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In earthquake engineering and strong motion seismology, an important issue is to
describe and analyse the displacement amplitudes and the relative phases of motions of
infrastructures on or nearby the ground surface. In this paper, the influence of a beeline
crack on the ground motion of a half space with a semi-cylindrical canyon under anti-
plane loading is studied. A novel method combining Green’s function and complex
functions that can consider very irregular topography is developed for deriving the
function of ground motion of the half space. Analytical expressions for the displacement
and stress in the half space are obtained. Our results show that the positions and
dimensions of the canyon and the beeline crack have a big influence on the ground
motion. The crack can amplify the amplitudes of the motion significantly, and its
influence cannot be neglected until the distance between the crack and the ground
reaches up to 100 times more than the dimension of the crack.
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1. Introduction

Seismic wave scattering by irregular topography is a very important and
challenging problem in the field of earthquake engineering and strong motion
seismology. During past decades, intensive studies were dedicated to under-
standing the mechanics of ground motion with irregular topography by
theoretical and numerical approaches. For simple topography, e.g. a semi-
cylindrical canyon (Trifunac 1973), a semi-elliptical canyon (Wong & Trifunac
1974) and a circular underground cavity (Lee 1977) or tunnel (Lee & Trifunac
1979), the analytical solutions for problems of anti-plane diffraction have been
obtained. However, a more complex topography, e.g. the anti-plane diffraction
from a canyon above a subsurface unlined tunnel with incident shear horizontal
(SH) waves, was just pursued recently (Lee et al. 1999). The diffraction of a
triangular dike on a flexible embedded foundation was studied by Todorovska
et al. (2001) using a fractional order Bessel function. The problem of a
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Figure 1. A half space with a semi-cylindrical canyon, a beeline crack and an incident SH wave
coming from the left.

G. Liu et al.2
semi-circular hill above a subsurface cavity was studied using an advanced
analytical method (Lee et al. 2006; Liu & Wang 2006). The above analytic
solutions were obtained using the method of expansion of a wave function in
polar coordinates, which can only deal with problems with relatively simple
boundary conditions. If even more complex topography is considered, it will be
very difficult for current approaches to obtain an analytic solution.

During the past 20 years, many numerical methods were successfully applied to
solve the scattering problems caused by various irregular topographies or complex
alluvium basins encountered in seismological studies. These methods include the
boundary integral equation method (Aki & Richards 1980; Zhang & Chopra
1991) and the indirect boundary-element method (Yokoi & Sánchez-Sesma 1998).
The semi-analytic methods include, but are not limited to, the Aki–Larner
method (Aki & Larner 1970), the Bouchon–Campillo method (Campillo &
Bouchon 1985; Bouchon 2003) and Chen’s method (Chen 1999; Cao et al. 2004).
Although the numerical methods are efficient for some complex engineering
problems, the analytical method is essential to the understanding of the
underlying physics of the problems. For analytical approaches, a big challenge
is how to obtain the analytical solutions of elastic wave scattering under arbitrary
boundary conditions and combined boundaries. A novel method, combining
complex functions and multipolar coordinates, was recently developed by the
authors and co-workers (Liu et al. 1982; Liu & Han 1991; Liu & Liu 2007), which
can be applied to these problems. It is found that our method (Liu & Liu 2007) is
effective in dealing with the problems with complex irregular topography. With
complex functions, the wave functions can be conveniently transferred between
different coordinates through the multipolar coordinates method without the Graf
expansion (Lee et al. 1999) to handle the combined complicated boundaries.

In this work, we are interested in the anti-plane problem of scattering by a half
space with a surface canyon and a beeline crack (figure 1). The crack is used to
simulate a crack-like flaw below the basin. The existence of the crack and its
interaction with the canyon should have a big influence on the ground motion of
the half space. A critical challenge in this work is how to establish a wave function
that is compatible with the intrinsic mechanics of the problem and satisfies all the
Proc. R. Soc. A



3Ground motion of a half space
boundary conditions, especially to construct the traction-free conditions on crack
surfaces. Here, a novel method simultaneously adopting Green’s function,
complex functions and multipolar coordinates will be developed and then applied
to obtain analytical expressions of the displacement field of the surface.
2. Model and governing equations

For the anti-plane problem, the displacement satisfies the following Helmholtz
equation:

V2w Z
1

c2s
€w ; ð2:1Þ

where csZ
ffiffiffiffiffiffiffiffi
m=r

p
stands for the shear wave velocity; and r and m are the mass

density and shear modulus of elasticity of the media in the half space, respectively.
For the case of harmonic incident, the anti-plane displacement w can be set as

wZW ðxjÞTðtÞ. Separating the variables, (2.1) can be written in the polar
coordinates

v2W

vr2
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Ck2W Z 0 ð2:2Þ

and
€T Cu2T Z 0; ð2:3Þ

where kZu/cs, u is the circular frequency of the displacement, and the corres-
ponding stress components are given by

trz Zm
vW

vr
ð2:4Þ

and

tqz Z
m

r

vW

vq
: ð2:5Þ

The solution of (2.3) is

T Z expðGiutÞ: ð2:6Þ
If we set WZRðrÞQðqÞ in (2.2) and separate the variables, we can obtain
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dr 2
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: ð2:7Þ

Observing that the l.h.s. terms of the above equation are only functions of r and
the r.h.s. term is only a function of q, we set that they are both equal to a
constant number (mp)2, where m is an integer and p is a number determined by
the boundary conditions. Then, we obtain

d2Q

dq2
CðmpÞ2QZ 0 ð2:8Þ

and

r 2

R

d2R

dr2
C

r

R

dR

dr
Ck2r2KðmpÞ2 Z 0: ð2:9Þ
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Figure 2. A half space with a semi-cylindrical canyon under (a) an anti-plane line source force and
(b) incident SH waves.
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The solution for (2.8) is

QZ Z cos mpqC7 sin mpq or [eGimp q: ð2:10Þ
We find that (2.9) is a Bessel equation with the order of mp and the variable is kr,
so the solution of (2.9) is

RZ JmpðkrÞ or HmpðkrÞ; ð2:11Þ
where Jmp($) is a Bessel function of order mp and Hmp($) is a Hankel function of
order mp. According to (2.6), (2.10) and (2.11), the solution of the governing
equation (2.1) is obtained as (Liu & Liu 2007)
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JmpðkrÞeGimpqeGiut or WZ
XN

mZKN

HmpðkrÞeGimpqeGiut: ð2:12Þ

When jr j/N, the asymptotic expression of (2.12) is (Pao & Mow 1973)
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ð2:13Þ

3. Green’s function

Green’s function of this problem is adopted as the displacement response of the
elastic half space containing a semi-cylindrical canyon impacted by an anti-plane
harmonic linear source force at a point in the half space (figure 2a). In a polar
coordinate system, the governing equation of Green’s function G is

v2G

vr2
C

1

r

vG

vr
C

1

r2
v2G

vq2
Ck2G Z dðrKr0Þ; ð3:1Þ

where r0 stands for the position of the linear source force in polar coordinates,
r0Zr0 expðiq0Þ, and r stands for the position of the observation point,
rZr expðiqÞ. The boundary conditions can be expressed as

trz Z 0 at r ZR0 ð3:2Þ
and

tqz Z 0 at qZ 0;p: ð3:3Þ
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5Ground motion of a half space
The basic solution that satisfies the control equation (3.1) and the boundary
conditions (3.2) and (3.3) should include two parts of the motion, the disturbance
of the anti-plane linear source force and the scattering wave induced by the semi-
cylindrical canyon. The response of the half space due to the line source load
dðrKr0Þ is given by

G ið Þ Z
i

4m
H

ð1Þ
0 ðkjrKr0jÞ; ð3:4Þ

where H
ð1Þ
0 ð$Þ is the first kind of the Hankel function with zero order. According to

the addition theorem of the Bessel function, (3.4) can be written as (Pao & Mow
1973)
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: ð3:5Þ

when mZ0, 3mZ1; mR1, 3mZ2.
According to the ‘symmetry theory’ (Lee et al. 1999), the wave reflected by a

horizontal surface can be written as

GðrÞ Z
i

4m
H

ð1Þ
0 ðkjrK�r0jÞ; ð3:6Þ

where �r0 stands for the conjugate of r0 where the linear source force is applied in
polar coordinates and �r0Zr0 expðKiq0Þ. According to the addition theorem of
the Bessel function, (3.6) can be written as

GðrÞ Z
i

4m

XN
mZ0

3m cos ½mðqCq0Þ�
Jmðkr0ÞH

ð1Þ
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JmðkrÞH
ð1Þ
m ðkr0Þ; r!r0:

8<
: ð3:7Þ

The scattering wave induced by the semi-cylindrical canyon can be written as

GðisÞ Z
XN
mZ0

Am cos ½mðqK q0Þ�H ð1Þ
m ðkrÞ ð3:8Þ

and

GðrsÞ Z
XN
mZ0

Bm cos ½mðqCq0Þ�H ð1Þ
m ðkrÞ; ð3:9Þ

where Am and Bm are unknown coefficients. Therefore, the total wave function is

G ZGði ÞCGðrÞCGðisÞCGðrsÞ: ð3:10Þ

In order to satisfy the stress-free condition on the surface of the semi-cylindrical
canyon, the total wave function G must satisfy the following equation:

m
vG

vr

����
rZR0

Z 0: ð3:11Þ
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G. Liu et al.6
Substituting (3.5), (3.7), (3.8) and (3.9) into (3.11) and considering R0!r0,
(3.11) can be transformed into

i
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3m cos ½mðqK q0Þ�J 0
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The total displacement should satisfy the traction-free condition on the surface
(at yZ0). Setting AmZBm, the unknown coefficients Am and Bm in (3.12) can be
obtained as

Am ZK
i

4m
3m

J 0
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ð1Þ
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m
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ð3:13Þ

and

Bm ZK
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H ð1Þ
m
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; ð3:14Þ

where J 0
mð$Þ is the derivative of Jm($) and H ð1Þ

m
0ð$Þ is the derivative of H

ð1Þ
m ð$Þ.

Substituting (3.13) and (3.14) into (3.8) and (3.9), respectively, and then
substituting (3.5), (3.7), (3.8) and (3.9) into (3.10), the total wave function G can
be obtained as

Gðr ; r0; q; q0ÞZ
i
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m ðkr0Þ

H ð1Þ
m
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m ðkrÞ: ð3:15Þ

Applying the addition theorem of the Bessel function reversely, (3.15) can be
transformed into
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ð3:16Þ
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7Ground motion of a half space
4. Scattering by a half space with a semi-cylindrical canyon

First, we consider the incidence of an SH wave on the linear elastic half space
containing a semi-cylindrical canyon (Trifunac 1973), and the model is as shown
in figure 2b. The harmonic incident displacement field W (i ) can be written as
follows:

W ði Þ ZW0 exp½ikr cosðqKaÞ�ZW0

XN
nZ0

3ni
ncos ½nðqKaÞ�JnðkrÞ; ð4:1Þ

which is the expansion with wavevector kr that forms an angle a with the x -axis,
where a is the incident angle and kZu/cs is the shear wavenumber of the media.
If nZ0, 3nZ1 then nR1, 3nZ2. The wave reflected by the horizontal surface can
be written as

W ðrÞ ZW0 exp½ikr cosðqCaÞ�ZW0

XN
nZ0

3ni
ncos ½nðqCaÞ�JnðkrÞ: ð4:2Þ

The scattering wave induced by the semi-cylindrical canyon is

W ðisÞ ZW0

XN
nZ0

AnH
ð1Þ
n ðkrÞ cos ½nðqKaÞ� ð4:3Þ

and

W ðrsÞ ZW0

XN
nZ0

BnH
ð1Þ
n ðkrÞ cos ½nðqCaÞ�; ð4:4Þ

where An and Bn are unknown coefficients. Using the stress-free condition on the
surface of the semi-cylindrical canyon, we have

m
v
�
W ðiÞCW ðrÞCW ðisÞCW ðrsÞ�

vr

����
rZR0

Z 0: ð4:5Þ

This total displacement should satisfy the traction-free condition on the surface
(at yZ0). Setting AnZBn, we can get the coefficients An and Bn as

An ZK3ni
n J 0

nðkR0Þ
H ð1Þ

n
0ðkR0Þ

ð4:6Þ

and

Bn ZK3ni
n J 0

nðkR0Þ
H ð1Þ

n
0ðkR0Þ

: ð4:7Þ

Therefore, the total wave field is obtained as

W ZW ði ÞCW ðrÞCW ðisÞ CW ðrsÞ

Z 2W0

XN
nZ0

3ni
n JnðkrÞK

J 0
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H ð1Þ
n
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H ð1Þ

n ðkrÞ
" #

cos nqcos na: ð4:8Þ
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The corresponding stresses are given by

trz Z 2mW0k
XN
nZ0

3ni
n J 0

nðkrÞK
J 0
nðkR0Þ

H ð1Þ
n
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" #
cos nqcos na ð4:9Þ

and

tqz Z
K2mW0

r

XN
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J 0
nðkR0Þ

H ð1Þ
n

0ðkR0Þ
H ð1Þ
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" #

sin nqcos na: ð4:10Þ

5. Wave functions and the stress field in new coordinates

By introducing the complex plane, zZxCy i and �zZxKy i, the wave functions
(3.16) and (4.8) are converted into

Gðz; z0ÞZ
i

4m
H

ð1Þ
0 ðkjzK z 0jÞCH

ð1Þ
0 ðkjzK �z0 jÞ

h i(
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H ð1Þ
m
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H ð1Þ
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)
ð5:1Þ

and

W Z 2W0
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n
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" #

cos nqcos na: ð5:2Þ

In order to express the traction-free condition conveniently on the surface of
the crack, we introduce new coordinates (x 0, y 0) and the corresponding
new complex plane ðz 0;�z 0Þ by rotating the original coordinates (x, y), where

z 0Zx 0Cy 0i, �z 0Zx 0Ky 0i, zZz 0eib, �zZ�z 0eKib and b is the inclined angle of the

crack. In the new complex plane ðz 0;�z 0Þ, the expressions of wave functions (5.1)

and (5.2) are changed into

Gðz 0; z 0
0ÞZ

i

4m
H

ð1Þ
0 kjz 0eibKz 0

0e
ibj

� �
CH

ð1Þ
0 kjz 0eibK�z 00e

Kibj
� �h in

K
XN
mZ0

23m cos mðq0 CbÞ cos m q00 Cb
� � J 0
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H ð1Þ

m
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!H ð1Þ
m kjz 00j
� �

H ð1Þ
m ðkjz 0jÞ

o
ð5:3Þ

and

W Z 2W0

XN
nZ0

3ni
n Jnðkjz 0jÞK

J 0
nðkR0Þ

H ð1Þ
n

0ðkR0Þ
H ð1Þ

n ðkjz 0jÞ
" #

!cosnðq0CbÞ cosnða0 CbÞ: ð5:4Þ
where z 0

0 is the position of the linear source force in the complex plane ðz 0; �z 0Þ, �z 0
0

is the conjugate of z 0
0 and a0 stands for the incident angle in the new complex

plane ðz 0; �z 0Þ.
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9Ground motion of a half space
The stress fields induced by the wave function (5.4) in the new coordinates
ðz 0; �z 0Þ are

tx 0z Zm
vW

vx 0
Z 2mW0k

XN
nZ0

3ni
n cos nðq0 CbÞcos nða0CbÞ
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J 0
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nðkR0Þ
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n

0ðkR0Þ
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and
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J 0
nðkR0Þ

H ð1Þ
n
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" #

x 0
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: ð5:6Þ
6. Scattering by the half space with both a semi-cylindrical
canyon and a crack

Now, we consider the scattering of the incident SH wave when the semi-
cylindrical canyon and crack coexist in the half space. Based on the incident and
scattering fields of the half space containing only a semi-cylindrical canyon and
Green’s function of the half space containing the semi-cylindrical canyon with a
harmonic anti-plane line source force we derived in previous sections, we can
construct the wave function of scattering by a half space containing both the
semi-cylindrical canyon and the beeline crack.

According to the solution of the scattering of the SH wave by the half space
with only the semi-cylindrical canyon, we can calculate the stress value on a line
AB where the crack will be constructed. Then, opposite anti-plane stresses of
exactly the same magnitudeKty 0z are loaded at the same position as AB, which
induces a zero resultant force on AB (i.e. traction free), so that AB is equivalent
to a crack, as shown in figure 3.

The additional displacement field induced byKty 0z can be obtained as

Kty 0zG z 0; z 0
0

� �
: ð6:1Þ
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Figure 3. Illustration of constructing a subsurface crack using Green’s function.
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Integrating along the line of crack AB, we can obtain

K

ðx 0
2

x 0
1

ty 0zG z 0; z 0
0

� �
dx 0: ð6:2Þ

Hence, the total displacement field can be written as

W ðtÞ ZWK

ðx 0
2

x 0
1

ty 0zG z 0; z 0
0

� �
dx 0; ð6:3Þ

where W, ty 0z and Gðz 0; z 0
0Þ are shown in (5.4), (5.6) and (5.3), respectively, and

x 0
1 and x 0

2 stand for the positions of the points A and B, respectively, of the crack
in coordinates (x0, y0).

The dimensionless parameters used in this paper are defined as follows: x/R0 is
the non-dimensional x coordinate normalized by the radius of the canyon R0;
2R0/b is the ratio of the radius of the canyon to the dimension of the beeline
crack; 2a/b is the ratio of the distance between the crack and the horizontal
surface to the dimension of the crack; and h is defined as hZkR0ZuR0=csZ
2R0p=l for convenience of discussion of the influence of the crack size on the
surface motion, where kR0 is the dimensionless wavenumber (we assume R0Z1).
It also represents a dimensionless frequency uR0/cs, as well as 2p times the ratio
of the radius of the canyon to the wavelength l of the waves. The ground motion
is characterized by the amplitudes of the total motion jW/W0j. For convenience
of discussion in the following, we assume that the crack is located directly below
the canyon, and the incident plane SH waves come from the left, as shown in
figure 4.
7. Results and discussions

With the novel method developed in this work, we can study the influence of the
crack on the ground motion of the half space. All the calculations are performed
with a MATLAB code. In order to check the validity of our new method, we
calculate the ground motion of a half space with only the semi-cylindrical
canyon. That is, we set the length of the crack to bZ0. This condition
corresponds to the case of a half space with the canyon without the crack.
Figure 5 illustrates the amplitude of the surface motion with hZ1.0 and aZ608
Proc. R. Soc. A
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Figure 5. Our results (squares) in comparison with those of Zhou & Chen (2006; circles).

b/2
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SH wave

Figure 4. Illustration of the model of a half space with a semi-cylindrical canyon and beeline crack,
where the crack is directly below the centre of the canyon.

11Ground motion of a half space
(this angle value corresponds to qZ308 in the work of Zhou & Chen 2006). It can
be seen that the analytical results are consistent with the numerical results of
Zhou & Chen (2006) of the scattering by a half space with a semi-cylindrical
canyon, except at the two rims (points C and D), i.e. x/R0ZG1. Our results
show that the amplitude of the surface motion is a continuum at the rims of
x/R0ZG1, but Zhou & Chen’s results show that the amplitude at the two rims is
discontinuous. More results with various incident angles, aZ08, 308, 608 and 908,
and incident wavenumbers hZ0.1, 1.0, 1.5 and 2.5, are shown in figure 6a for
comparison with those when the crack is present.

To study the influence of an existing crack on the ground motion, we set
the distance between the semi-cylindrical canyon and the centre of the crack
to aZ2.5, the length of the crack to bZ2 and the oblique angle of the beeline crack to
Proc. R. Soc. A
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Figure 6. (a(i)–(iv)) Amplitudes of the ground motion without a crack; (b(i)–(iv)) amplitudes of the
ground motion with a subsurface crack, where bZ2 and bZ458 ((i) hZ0.1 (solid line, aZ08; dashed
line, 308; dotted line, 608; dashed dotted line, 908), (ii) hZ1.0, (iii) hZ1.5 and (iv) hZ2.5).

G. Liu et al.12
bZ458. Figure 6b shows the amplitude of the surface motion with the presence of
the crack. In comparison with the no-crack condition (as shown in figure 6a), we
find that the crack amplifies the amplitudes of the surface motion both left and right
of the canyon, especially at low frequency (hZ0.1). However, at high frequencies,
the amplitudes of the l.h.s. (x/R0%K1) keep almost the same magnitude as
those without the crack. By contrast, the amplitudes of the r.h.s. (x/R0RK1) are
amplified distinctly. These general characters of surface motion result from the
scattering and diffraction of SHwaves by the semi-cylindrical canyon and subsurface
crack, as well as a decrease of the stiffness of the global structure due to the existence
of the crack. Previous studies (Lee et al. 1999) have shown that a subsurface
unlined tunnel under the semi-cylindrical canyon plays similar roles to the crack.
Proc. R. Soc. A



–3 –2 –1 0 1 2 3
0

0.5

1.0

1.5

2.0

2.5

3.0

am
pl

itu
de

Figure 7. Amplitudes of the ground motion for different sizes of the beeline crack (squares, bZ0;
circles, bZ2, aZ2; up triangles, bZ4, aZ2; down triangles, bZ5, aZ2).
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Figure 8. Amplitudes of the ground motion for different positions of the beeline crack (squares,
bZ0; circles, bZ2, aZ2; up triangles, bZ2, aZ6; down triangles, bZ2, aZ10; left triangles, bZ2,
aZ200; diamonds, bZ2, aZ20).

13Ground motion of a half space
Now, we study the effect of the size and position of the crack on the ground
motion. We set the slantwise angle of the crack to bZ458, incident angle to
aZ608 and frequency of the incident wave to hZ1.0. Figure 7 illustrates the
ground motion amplitude versus the size of the crack (length of crack bZ2, 4 and
5, respectively). The numerical results show that the displacement amplitudes
are obviously amplified as the crack size increases, especially in the region at the
r.h.s. of the rim C. Figure 8 shows that the position of the crack can have
a significant effect on the ground motion amplitude. If we continuously increase
the distance between the centre of the crack and the origin (aZ2, 6, 10,
20,., 200), the amplitudes of ground motion will decrease until this distance
reaches up to 100 times larger than the size of the crack. The system at this
limiting condition (bZ2 and aZ200) is equivalent to a half space containing a
semi-cylindrical canyon, but without a crack. The decay of the influence of the
beeline crack is slow because the anti-plane motion around the crack decreases at
the rate of x–1/2, which is slower than the rate of x–3/2 in the in-plane motion.
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Figure 9. Amplitudes of the ground motion at different slantwise angles of crack with hZ12.0,
2a/bZ2.5, 2R0/bZ1.0, where (a) bZ08, (b) bZ458 and (c) bZ908 (solid line, aZ08; dashed line,
308; dotted line, 608; dashed dotted line, 908).
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Figure 9 shows the amplitudes of motion at a very high frequency hZ12, and at
various incident angles aZ08, 308, 608 and 908, with the slantwise angles of
the crack being bZ08, 458 and 908 (as shown in figure 9a–c). Consistent with
previous work (Lee et al. 1999), the amplitudes of motion at the front of
the canyon are in general more complex and larger than those at the back. It
should be noted that the maximum amplitude (equal to 2.34) occurs at the left
rim C when aZ08 and bZ458. As can be seen, at a specific position of the crack,
the slantwise angle of the beeline crack does not affect the amplitudes significantly
under high frequency incidence, except for aZ908. When the crack is parallel with
the incident wave, i.e. a vertical crack (bZ908) with vertical incidence (aZ908),
or a horizontal crack (bZ08) with horizontal incidence (aZ08), the amplitudes of
the ground motion exhibit almost the same characters as those of the half space
without the crack. We call this phenomenon ‘sweep incidence’. We note that the
amplitudes of the motion tend to be smoother at the r.h.s. of the canyon, which
may be attributed to energy absorption and resistance of propagation of the
incident waves by the semi-cylindrical canyon at this frequency. This suggests
that it might be possible to carve artificial caves to protect important structures
behind them from the dynamic impact of certain frequencies.

Figure 10 is a three-dimensional plot of the amplitudes of ground motion at
different radii of the semi-cylindrical canyon with a horizontal crack of constant
size (bZ2) under incident SH waves (figure 10a,b corresponds to 2a/bZ2.5,
2R0/bZ1.0, at aZ08 and 458, respectively, and figure 10c,d corresponds to
2a/bZ2.5, 2R0/bZ0.25, at aZ08 and 458, respectively). Here, we define a new
dimensionless frequency fZbp/l in order to study the effect of the radius of the
canyon on the ground motion. For horizontal incidence (as shown in
figure 10a,c), we find that the amplitudes of the ground motion are complex
on the l.h.s. of the canyon (x/R0%0), and the amplitudes decrease and become
smoother on the r.h.s. (x/R0R0). The maximum amplitudes occur at the points
around x/R0ZK1, jW/W0jZ2.76 (figure 10a) and x/R0ZK1.1, jW/W0jZ1.90
(figure 10c). The maximum values occur at these positions because the
diffraction waves are excited around the tip of the canyon, which results in
the amplification of the motion. Again, it is shown that the amplitudes tend to be
smoother on the r.h.s. of the canyon. For oblique incidence (i.e. aZ458 as shown
in figure 10b,d ), the displacement amplitudes increase with frequency on both
sides of the surface at low frequency, but decreases after it reaches its maximum
Proc. R. Soc. A
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Figure 10. Three-dimensional plots of amplitudes of the ground motion with 0%f%15.0. (a)
2a/bZ2.5, 2R0/bZ1.0, at aZ08 (jW/W0jZ2.76 at hZ6.6, x/R0ZK1); (b) 2a/bZ2.5, 2R0/bZ1.0,
at aZ458 (jW/W0jZ2.05 at hZ2.7, x/R0ZK1); (c) 2a/bZ2.5, 2R0/bZ0.25, at aZ08 (jW/W0jZ
1.90 at hZ4.8, x/R0ZK1.1); (d ) 2a/bZ2.5, 2R0/bZ0.25, at aZ458 (jW/W0jZ1.77 at fZ2.4,
x/R0Z1.3).
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value, and the maximum amplitudes occur at the points of x/R0ZK1, fZ2.7,
jW/W0jZ2.05 (figure 10b) and x/R0Z1.3, fZ2.4, jW/W0jZ1.77 (figure 10d ). If
the frequency of the incident wave is larger than a critical value, the amplitudes
of the motion become smoother and smoother with the increase of frequency. The
mechanism is that the structure loses sensitivity to external loading at high
frequency. In comparison with the results of Lee et al. (1999), we find that the
amplification of the ground motion by the subsurface crack is 73% smaller than
the subsurface cavity.
8. Conclusions

In this paper, we have developed a novel method for deriving the analytical
expressions of the ground motion of a half space with a semi-cylindrical canyon
and beeline crack. Green’s function for the half space with only a semi-cylindrical
canyon was firstly obtained. The crack was then constructed by applying a series
of line-source forces to satisfy the traction-free condition at the crack surfaces
with Green’s function. Based on the solution for the scattering of the SH wave by
Proc. R. Soc. A
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an elastic half space with a semi-cylindrical canyon and the Green’s function we
derived, the analytical expressions of the total displacement field in the half
space were obtained. This powerful methodology can be used for further studies
with other topographies, such as a half space with multiple cracks and irregular
canyons or hills.

We have shown that the presence of the subsurface beeline crack results in
amplification of the amplitudes of the ground motion. In comparison with the
no-crack condition, the crack amplifies the amplitudes of motion at all positions on
the ground’s surface at low frequency incident waves (hZ0.1). However, at high
frequencies, the amplitudes of motion at the l.h.s. (x/R0%K1) are not amplified
and keep almost the same magnitude as those without a crack. By contrast, the
amplitudes of the r.h.s. (x/R0RK1) are significantly amplified. Our results also
show that the amplitudes of motion are obviously amplified as the crack size
increases, especially in the region on the r.h.s. of the rim C (figures 4 and 6). The
positions of the crack can also have an important influence on the ground motion.
Along with the continuous increase of the distance between the centre of the crack
and the origin of the coordinates, the amplitudes of motion will decrease until this
distance reaches up to 100 times larger than the size of the crack. In comparison
with a subsurface cavity (Lee et al. 1999), the existence of a subsurface crack has
less influence on the ground motion.
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