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Reduced Form of the Green’s Functions for Disks where 
and Annular Rings f(rk,ak) = Y;(ak)J , ( rk) -  J;(ak)Y,(rk)  (3) 

Fayez A. Alhargan and Sunil R. Judah 

k 2  = O’WE 
Abstrncr -Available Green’s functions for circular and annular ring 

microstrip circuits involve doubly infinite series. These series are com- 
putationally expensive in terms of the time necessary for summing the 
series and the memory required to hold the eigenvalues. In this paper 
the Green’s function is simplified to a single series using a new single- 
summation method. The resulting single series eliminates the need for 
the eigenvalues and increases the speed of computation. 
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I.  INTRODUC~ION 

In the analysis of microstrip antennas of patch circuits the 
Green’s function is obtained using the modal expansion. This 
method gives rise to a doubly infinite series [l]. The mode 
matching method has also been used to obtain the impedance 
directly in a single series format; this method is applicable to 
ports around the periphery only. However, Carslaw [2] has used 
the result of Kneser [5] to show that the Green’s function for 
cylindrical coordinates can be analytically summed over the 
modes, reducing the Green’s function by one series. In this 
paper the Green’s function is simplified by a method different 
from that of [5]. Although there are a number of methods for 
obtaining this result, the method used here is direct in its 
approach. The Green’s functions for the circular disk and the 
annular ring are obtained in single series format and the two 
methods are compared for both accuracy and efficiency. 

0 n = o  n # O  

Note that no restriction is placed on n; it can be irrational, 
complex, etc. Now using Mittag-Leffler’s expansion theorem: 

m r 1  1 \  

F ( z ) = F ( O ) +  C R m  (5) 
m = l  

where p ,  is the mth pole of F ( z ) ,  and .Rm is the residue of 
F ( z )  at the mth pole. Now F J k )  has poles at k = * k , ,  and 
F,,(O) = 0. Therefore 

Hence 
11. GREEN’S FUNCTION FOR A CIRCULAR DISK 

The Green’s function for a circle of radius a is given by [l] 

But 

giving 

This can be simplified to 
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Multiplying through by jwpdmn cos n(4 - q50) and then sum- 
ming over n gives (2). For the special case r = ro=O, the 
Green’s function is given by 

G(074/0740) = ak2a2 + --J c 

As a proof of (15a), consider 

(16) 
5, + ~ k f (  rk , a k ) f (  rok , bk ) 

F A k )  = 4f’( b k ,  n k )  k ( b 2  - U‘) 
- j w p d  j w p d  1 

a < r < r 0 < b  
m = l  (k,2m-k2)J02(akOm) 

where which simplifies to 
f ’ ( b k , a k )  = Y i ( a k ) J i ( b k ) -  J,’(ak)YA(bk). (17) 

( lo)  In the same manner as above, F J k )  can be expandcd using 
Mittag-Leffler’s expansion theorem as follows. Fn( k )  has poles - 

As a proof of (lo), consider at k = f k , ,  and Fn(0) = 0. Hence 

a k Y d ( a k )  1 
F ( k )  = +-. 

4 J d ( a k )  a u k  

Now F ( k )  has poles at k = 
Mittag-Leffler’s expansion gives 

kom and F(0)  = 0. Therefore using 

where 

Subtracting from both sides l / ~ k a  and then multiplying by 
j w p d / a k  gives (10). 

111. GREEN’S FUNCTION FOR AN ANNULAR RING 

af’( b k ,  a k )  
(21) ak . f ” ( b k , a k )  = 

With some manipulation and the fact that 

1 ( x’ - n’) 
% x x )  (22) E’’( x )  = - - %’( x )  - ~ 

X X’ 

The Green’s function of an annular ring microstrip antenna of 

a r ,  4 / ro9  4 0 )  we have 

inner and outer radii a and b respectively is given by [ l ]  

Multiplying through by j u p d  cos rd4 - 4 J / a k  and then sum- 
ming over n gives (15a). This simplifies to 

IV. IMPEDANCE FORMULATION G( r ,  4 / ro 3 4 0 )  
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-( b2 - &)f2(bknm,ak,,)-  

Hence using the double series form, the impedance matrix 
elements are given as 

jwpdA,A ,  j o p d  
z = -  +-c c wu: 4 a  n = f j m = l  4~ k’a2 - 

2d,2dJ 

(26 )  
anJn(d,knm)Jn( d , k n m )  cos n+,, sin nA, sin nA, 

whereas the reduced form gives 

p p d  5 a,Jn( k d , ) f (  kd, ,  ku)  cos n( sin nb ,  sin nA, 
nW,nW, 
2d,2dJ 

z,, = - 
JL( k a )  ~ 

16 n = O  

O < d , g d , g a ,  d , # O  

where 

~ 

603 

- -  I / 

Number of Modes 

Fig. 1. 

The double-series form for the ring gives 

Timing for disk and ring. 

- j u p d  j o p d  anf’(bknm,akn,) 
Z 1 ’ = 4 k 2 a ( b 2 - u 2 )  +-c 4 a  n = O m = ,  c (k$ , , -k’ )  

nW 

A, =sin-’ (z)  4, = 4, - 4,. (x) cos n4,, sinc2 

’ [(b2-$-)f2(bknm,uknm)- 
In the above, it is assumed that the port connections are 
circular. 

The elements of the impedance matrix for a multiport annular 
ring are obtained in a similar manner, giving, for the double (32 )  
series form, 

and, for the single series form, 

i w d  z,, = - ’ 
16 
a,nf(d,k,uk)f(dJk,bk)cosn4,,sinnA,sinnAJ . E  nwnW (29)  

n = O  f’(bk,uk)- 
2d,2dJ 

U <  d ,  G d,  < b. 

For the case where the ports are around the periphery the 
equations can be simplified further as follows. The double-series 
form for the disk gives 

PW 
- j u p d  j u p d  

z,, = - +-c c 45rk’u2 4~ 

a, cos n4,, sinc2 (z) 

(30 )  

and the reduced form gives 

~~ ~ 

and the reduced form gives 

f n W \  

where 

W 
Ai z - 

26 

V. COMPARISON OF THE Two FORMS 
Comparison of the equivalence and time taken for the compu- 

tation of the two forms was carried out by simulating two 
junctions: (i) A 4-port rat race circular disk of radius 15 mm and 
(ii) a 4-port annular ring of outer and inner radii 15 mm and 
5 mm respectively. In both cases the ports widths were 4.4 mm 
and were positioned at O”, 90°, 135”, and 225”. The substrate was 
assumed to have a relative permittivity of E ,  = 2.5 and a height 
of 1.524 mm. 

The results are given for Z,, at a frequency of 4.5 (GHz). Fig. 
1 shows the time ratios (time taken by double series/time taken 
by reduced form) against the number of modes used for the 
annular ring and the circular disk. Fig. 2 shows the values of Z, ,  
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for the circular disk for both the double series and the reduced 
form and the discrepancy between them. Fig. 3 shows the values 
of Z,, for the annular ring for both the double series and the 
reduced form as well as the discrepancy between them. 

VI. CONCLUSION 

The Green’s functions for the circular disk and the annular 
ring have been reduced to single-series forms in a mathemati- 
cally direct manner, eliminating the need for the eigenvalues 
and, as a consequence, improving the speed and accuracy of the 
computation. 
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A Surface Integral Equation Method for the 
Finite Element Solution of Waveguide 

Discontinuity Problems 

Omar M. Ramahi and Raj Mittra 

Abstract -The surface integral equation method, which is typically 
employed in the finite element solution of open-region scattering proh- 
lems, has been applied in this paper to the solution of waveguide 
discontinuity problems. The major advantage offered by the surface 
integral equation approach over other available methods is that it allows 
the mesh-truncating boundaries to be brought as close to the discontinu- 
ity as possible, thus helping to reduce the size of the system matrix. In 
addition, unlike the mode matching technique, the surface integral 
equation formulation does not require the solution of any auxiliary 
matrix system. Numerical results are presented to illustrate the validity 
of the formulation. 

I. INTRODUCTION 
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When designing waveguide devices, it is often necessary to 
introduce discontinuities or loads that are used for different 
purposes such as phase shifting or power matching to a specific 
load or termination. The analysis of such waveguide junctions or 
discontinuities has traditionally been carried out using the 
mode-matching techniques and the integral equation method 
[ 11, [2]. However, when the discontinuities are irregularly shaped 
or involve inhomogeneous or anisotropic objects, the integral 
equation methods become quite laborious and difficult tc i apply. 
For such complex and irregularly shaped geometries, either the 
finite element or the finite difference method becomes the 
preferred choice. Additionally, the finite methods generate 
highly sparse and banded matrices which can be efficiently 
handled using special algorithms. 

When using the finite element (or the finite difference) method 
to solve boundary values problems such as waveguide disconti- 
nuities, two major consideration arise. First, it is always desir- 
able to bring the mesh-truncating boundary as close as possible 
to the discontinuity junction in order to reduce the nuniber of 
mesh points and, hence, the size of the associated matrix. 
Second, a boundary condition must be imposed on the turminal 
boundaries such that it accurately reflects the proper field 
behavior there. The task of devising an efficient solution proce- 
dure that accommodates the above two considerations is the 
principal subject of discussion in this paper. 

Conventionally, finite element formulations of the waceguide 
discontinuity problem are based upon the truncation of the 
finite element mesh region at a distance where the amplitudes 
of the evanescent modes become negligible, and then the impo- 
sition of a Dirichlet or a Neumann boundary condition (31, [41. 
Such construction offers the advantage of generating a sparse 
matrix system. In certain applications, such as the modeling of 
electromagnetic pulse simulators, the width of the simulator/ 
waveguide may range from a fraction of a wavelength to tens of 
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