)(1 − �hH)
ηM .(7.2)

Sufficient smoothness of u (cf. (4.2)) justifies (7.1) for sufficiently small mesh-sizes h
and H. However, singularities yield much poorer smoothness, e.g., u ∈ Hs(TH) for
s ≤ 3

2 − ε. Then, uniform meshes result in

|||u− uh||| = C7h
α + o(hα) and |||u− GHu||| = C8H

α + o(Hα)

for the same order of convergence α > 0 as h → 0. Then, there is no guarantee that

�hH =
(H/h)α

1 − L

C8

C7
+ o(1)

satisfies �hH < I. However, because higher-order discrete spaces are better, one may
expect that C8 < C7 so that there is room for (7.1). Since details depend on all the
constants, a further analysis lies beyond the scope of this work.

(d) Three-dimensional experiments for Symm’s integral equation and the hyper-
singular integral equation are postponed to a forthcoming paper [FFP].
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