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Adaptive Singularity Cancellation for Efficient Treatment
of Near-Singular and Near-Hypersingular Integrals in
Surface Integral Equation Formulations

Ismatullah and Thomas F. Eibert

Abstract—A recently proposed singularity cancellation technique for
fully numerical evaluation of method of moments integrals in surface
integral equation solutions produces reasonably accurate results with few
quadrature points for singular and hypersingular integrals. However, for
near-singular and near-hypersingular integrals, time-consuming compu-
tations need to be repeatedly performed over unnecessary regions outside
the actual integration domain. For a more efficient treatment of these
integrals, an adaptive singularity cancellation technique is proposed. As
such, the source triangular domain is subdivided in a way that all sample
points remain inside the desired integration domain and unnecessary com-
putations are avoided. Second the accuracy of results in existing singularity
cancellation transformations is greatly affected by variations in height
of observation point above the plane of source domain. This drawback
has been removed in the adaptive singularity cancellation transforma-
tions. Additionally, an optimum selection criterion for the distribution of
quadrature samples is presented. The criterion enables run-time selection
of optimum number of samples in different directions by consideration of
the instantaneous geometry of the transformed integration domain.

Index Terms—Integral equations, method of moments (MoM), singular
integrals.

[. INTRODUCTION

The accuracy of method of moments (MoM) solutions of integral
equations depends significantly on the calculation of the coupling in-
tegrals, which involve singular kernels. Direct numerical quadrature is
not applicable, especially for neighboring source and test domains, and
special numerical treatment of such integrals is typically required.

Previously, the singularity subtraction and Duffy transformation
methods [1] were often used for the evaluation of singular integrals.
Most recently, singularity cancellation technique has come up for
the treatment of singular integrals. In this technique, fully numerical
evaluation of singular integrals has been proposed. For 1/R-type
singular kernels, Arcsinh transformation [2] transforms the source
domain to a rectangular domain and cancels out the singularity. This
rectangular transformed domain enables the integration over source
domain with few sample points. For ﬁ/ R*—type kernels, the Radial
Angular-R? (RA-R?) transformation [3] cancels out the singularity.
However, the transformed domain is not rectangular and, depending
upon the observed geometry of the source domain, often large numbers
of Gauss-Legendre sample points are required for integration over the
source domain. The singularity cancellation transformation appeared
less efficient for near-singular and near-hypersingular couplings. The
reason is that the observation point or the projection of observation
point lies outside the source domain. In case of triangular domains, at
least one of the subtriangles lies completely outside the source triangle
and the remaining subtriangles are also partially outside. Thus, most of
the sample points lie outside the required integration domain. The con-
tribution of outer sample points is finally subtracted from the overall
result. In order to avoid time-consuming integration over such sample
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points, we propose an adaptive singularity cancellation technique,
which locates all sample points within the desired integration domain.

The convergence behavior of the existing singularity cancellation
transformations is very sensitive to height of observation point above
the plane of source domain. Often very large number of sample points
are needed for existing schemes which badly degrades the computa-
tional efficiency. In [3], two different transformations were proposed
to handle this problem. RA-R? was employed for higher values of |z|
and RA-R? was suggested for lower values of |z|. In fact this is not a
preferable solution. However, the adaptive approaches produce accu-
rate results with fewer quadrature points independent of the heights of
observation point above the plane of source domain.

Another important feature for the improvement of efficiency is the
appropriate choice of an adequate number of sample points according
to the instantaneous shape of the transformed integration domain en-
countered during the analysis of a particular pair of source and test
domains. Different numbers of sample points are chosen for different
radial and angular dimensions of the transformed integration domain.
For this, an optimum sample point distribution criterion is presented.

II. REVIEW OF SINGULARITY CANCELLATION TRANSFORMATIONS

The considered singular integrals encountered in surface integral
equation formulations of radiation and scattering problems of arbi-
trarily shaped objects have the following general forms:
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where R = |r — r'|, B is the vector basis function, and da’ describes
surface integral carried over the source or integration domain with
area A’

Now for the computation of singular integrals over triangular source
domain, the original source domain is decomposed into three subtri-
angles all sharing the singular point (or its projection) as a common
vertex. One of the edges of the original source domain belongs to one
of the subtriangles. The x-axis of the coordinate system in a particular
subtriangle is anti-parallel to the edge which belongs to the original
source triangle, the y-axis is perpendicular to this edge and z-axis is
outward normal to the source domain.

For 1/ R—type singular integral (1), the Arcsinh transformation is [2]

u = Arcsinh < (3)

X
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where the integration domain is assumed to lie in the xzy-plane with
origin at the projected observation point (see Fig. 1 or [2]). The Ja-
cobean of this transformation is R and cancels out the singularity and
the integral (1) in the transformed domain becomes
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where vy, v and ur,y are the lower and upper limits of integration
in the transformed domain. These limits are determined according to
the geometry of the subtriangle under consideration. These limits of
integration are given by
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Fig. 1. Geometry and coordinate system of subtriangles in source domain,
when one subtriangle is completely outside the original source domain A123.

where for existing scheme
yruv =0,h (6)

and h represents the height of projected observation point from the op-
posite edge of the subtriangle under consideration. In Arcsinh transfor-
mation, the transformed rectangular integration domain enables the use
of Gauss-Legendre integration with very few sample points. Excellent
convergence results are observed in this transformation.
For R/ R®-type singular integral (2), the RA-R? transformation ac-
cording to
u = ¢ = Arctan (2) v=|z|InR @)
r
is considered [3]. The Jacobean of this transformation is —( R*/|z|),
which cancels out the singularity. The limits of integration in the
RA-R? transformation are given by
[

ur, U = éL,U , VLU = ?ln [32 =+ (RZU (u))z] (8)

where for existing scheme
h
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The transformed integration domain in RA-R? transformation is not
rectangular and is deformed as the observation point moves closer to
the source or integration domain. Therefore, often very large numbers
of sample points are necessary for sufficiently good accuracies.

In the following sections, we propose an adaptive approach for near-
singular and near-hypersingular integrals while utilizing the benefits of
the Arcsinh and the RA-R? singularity cancellation transformations.

III. GEOMETRICAL CONFIGURATION FOR NEAR-SINGULAR INTEGRALS

Dependent on the location of the projection of the observation point,
two different geometrical configurations for near-singularities are pos-
sible, as shown in Figs. 1 and 2. The existing scheme divides the orig-
inal triangle into three subtriangles and integration over all subtriangles
starts from the origin (projection of observation point). As such, one
subtriangle is completely outside the source domain for the geometry
of Fig. 1, and two subtriangles are completely outside the source do-
main in the case of Fig. 2. It is noteworthy that any particular geometry
of source and observation point can easily be categorized into either of
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Fig. 2. Geometry and coordinate system of subtriangles in source domain,
when two subtriangles are completely outside the original source domain A123.

these two cases from the knowledge of local normals of the three sub-
triangles.

In adaptive scheme, two out of three subtriangles of the existing
scheme are taken into account, and limits of integration are modified
in such a way that integration is carried out only in the regions of orig-
inal source domain. The two subtriangles, SubTria-1 and SubTria-2,
are shown shaded in Figs. 1 and 2. The adaptive limits of integration
for RA-R? and Arcsinh transformations are described in the following
paragraphs.

A. Adaptive Limits of Integration for Radial Angular-R*
Transformation

In RA-R? transformation, the rectangular coordinate system (z, y)
is transformed into angular and radial coordinates (., v). The integra-
tion is carried out in transformed vv—domain. In the subtriangle under
consideration, angular limits of integration u,, s are kept as in the ex-
isting scheme. However, the modified lower and upper limits in radial
direction RY ;; for the computation of vz, i [see (8)] are given by

hz h
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for the case of Fig. 1 and
Ry (=1 T (11

sin (u)’ sin (6)

for the case of Fig. 2.

Equations (10) and (11) represent the respective instantaneous radial
distances. Here, h represents the perpendicular distance of projection
of the observation point from the opposite edge (|23| or |31|) in the
subtriangle under consideration, k3 is the perpendicular distance from
the edge |12| and § is the angle of instantaneous radius vector R’ as
measured with edge |12| (Figs. 1 and 2).

B. Adaptive Limits of Integration for Arcsinh Transformation

For 1/R-type singularities, the lower and upper limits =7, ;7 and
y.,u in the Arcsinh transformation are constrained by the sides of the
subtriangle under consideration. These limits are used in the compu-
tation of integration limits [see (5)] and can be determined from the
intersection of appropriate straight lines which bound the subtriangle
under consideration. For the geometry of Fig. 1, the integration limits
are given by

Yoo = ms <w) b (12)

ma2 — M
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Similarly, for the geometry of Fig. 2, the integration limits are given by

yr.u =h, mo <w) (14)
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where

my = 79 and mo = L (16)

o2 — X1 I3

are the slopes of the two sides of the source triangle.

IV. ADAPTIVE CRITERION FOR DISTRIBUTION OF SAMPLE POINTS

The selection of the number of sample points in the transformed
non-rectangular domain is of critical nature. The deformation in the
transformed domain becomes more and more pronounced as the pro-
jected observation point moves closer to the boundary of the orig-
inal source domain and a larger number of sample points is needed to
achieve accurate results. Also, it is observed that the integrands exhibit
larger variations when the size of the integration domain relative to its
distance from the projection of the observation point becomes larger.
Therefore, a real-time selection of distribution of sample points for the
particular geometry encountered is employed in order to account for the
particular deformations and integrand variations and to enhance the ef-
ficiency of the solver to a great extent.

As in the existing schemes, the Gaussian quadrature rule is applied
and the number of sample points is selected proportional to the ob-
served relative angular and radial dimensions (with respect to the ob-
servation point or its projection) of the instantaneous slice of the subtri-
angle under consideration. The instantaneous check on the ratio of the
length of the slice to its radial proximity from the projection of the ob-
servation point enables the use of optimum numbers of sample points.

The parameters og = |[(¢v — ¢r)/7| and ar =
(R, — R})/R/)| are proposed for the adaptive selection
criterion in the angular and radial directions, respectively. For smaller
angular dimensions, described by smaller values of a, as few as two
sample points are sufficient (assuming linear vector basis functions),
whereas for larger angular dimensions, described by larger values of
a4, more sample points are required for good accuracies. Similarly,
more sample points are required for larger values of «sz. Although the
number of sample points in a particular radial or angular segment are
proportional to a g ¢, yet, the exact numbers depend on the desired
accuracy and can be determined from the numerical experiments.
For our requirements, we have subdivided the complete range of
ar,s € [0,1] into four segments and used different number of
samples for different segments.

In order to demonstrate the adaptive selection of the number of
sample points in radial and angular directions, in Fig. 3 a fixed source
domain is shown for two different observation points. In Fig. 3(a), as
seen from the observation point, the angular domain of the right-sided
subtriangle is larger than that of the left-sided subtriangle. Therefore,
the adaptive scheme chooses eight samples in angular direction for
the right-sided subtriangle and two angular samples for the left-sided
subtriangle. Moreover, because the instantaneous slices are not very
broad in the radial direction, only two sample points in radial direction
are chosen. However, in Fig. 3(b) the angular domain as observed
from the observation point is very small and, therefore, only two
angular samples are chosen. Since each instantaneous radial slice is of
significantly different size, the adaptive scheme chooses more samples
(i.e., eight) for the larger slice and less sample points (i.e., 2) for the
smaller slice.

SubTria-ll SubTria-l:
Angular samples = 8

Radial samples =2

SubTria-l

Radial .-~
Djrection

- N SubTria-ll:
“Obs. Rt -~ Angular Angular samples = 2
) Direction Radial samples = 2

Radial Only 1 SubTria:
Direction Angular samples = 2

_________ (_\Rmiia.l samples =2 and 8

Angular Obs. Pt.
(b) \‘Direction

Fig. 3. Adaptive distribution of Gauss-Legendre sample points for a fixed
source domain and two different observation points.
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Fig.4. Comparison of distribution of Gauss-Legendre sample points for a near-
singularity in the existing and adaptive RA-R? transformations.

V. NUMERICAL RESULTS

A comparison of distribution of Gauss—Legendre sample points in
the existing and adaptive RA-R? singularity cancellation transforma-
tions is shown in Fig. 4. It can be observed that for 4 x 4 distribution of
sample points per subtriangle, the existing scheme uses a total of 4 x 4 X

= 48 points in the source triangle, out of which only few are located
within the desired source subdomain. However, the proposed scheme
utilizes 4 x 4 X2 = 32 points, all of which are located completely inside
the source subdomain. This enables the computation of accurate results
with fewer sample points. In the subsequent results, the real part of the
potential integral (1) with scalar basis function for Arcsinh and real part
of the normal component of (2) with Rao—Wilton—Glission vector basis
functions for RA-R? were computed at 10 m wavelength. In Fig. 5, the
convergence of the existing and adaptive schemes is presented for the
calculation of potential gradient integral (2). The proposed scheme con-
verges for a total of 2 X 2 x 2 = § sample points, whereas the existing
scheme is approximately converged with 5 X 5 X 3 = 75 sample points.

In Fig. 6, we consider a special case in which the source domain is
highly deformed. The integral (2) was computed using the existing and
adaptive RA-R? schemes. The adaptive scheme is remarkably faster
than the existing one.

In another example, we consider a right triangular source domain
with vertices (0, 0, 0), (1 m, 0, 0), and (0, 1 m, 0). The observation
point is taken at (— 0.1 m, 0.1 m, 0.01 m). A comparison of con-
vergence behavior in existing and adaptive Arcsinh transformations is
presented in Fig. 7. The highly efficient converging behavior of the
adaptive Arcsinh transformation is self evident. Similar to RA-R2?, the
adaptive Arcsinh scheme converges rapidly even for highly deformed
geometries. Another interesting benefit of the adaptive scheme over the



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 1, JANUARY 2008 277

-6.15

1 PO P D
o \ [ Existilzlg RA-R?
3 -6.25 T \ ® Adaptive RA-R? [
S |
s 2x2x2 5x5x3
o 63
2 Obs. Pt.
£ (0.1 m,2.0m, 0.1 m)
© -6.35
i
©
o

-6.4 - J

(0.7 m,0.1 m,0)
-6.45 1
2x2x3 (0,0,0)
65 Source domain| |
‘/ (0.5 M»0:5 m,0)
-6.55 &
0 50 100 150 200 250

Total no. of sample points per triangle
= (Radial x Transverse x # of sub-trias)

Fig. 5. Convergence results of a near-singularity in the existing and adaptive
RA-R? transformations for the computation of (2) over the source domain
shown in the lower legend.

3.5
I |
. © Existing RA-R?

3.4505 e Adaptive RA-R?
o 34
2 °
€ J°...2..1° a ° ° ?
335
Q
-
[
£ 33 — o
©
S
[ | | (0.1 m,0.1 m,0) ||
0 3.25 /— (1.3 m,0,0.01 m)

32H ©00) (1.0m.0.0) i

3.15 °

3.1

50 100 150 200 250 300

Total no. of sample points per triangle

Fig. 6. Convergence results of the existing and adaptive RA-R? transforma-
tions for the computation of (2) over a degenerate source domain shown in the
lower legend.
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Fig. 7. Convergence results of a near-singularity in the existing and adaptive
Arcsinh transformations for the computation of (1).
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Fig. 8. Comparison of convergence behavior of existing and adaptive RA-R?
transformations for different heights |z| of observation point over the source
domain for the computation of potential gradient integral (2).

existing scheme is that it converges rapidly independent of height of
observation point above the plane of source domain. For this purpose,
the geometry being used has the vertices (0, 0, 0), (0.5 m, —0.5 m, 0)
and (0.7 m, 0.1 m, 0). The near-singular observation point is located at
(0.1 m, 2.0 m, |z|). A comparison of convergence behaviors of existing
and adaptive RA-R? schemes for two different heights = 0.1 m,
0.001 m, is presented in Fig. 8. This shows that the convergence be-
havior of existing RA-R? transformations is highly sensitive to the
height |z| of the observation point above the source plane. The sen-
sitivity to z-variations of the existing RA-R? scheme is due to the fact
that as the height of observation point above the source plane is de-
creased, the quadrature points start clustering more closer to the obser-
vation point. Since for near-singularities, the observation point resides
outside the actual source domain, the number of samples which are in-
side the original source domain are reduced and hence the accuracy of
the computation becomes worse. However, this is not the case for the
proposed adaptive transformations. Because all of the quadrature points
already reside completely inside the original source domain, therefore
the adaptive version of the transformation converges with fewer sample
points regardless of the height of the observation point over source
plane. Similarly the convergence of adaptive Arcsinh scheme has been
found independent of z-variations in the observation point.

Finally, a comparison of the computational efficiencies of existing
and adaptive schemes was carried out under the same memory and
speed environments for the computation of the near field matrix for
a problem with 135876 unknowns. For a comparable accuracy of the
order of two significant digits, the existing scheme took 2926 seconds
whereas the adaptive scheme took 606 seconds. This explains the ef-
fectiveness of the adaptive scheme over the existing scheme.

=~

VI. CONCLUSION

An adaptive singularity cancellation scheme for Arcsinh and RA-R?
transformations was proposed for the efficient computation of near-
and near-hyper-singularities for triangular domains. In the existing
singularity cancellation approaches, the Gauss—Legendre quadrature
points are clustered around the observation point or its projection and
therefore often a large number of sample points for sufficiently good
accuracies are needed. Highly efficient treatment of these cases has
been proposed by retaining all the quadrature points completely inside
the desired integration domain. Also, the adaptive Arcsink and RA-R?
transformations are insensitive to z-variations of the observation point.
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Therefore, very few sample points are needed for sufficiently good ac-
curacies for near-singular and near-hypersingular kernels of potential
integrals. Also, an optimum criterion for the distribution of sample
points in two directions was found proportional to the radial and
angular dimensions of the instantaneous slices of the source domain.
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Implementation of Method of Moments for Numerical
Analysis of Corrugated Surfaces With Impedance
Boundary Condition

Ilari Hénninen and Keijo Nikoskinen

Abstract—A method of moments formulation is developed to analyze
the scattering of corrugated surfaces by using an impedance boundary
condition. The numerical analysis of the impedance surface is done using
closed-form formulae and accurate numerical integration. The studied
formulation greatly decreases the computational resources required to
study corrugated structures.

Index Terms—Corrugated surface, method of moments (MoM), radar
cross section (RCS).

I. INTRODUCTION

Corrugated surfaces pose challenging problems regarding numerical
computations. They are constructed—in terms of wavelength—of very
thin grooves, that require a very fine mesh to model, which in turn
leads to high memory requirements and long computation times. On the
other hand, corrugation is usually used in situations where the corruga-
tion is quite uniform and continuous on a relatively large surface area.
Thus the small-scale effects on the scattering response of the individual
grooves are usually masked by the large-scale effects of the corrugated
surface as a whole. If one were able to replace the corrugation in the
numerical model by a surface that has the same large-scale effects as
the corrugated surface but which is smooth, i.e., without grooves, one
could diminish the high computational cost considerably.
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Fig. 1. Geometry and the physical properties of the corrugation.

In this Communication, the authors introduce a method of moments
(MoM) implementation which exploits the impedance boundary con-
dition (IBC) in numerical analysis of the corrugation. The method pro-
posed treats the grooves of the corrugation as short-circuited waveg-
uides, which enables one to compute the impedance values analytically.
Previously, a method applying the soft-and-hard surface (SHS) [1], [2]
boundary approximation was suggested for the computational analysis
of corrugated surfaces [3]. However, the SHS approximation is valid
only for a single frequency whereas the IBC can be used to compute
the scattering response of the corrugated surface for a frequency band
around and including the SHS case. Asymptotic boundary conditions
(ABC) have also been used to model corrugations with good success
[4]-[6]. The IBC method was chosen in this paper because it is simple,
easy to implement, and reduces the number of unknowns significantly.
The IBC is used with a surface integral equation method to solve the
scattered field numerically, using MoM. The results produced by this
method are compared to the numerical analysis of the exact model of
the corrugation by CST Microwave Studio using finite integration tech-
nique (FIT).

II. IMPEDANCE BOUNDARY CONDITION FOR CORRUGATED SURFACE

Let us consider a corrugated surface that is sufficiently smooth so
that it can be locally approximated by a flat surface. We will denote the
direction of the corrugation by # and the direction perpendicular to the
corrugation by v, so that 4 X v = n, where n is the unit normal vector
to the surface (see Fig. 1). A corrugated surface can be approximated,
within certain limitations, by the impedance boundary condition

E(r)=2Z.-n(r)x H/(r) 1)

where E, and H, are the field components tangential to the surface,
and Z is the surface impedance dyadic

Z, = Z,uu+ Z,vv. 2)

We can also write the impedance boulndary condition by means of the
surface admittance dyadic A, = Z, as

H.(r)=—-A, n(r) x E/(r). 3)

The impedance values Z,, and Z, in (2) can be computed by approxi-
mating the grooves of the corrugation by short-circuited wave guides if
the width of the grooves is sufficiently small, and the values are given
by [3]

Zo =iZTh tan(ﬁTElh), Zy = inz tan(kanh) )
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