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Abstract—Potential-based inverse electrocardiography is a
method for the noninvasive computation of epicardial potentials
from measured body surface electrocardiographic data. From
the computed epicardial potentials, epicardial electrograms and
isochrones (activation sequences), as well as repolarization pat-
terns can be constructed. We term this noninvasive procedure
Electrocardiographic Imaging (ECGI). The method of choice for
computing epicardial potentials has been the Boundary Element
Method (BEM) which requires meshing the heart and torso sur-
faces and optimizing the mesh, a very time-consuming operation
that requires manual editing. Moreover, it can introduce mesh-
related artifacts in the reconstructed epicardial images. Here we
introduce the application of a meshless method, the Method of
Fundamental Solutions (MFS) to ECGI. This new approach that
does not require meshing is evaluated on data from animal ex-
periments and human studies, and compared to BEM. Results
demonstrate similar accuracy, with the following advantages: 1.
Elimination of meshing and manual mesh optimization processes,
thereby enhancing automation and speeding the ECGI proce-
dure. 2. Elimination of mesh-induced artifacts. 3. Elimination
of complex singular integrals that must be carefully computed
in BEM. 4. Simpler implementation. These properties of MFS
enhance the practical application of ECGI as a clinical diagnostic
tool.

Keywords—Method of fundamental solutions (MFS), Electrocar-
diographic imaging (ECGI), Meshless method, Inverse problem,
Boundary element method (BEM), Electrocardiography, Cardiac
arrhythmia.

INTRODUCTION

Computation of potentials on the surface of the heart
from potentials measured on the body surface involves
solving Laplace’s equation in the source-free volume be-
tween the torso and heart surfaces. Several mathematical
and computational approaches were introduced to solve this
problem, known as the inverse problem of electrocardiogra-
phy in terms of potentials.3,29,71,80 Other approaches have
used a bi-domain model or a uniform dipole layer (UDL)
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to compute activation times (isochrones) on the heart sur-
face.28,43,58,60 Recently, both the potential-based approach
(for computing epicardial potentials, electrograms, and
isochrones) and the activation-time approach were applied
and evaluated in human subjects.28,33,47,49,57–60,65,67,77–79

Both methods require discretizing the heart and torso sur-
faces into continuous non-overlapping mesh elements, a
procedure called meshing. Meshing is difficult to apply to ir-
regular surfaces37 and can introduce mesh-related artifacts,
especially in the computation of solutions to the ill-posed76

electrocardiographic problem, if mesh optimization is not
carefully done. In most applications of inverse electrocar-
diography, the Boundary Element Method (BEM)5,12 was
used to solve Laplace’s equation.2,49,70 In this approach,
mesh optimization is the most time-consuming step and
requires manual intervention and editing. Importantly, this
formulation requires computation of complicated singular
integrals that require careful handling.1,36,73 In addition,
BEM often suffers from slow convergence due to the use
of low order polynomial approximations.36,63 These dif-
ficulties with the efficient implementation of BEM led us
to explore the possibility of applying a meshless method
to inverse electrocardiography, in the hope of overcoming
such mesh-related problems.

Meshless methods have been applied successfully in a
wide array of engineering and industrial application.26,41

Inverse electrocardiography is a 3D Cauchy problem for
the Laplace operator which has a very well behaved, an-
alytic fundamental solution.42 This property suggests the
Method of Fundamental Solutions (MFS)27 as the method
of choice for this problem among the family of meshless
methods.6 In MFS, the potential is expressed as summation
over a discrete set of virtual point sources placed outside the
domain of interest. A related approach31 used distributed
surface charge densities on actual boundaries as sources for
forward computation of potentials. This method required
dense meshing of the surfaces and evaluation of singular
integrals, procedures that are bypassed by MFS.

In this study, we formulate the use of MFS in inverse
electrocardiography and evaluate its performance. We test
this new method using data from animal experiments62 and

0090-6964/06/0800-1272/0 C© 2006 Biomedical Engineering Society

1272



Meshless Method for Inverse ECG 1273

human studies,49,67 and compare its performance to the
BEM-based approach that requires meshing. Human data
were processed using the potential-based method with geo-
metrical information (heart-torso geometry) obtained non-
invasively using CT imaging. All approaches to the non-
invasive reconstruction of cardiac electrical activity can be
referred to as cardiac electrophysiological imaging modal-
ities. The potential-based inverse electrocardiography is a
method for the noninvasive computation of epicardial po-
tentials from measured body surface electrocardiographic
data. From the computed epicardial potentials, epicardial
electrograms and isochrones (activation sequences), as well
as repolarization patterns can be constructed. We term
this noninvasive procedure Electrocardiographic Imaging
(ECGI). For clarity, we refer in the paper to MFS applica-
tion in ECGI as MFS ECGI, and its BEM version as BEM
ECGI.

METHODS

Formulating the Method of Fundamental Solutions
for ECGI

The method of fundamental solutions (MFS) has been
used in various mathematical and engineering applica-
tions to compute solutions of partial differential equations
(PDE).26,41 MFS approximates the solution of a PDE by
a linear combination of fundamental solutions of the gov-
erning partial differential operator,27 which for ECGI is the

Laplacian operator ∇2. The formulation of MFS for a∇2

boundary value problem and Cauchy problem is described
in the Appendix; its implementation in ECGI is described
below.

The objective of ECGI is to determine the electric po-
tential on the epicardial surface of the heart noninvasively,
from measurements of the electric potential on the torso
surface. This constitutes a Cauchy problem for Laplace’s
equation:42

∇2u(x) = 0, x ∈ � (1)

with the following boundary conditions:

(i) Dirichlet condition: u(x) = uT (x), x ∈ �T on
the torso surface

(ii) Neumann condition:
∂u(x)

∂n
= cT (x), x ∈ �T on

the torso surface

where � is the 3D volume domain between the heart’s
epicardial surface �E and the torso surface �T as shown
in Fig. 1. u(x) is the potential at location x; uT (x) and
cT (x) are the potential and its normal derivative on the
torso surface, respectively. The goal of ECGI is to obtain
the electric potential on the heart surface uE (x), x ∈ �E

MFS is an approach for solving numerically Laplace’s
equation. In MFS, an approximate solution is represented
in the form of a linear superposition of source functions
(fundamental solutions) located on a set of points (ficti-
tious points, virtual sources) over an auxiliary surface �̂

FIGURE 1. A schematic showing the configuration of fictitious points for a multi-connected domain. The dashed lines are the
auxiliary surfaces that contain the fictitious points (virtual sources) marked by black circles. The filled square is the geometrical
center of the “heart”, the empty triangle is located on the “heart surface” and the empty square on the “torso surface,” the two
black circles on their connecting line at the auxiliary surfaces are the corresponding virtual source points.
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(�̂ encloses the auxiliary domain �̂, which contains the
actual domain � as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain �. In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary �. Since the fun-
damental solutions do not have singularities at points on
the boundary �, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (‖xk − y j‖) = uT (xk),

1 ≤ k ≤ N , xk ∈ �T , y j ∈ �̂

(2)

Neumann condition :
M∑

j=1

a j
∂ f (‖xk−y j‖)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ �T , y j ∈ �̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ‖x − y‖ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. � is
the boundary of domain �, and �̂ is the auxiliary boundary
of the auxiliary domain �̂, which contains the domain � as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(� = �T ∪ �E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (�̂ = �̂T ∪ �̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface �̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary �̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Â�a = �b (4)

where, Â =





1 f (‖x1 − y1‖) · · · f (‖x1 − yM‖)
...

... · · · ...

1 f (‖xN − y1‖)
... f (‖xN − yM‖)

0
∂ f (‖x1 − y1‖)

∂n
· · · ∂ f (‖x1 − yM‖)

∂n
...

... · · · ...

0
∂ f (‖xN − y1‖)

∂n
· · · ∂ f (‖xN − yM‖)

∂n





,

�a =





a0

a1
...

aM



 , �b =





uT (x1)
...

uT (xN )
0
...
0





Matrix Â is of dimension 2N × (M + 1); �a and �b are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for �a without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain �a, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector �a is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (‖x − y j‖), x ∈ �, y j ∈ �̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (‖x − y j‖), x ∈ �E , y j ∈ �̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial



Meshless Method for Inverse ECG 1275

surface, is computed every millisecond during the cardiac
cycle. The time series of reconstructed epicardial potential
maps are then organized by location to provide temporal
electrograms for any given point on the epicardium. A re-
constructed epicardial electrogram provides the potential
variation with time at a given point on the epicardium dur-
ing the cardiac cycle. Epicardial isochrone maps (a map of
the epicardial activation sequence) are computed by taking
the time of maximum negative duE

dt of the temporal electro-
gram (“intrinsic deflection”) at a given location as the time
of epicardial activation at that location.

Experimental Methods and Protocols

MFS ECGI reconstructions were performed on data
from four studies: (i) Single-site pacing in an isolated ca-
nine heart suspended in a human torso-shaped tank; data
were obtained during pacing from a right ventricular (RV)
anterior epicardial location;62 (ii) RV endocardial pacing
in a patient undergoing bi-ventricular pacing for cardiac
resynchronization therapy (CRT); (iii) Simultaneous RV
endocardial pacing and left ventricular (LV) epicardial pac-
ing in a patient undergoing bi-ventricular pacing for CRT;
(iv) Normal atrial activation in a healthy human subject.65

Isolated Canine Hearts Suspended in a Human
Torso-Shaped Tank 62

The performance of MFS in ECGI was evaluated using
data from a human torso-shaped tank.62 The setup consisted
of an isolated canine heart suspended in a homogenous elec-
trolytic medium in the correct anatomical position inside a
tank molded in the shape of a ten-year old boy. The tank had
384 surface electrodes recording torso potentials and 242
rods with electrodes at their tips that formed an epicardial
recording envelope around the heart. The complete sets
of torso-surface potentials and epicardial potentials were
obtained by recording over several beats. The directly mea-
sured epicardial potentials by the rod-tip electrodes served
as a “gold standard” for MFS ECGI validation. The torso-
surface potentials provided the input data for MFS ECGI
noninvasive reconstruction of epicardial potentials, electro-
grams and isochrones, which were then evaluated by com-
parison with the directly measured “gold standard”. Details
were provided in previous ECGI publications.15,61,62,70

To simulate focal arrhythmogenic activity, the heart
was paced from an anterior epicardial location. The same
datasets were used in BEM ECGI and reported in previous
publications.62 Here, these datasets are used to evaluate
MFS ECGI and compare its performance to that of BEM
ECGI. The pacing protocol also provided a measure of
MFS ECGI spatial accuracy (its accuracy in locating the
known pacing site). After pacing, a quasi-elliptical region
of intense epicardial negativity forms around the pacing
site.61,62,70,74

Bi-Ventricular Pacing In Human Subjects 65

We also applied MFS ECGI to clinical data from patients
with an implanted bi-ventricular pacing device. For the bi-
ventricular pacing data, MFS ECGI accuracy in locating the
pacing sites was evaluated by comparison with the pacing
electrodes’ positions as determined from CT images. The
reconstructed activation pattern was evaluated based on the
known patterns of activation generated by pacing.

Data from two heart failure patients undergoing cardiac
resynchronization pacing therapy65 are presented. Subject
1 was paced from a right ventricular (RV) endocardial site,
close to the RV apex. Subject 2 was paced simultaneously
from an RV endocardial site and from a left ventricular (LV)
epicardial site. Body surface potentials were recorded with
a 224-channel mapping system using an electrode-vest as
previously described.65 Epicardial geometry and location
of the torso electrodes were obtained from CT images of
the thorax. The locations of the cardiac pacing leads were
also determined from these CT images.65

Normal Atrial Activation in a Healthy Human Subject 65

MFS ECGI was applied to reconstruct atrial activa-
tion in a healthy young adult. The same data were used
in BEM ECGI and reported in a previous study.65 The
atrial activation pattern was reconstructed from recorded
P-wave body surface potential maps with 224 channels,
together with a subject-specific torso and atrial geometry
obtained using CT. The directly measured normal atrial
activation pattern in isolated human hearts (Durrer et al.25),
was used for qualitative evaluation of the MFS ECGI
reconstruction.

Informed consent was obtained according to Institu-
tional Review Board guidelines at University Hospitals of
Cleveland, which approved all human studies protocols.

Evaluation Procedures

For the tank-torso protocols, measures in terms of rela-
tive error (RE) and correlation coefficients (CC) were com-
puted with respect to the measured data to quantitatively
evaluate the accuracy of ECGI; RE and CC were defined
previously.71 RE gives an estimate of the amplitude differ-
ence and CC gives an estimate of the similarity of potential
patterns or electrogram morphologies between the mea-
sured and computed data:

RE =
√√√√

∑L
i=1

(
V C

i − V M
i

)2

∑L
i=1

(
V M

i

)2

CC =
∑L

i=1

(
V M

i − V̄ M
)(

V C
i − V̄ C

)
√∑L

i=1

(
V M

i − V̄ M
)2

√∑L
i=1

(
V C

i − V̄ C
)2

For potential maps, L is the number of epicardial points
at which potentials are measured and computed. V C

i is



1276 Y. WANG AND Y. RUDY

the computed potential at epicardial point i, at a given
instant of time, and V M

i is the corresponding measured
potential. V̄ M and V̄ C are the spatial average of measured
and computed potentials respectively, averaged over all L
points.

For electrograms, L is the number of time frames for
which potential is measured and computed. V C

i is the
computed potential at time i , at a given epicardial lo-
cation, and V M

i is the corresponding measured poten-
tial. V̄ M and V̄ C are the temporal average of measured
and computed potentials respectively, averaged over all L
times.

In addition to CC and RE, pacing site localization er-
rors (distance between reconstructed and measured loca-
tions) were also computed for both torso-tank and human
reconstructions. The reconstructed pacing site location was
estimated by the center of an ellipse that best fits the quasi-
elliptical negative potential region that develops around the
pacing site.61,62,70 The earliest time frame after pacing, for
which such pattern was present, was used for this purpose.
Pacing sites could also be determined from isochrone maps
as the sites of earliest activation.

Qualitative evaluations of ECGI reconstructions are con-
ducted by visual comparison to measured data (torso-tank
experiments) and to well established potential, electrogram
and isochrone patterns associated with pacing and normal
atrial activation (human subjects).

RESULTS

Single Site Pacing in a Torso-Shaped Tank

Figure 2 shows epicardial potential maps for anterior
RV pacing, at a time 25 ms after pacing. There are 240
epicardial nodes, 386 torso nodes and 626 (240 + 386) vir-
tual source points in this dataset. The top row shows the
directly measured epicardial potential maps in four views.
The middle and bottom rows show MFS-reconstructed and
BEM-reconstructed epicardial potential maps, respectively.
The white asterisk in the anterior view marks the pacing site
location (top row) and its estimation from the reconstructed
epicardial potential maps in the middle and bottom rows.
The measured potentials display a central quasi-elliptical
negative region (blue) flanked by two positive regions (red,
maxima locations are marked by the white plus signs) as
expected in the anisotropic myocardium.62,74 This pattern
is captured by both BEM ECGI and MFS ECGI. However,
MFS ECGI provides a more accurate potential map pattern
than BEM ECGI. MFS ECGI locates the pacing site with an
error of 3 mm as compared to a 5 mm error for BEM ECGI.
CC (a measure of pattern similarity to the measured poten-
tials) is improved from 0.85 (BEM ECGI) to 0.92 (MFS
ECGI); RE (indicative of amplitude accuracy) is improved
from 0.97 (BEM ECGI) to 0.47 (MFS ECGI).

Figure 3 shows noninvasively reconstructed epicardial
electrograms (format described in figure legend) using MFS

FIGURE 2. Canine epicardial potential maps 25 ms after pacing from a single anterior site (indicated by the asterisk ∗). Top row
shows the directly measured epicardial potentials (four views) displaying the negative region (dark blue) around the pacing site,
and two flanking positive maxima (red). Middle row shows the noninvasively reconstructed potentials computed using MFS ECGI;
note close similarity of noninvasive and invasive data. Bottom row shows the reconstruction using BEM ECGI.



Meshless Method for Inverse ECG 1277

FIGURE 3. Canine epicardial electrograms (measured and computed using MFS ECGI) from selected locations on the heart surface
for pacing from the same single site as in Fig. 2 (indicated by the asterisk). (A) Four views of epicardial surface. Numbers identify
locations of the electrograms in the other panels. Measured (left column) and computed (right column) electrograms are compared
in B, C and D. Number on the bottom left of each panel identifies the electrogram location (corresponding to numbers in A).
(B) Monophasic (Q wave) electrograms from sites 1, 2 and 3. (C) Biphasic electrograms from sites 4, 5 and 6. (D) Monophasic
(R wave) electrograms from sites 7, 8 and 9. CC is the Correlation Coefficient between invasive and noninvasive electrograms,
indicating high level of similarity.

ECGI. Figure 3A shows four views of the heart surface.
Electrograms reconstructed at epicardial sites close to pac-
ing site (sites 1, 2, 3), at intermediate distance from the
pacing site (sites 4, 5, 6), and far way from the pacing site
(sites 7, 8, 9) are displayed. In panels B, C, and D, both mea-
sured and noninvasively computed electrograms using MFS
are displayed. Three main types of waveforms: monopha-
sic negative (B), biphasic (C), and monophasic positive
(D), are reconstructed. Notice the close resemblance (high
Correlation Coefficient, CC) of the noninvasively recon-

structed MFS ECGI electrograms to the measured electro-
grams. Compared with reconstructed electrograms using
BEM ECGI,62 MFS ECGI achieves better accuracy with
greatly reduced computation time. Figure 4 shows non-
invasively reconstructed epicardial isochrones using MFS
ECGI and BEM ECGI. Notice that the region of earliest
activation (red) is reproduced accurately in the computed
isochrones, as is the entire sequence of epicardial activation
(CC = 0.78). A similar epicardial isochrone map is recon-
structed by BEM ECGI (CC = 0.74). Based on Fig. 4, it
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FIGURE 4. Canine epicardial isochrone map for pacing from the same single site as in Fig. 2 (indicated by the asterisk). Top
row shows the directly measured isochrones (four views) displaying the anterior pacing site. Middle row shows the noninvasively
reconstructed isochrone map computed using MFS ECGI. Bottom row shows the noninvasively reconstructed isochrone map
computed using BEM ECGI.

appears that MFS reconstructs smoother isochrones than
BEM. A comparison of patterns shows closer similarity of
the MFS reconstruction to the measured data, suggesting
that the BEM reconstruction is somewhat under-regularized
with the chosen CRESO regularization parameter. Simi-
lar observations apply to the ECGI reconstructed potential
maps in Fig. 2.

RV Endocardial Pacing in a Human Subject

Figure 5 compares epicardial potential maps computed
with BEM ECGI and MFS ECGI in a human subject during
RV pacing (anterior view). There are 447 epicardial nodes,
115 torso nodes and 562 (447 + 115) virtual source points
in this dataset. The pacing site as determined from CT
images is marked by the white asterisk. Three reconstruc-
tions are compared: Left, BEM ECGI with an automatically
generated mesh; Middle, MFS ECGI; Right, BEM ECGI
with a manually optimized mesh. Panel A shows epicardial
potential maps during activation, 62 ms after pacing. The
negative region (dark blue) generated by unedited BEM
ECGI is fragmented, due to meshing artifacts. The three
negative regions could be interpreted erroneously as reflect-
ing three pacing sites. MFS ECGI effectively avoids such
fragmentation and reconstructs a quasi-elliptical negative

region, reflecting the single pacing site. After manual mesh
editing, fragmentation of the negative region is eliminated,
demonstrating that the fragmentation is mesh related. Panel
B of Fig. 5 shows a reconstructed epicardial potential map
for the same protocol during repolarization (205 ms after
pacing). As expected during pacing, the negative region
of activation in panel A is replaced by a positive region
(red).65,66 Similar to Panel A, fragmentation of the positive
region is observed for unedited BEM ECGI, but not for MFS
ECGI; it is eliminated from the BEM ECGI reconstruction
after manual mesh editing.

The error in locating the pacing site is 14 mm using
BEM ECGI (by fitting an ellipse over the three negative
regions in the automated mesh reconstruction), 8 mm using
BEM ECGI with the manually optimized mesh, and 5 mm
using MFS ECGI. In order to improve the unedited BEM
ECGI reconstruction result, several manual iterations of
mesh editing and optimization were required.

Simultaneous RV Endocardial and LV Epicardial Pacing

Figure 6 shows MFS ECGI reconstructions during si-
multaneous RV endocardial and LV epicardial pacing in a
patient undergoing bi-ventricular pacing for CRT. There are
437 epicardial nodes, 189 torso nodes and 626 (437 + 189)
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FIGURE 5. Panel A: Human epicardial potential map (anterior view) 62 ms after pacing from a single RV endocardial site (marked
by the asterisk). Left: BEM ECGI reconstruction with initial mesh (non-optimized), showing fragmentation of the negative region
(blue) caused by meshing artifact. Middle: MFS ECGI reconstructs a single continuous minimum (blue) associated with single-site
pacing. Right: BEM ECGI reconstruction with manually-edited mesh, showing that fragmentation is mesh related. Panel B: Human
epicardial potential map (anterior view) during repolarization for pacing from the same site (205 ms after pacing).

FIGURE 6. Human epicardial potential map and isochrone map for simultaneous RV and LV pacing (pacing sites marked by the
asterisks ∗; note that the left and posterior views show the same pacing site). Panel A shows the MFS ECGI reconstructed potential
map 40 ms after pacing (three partially overlapping views).Typical quasi-elliptic negative region (blue) surrounds each pacing site.
Panel B shows the corresponding MFS ECGI reconstructed isochrone map in the same format.
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virtual source points in this dataset. Panel A is an epicar-
dial potential map 40 ms after pacing, displayed in three
partially overlapping views. The asterisks mark the pacing
sites locations determined from CT images. Panel B shows
an epicardial isochrone map on the same views. From the
isochrone map, it is determined that epicardial activation
above the endocardial RV pacing site occurred 25 ms later
than epicardial activation around the epicardial LV pacing
site. Given that pacing from both leads was simultaneous,
the delay probably reflects, at least in part, endocardial to
epicardial wave front propagation in the RV ventricular
wall.

From both isochrone maps and potential maps the RV
pacing site and LV pacing site are located within 5.2 and
7.4 mm, respectively, of their locations as determined from
CT. This accuracy is similar to the results of BEM ECGI
after several iterations of mesh optimization.

Normal Human Atrial Activation

Figure 7 shows normal atrial activation isochrones re-
constructed by MFS ECGI for a healthy volunteer. There
are 322 atrial epicardial nodes, 228 torso nodes and 550
(322 + 228) virtual source points in this dataset. Earliest
activation starts in the right atrium (RA) between the aorta
and superior vena cava (SVC), near the anatomical loca-
tion of the sinoatrial node (SA node). From the SA node,
the impulse propagates radialy to the left atrium (LA) and
the rest of the RA (the black arrows show the propagation
pathway). The LA appendage (LAA) activates last. The
atrial isochrones by MFS ECGI are practically identical to
those reconstructed using BEM ECGI.2 Both reconstruc-
tions provide activation patterns that are very consistent
with directly measured atrial isochrones in normal isolated
human hearts.25

FIGURE 7. Normal human atrial activation isochrones recon-
structed with MFS ECGI. RA: Right Atrium; LA: Left Atrium;
LAA: Left Atrial Appendage; PV: Pulmonary Vein; SVC: Supe-
rior Vena Cava. Black arrows indicate direction of activation
spread.

DISCUSSION

In this paper we implement a meshless method, MFS,
for noninvasive ECGI and evaluate its accuracy and perfor-
mance. ECGI is formulated in terms of potentials, comput-
ing potentials on the epicardial surface of the heart from
electrocardiographic potentials measured on the body sur-
face.3,29,71,80 The existence of a well-behaved, analytic
fundamental solution for the Laplace operator in 3D42

makes MFS highly suitable for the ECGI application.
Being a potential-based scheme, ECGI reconstructs epi-

cardial potentials, from which electrograms and activation
sequences (isochrones) can also be computed. This ap-
proach is applicable not only during cardiac activation, but
provides images of repolarization as well.32 A different
approach to inverse electrocardiography has been to com-
pute directly the activation sequences on both epicardial
and endocardial surfaces of the heart.43,44,60 The potential-
based approach has also been used to reconstruct potentials
on the endocardial surface from a non-contact intracavitary
catheter.8,48,51,52,81 It should be noted that while for the
potential-based approach optimizing the mesh (a procedure
requiring manual editing) is the time-limiting step, for the
activation-based approach60 it is the inverse computation
which utilizes a nonlinear-optimization iterative scheme,
a complex time consuming process. Mesh related artifacts
mainly affect patterns of epicardial potential maps and mag-
nitudes of electrograms in the potential-based ECGI recon-
struction. The morphology of electrograms (from which
activation times are determined) and activation patterns
(isochrones) are minimally affected by mesh structure. This
suggests that the activation-time approach that only com-
putes isochrones is less sensitive to mesh properties.

Geometry and Torso Inhomogeneities

The importance to inverse electrocardiography of geom-
etry accuracy and of conductivity inhomogeneities in the
torso volume conductor (due to the lungs and other torso
compartments) has been evaluated extensively.20,45,46,71

Huiskamp and van Oosterom45 concluded that a tailored
accurate geometry is required for accurate ECGI inverse
computation. Other studies46,71 showed that although the
accuracy of reconstruction depends on accurate knowledge
of the geometry, small errors in geometry determination
(e.g. 1-cm shift error in heart position) can be tolerated by
ECGI without major deterioration of reconstruction quality.
A study using realistic human anatomy69 demonstrated that
a homogeneous model of the torso produced less accurate
epicardial potential magnitudes than an inhomogeneous
model, but epicardial potential patterns, electrogram mor-
phologies, isochrones, and locations of pacing sites were
reconstructed with comparable accuracy when the torso was
assumed homogenous. Independence of epicardial patterns
from torso volume-conductor properties was demonstrated
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experimentally as well.39 Based on results of these inhomo-
geneity studies, MFS ECGI is applied and tested here in a
homogeneous torso volume-conductor. However, if needed
the internal inhomogeneities can be included in BEM ECGI
by extending the transfer matrix A to include the bound-
aries of internal torso compartments.68 Similar to BEM, the
MFS approach can also be extended to a multi-compartment
volume-conductor. Malik54 has shown how MFS can be ap-
plied to a multi-dielectric media problem. For such multi-
compartment problem additional boundary conditions must
be satisfied, namely continuity of potential and normal com-
ponent of current at each inter-compartmental interface.64

Regional formulation of MFS for computation of electric
fields was developed in the early 90’s.9,10 Recently a do-
main decomposition method was combined with MFS for
solving the inhomogeneous multi-compartment problems.7

This approach can be applied to MFS ECGI in cases where
the effect of torso inhomogeneities is of interest.

Mesh-Related Considerations

MFS application in ECGI offers a meshless alternative to
boundary element (BEM) and finite element (FEM) meth-
ods27,75 that require meshing the heart and torso. Mesh
quality is well known to affect both the time and accu-
racy of numerical solutions to PDE-based applications.4 A
“bad” mesh structure that contains elements of non-uniform
area, non-uniform angle or non-uniform aspect ratio, can
introduce serious artifacts in the numerical computation.
This is especially true for the ECGI application, because
the ill-posed inverse computation76 that is involved tends
to amplify such mesh related numerical errors (Fig. 5).
Non-uniform mesh elements are difficult to avoid in mesh-
ing complex surfaces including the heart, especially in the
presence of structural disease. Efficient methods for mesh
optimization are the topic of ongoing research.4,13,30 For
ECGI applications, it is difficult to define general crite-
ria for automated optimal mesh generation because the
mesh related artifacts are influenced by the ill-posed in-
verse computation. BEM ECGI usually requires several
time-consuming manual iterations for mesh optimization
(we use a constant potential field as a calibration dataset for
this purpose). Even after an optimized mesh is constructed,
BEM requires manipulation of the 3D surface mesh and
computation of a complicated singular surface integral over
each mesh element. Being a meshless method, MFS ECGI
bypasses these procedures.

Figure 5 demonstrates that fragmentation of recon-
structed epicardial potentials is mesh dependent. Several it-
erations of manual editing improved the mesh and removed
fragmentation, resulting in a less fragmented and smoother
reconstruction. However, mesh-related artifacts were still
present after editing (Fig. 5, right panel), indicating that
even several iterations did not result in an optimal mesh.
Based on our experience, obtaining a fully optimized mesh

that eliminates all artifacts is a very difficult and time con-
suming process. MFS ECGI does not require meshing and
mesh optimization, avoiding this time consuming manual
step that can introduce artifacts in the reconstructed images.
It is possible that different regularization schemes8,14,34,40

than the ones employed here could provide better accuracy
with an unedited mesh, or that better mesh generation al-
gorithms optimized for ECGI could be developed. These
possibilities remain to be investigated in future studies.

As shown in Eq. (3), normal vectors are required for the
MFS computation. In the results shown here, normal vec-
tors are constructed using the initial unedited mesh, which
is generated very quickly by Amira (TGS Template Graph-
ics Software, Inc.) without mesh editing. This may create
the impression that MFS is not completely meshfree. The
field of meshless approaches is progressing rapidly, includ-
ing meshless methods for determining normal directions
for given surfaces. For example, the Radial Basis Func-
tions (RBF) method17,18 obtains the 3D surface representa-
tion and computes analytically the surface normal/tangent
vectors without forming a mesh. Figure 8 compares MFS
ECGI reconstructions (potential maps and electrograms)
with mesh-generated normal vectors and with meshless
normal vectors obtained using RBF. Panels A and B show
the reconstructed potential maps during depolarization and
repolarization, respectivcely. Panel C shows reconstructed
electrograms from selected epicardial locations. Both meth-
ods produce very similar results. In addition, point-based
rendering methods are also emerging very quickly,72 allow-
ing for direct rendering of the surface without the creation
of a polygonal mesh representation.

Morphing a template mesh of a stylized heart could be
an effective approach for creating a patient-specific mesh
in BEM ECGI. However, it requires evaluation in this con-
text. One of the major concerns regarding application of
morphing is that many hearts that can benefit from clinical
ECGI have pathologies that modify greatly the heart geom-
etry (e.g. dilation, presence of diverticuli or anneurisms).
Such localized structural deformations cause large devia-
tions from the anatomy of a template heart. Our laboratory
uses Amira to obtain the initial surface mesh for such dis-
eased hearts. The initial mesh requires manual editing to
obtain an improved mesh structure for reduction of mesh-
related artifacts.

For a given problem, the condition number of the Â ma-
trix in MFS is usually larger than that of the forward matrix
in BEM. For the torso-tank data in this study, the condi-
tion number is 2.3516e + 014 for BEM, and 9.1934e + 016
for MFS; however better accuracy is obtained with MFS.
Several studies by others11,37,38 have suggested that the nu-
merical accuracy of MFS is only minimally affected by the
condition properties of the matrix. Recent work by Chris-
tiansen and Saranen23 and Christiansen and Hansen22 also
suggests that the condition number as commonly defined
is not an appropriate measure of numerical stability. Better
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FIGURE 8. Comparison of MFS ECGI reconstructions with mesh-based and meshless normal vectors. Panel A: Human epicardial
potential map (anterior view) 62 ms after pacing from a single RV endocardial site (marked by the asterisk). Left: MFS ECGI
reconstruction with normal vectors computed using a mesh. Right: MFS ECGI reconstruction with normal vectors computed
without a mesh, using Radial Basis Function (RBF). Panel B: Human epicardial potential map (anterior view) during repolarization
for pacing from the same site (205 ms after pacing). Same format as Panel A. Panel C: Human epicardial electrograms from selected
locations on the heart surface for the same pacing dataset. Red traces show the MFS ECGI reconstruction with mesh-based normal
vectors. Blue traces show the MFS ECGI reconstruction with meshless normal vectors computed using RBF.

accuracy with a larger condition number was also obtained
when a second order BEM scheme was applied in ECGI
reconstruction.35

A possible advantage of BEM ECGI is that the torso
geometry can be constructed with greater precision than
that delineated by the electrodes. Consequently, the transfer
matrix can be computed with greater accuracy. Such aug-
mentation can not be implemented in MFS ECGI. However,
since the zero Neumann condition (no current flow across
the torso-air boundary) is valid on the entire torso surface,

Neumann conditions at more torso locations (Eq. (3)) can
be added in the MFS ECGI formulation (Eq. (4)). We ex-
amined the benefit of doing so and results (not shown)
show similar or only slightly improved electrograms and
potential maps as judged by CC and RE values.

Placement of Virtual Source Points

Implementation of MFS requires choosing a fictitious
boundary for placing the virtual source points. There are
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FIGURE 9. Panel A: Radial Basis Function (RBF) representation of the atrial surface in Fig. 7 and corresponding inflated/deflated
surfaces. The RBF function grid values are shown on three orthogonal planes: x = 60 (mm), y = 90 (mm), and z = 30 (mm). The
original boundary is represented by the isosurface with RBF = 0(mm). Since the positive normal direction is chosen inward,
deflated surfaces are represented by isosurfaces with RBF>0 and inflated surfaces by the isosurfaces with RBF<0. Panel B: A
deflated atrial surface obtained by selecting RBF = 5 (mm). Blue circles represent the original boundary points, and red circles
represent the deflated surface points; all red circles are enclosed by the 3D surface defined by the blue circles.

two widely used approaches for doing so, the dynamic and
static methods.37 In the dynamic configuration, the ficti-
tious boundary is determined together with the solution50

via a complex, time-consuming nonlinear optimization pro-
cedure which does not always guarantee global conver-
gence. In the static configuration, the fictitious boundary is
pre-selected corresponding to the real boundary based on
some fixed (static) rules (criteria), for example the inflation-
deflation rule used here. For different patients’ geometries,

the corresponding fictitious boundaries that are generated
by the static rule are different. The static method is not
the optimal implementation of MFS, but it is very easy to
implement and highly suitable for practical engineering ap-
plications. Very good accuracy has been obtained using the
static method in engineering and industrial applications of
MFS,41 including the application presented here. Optimal
placement of the virtual source points poses a difficulty
for MFS implementation. However, much faster and more



1284 Y. WANG AND Y. RUDY

efficient nonlinear optimization schemes28 are under devel-
opment, which could facilitate use of the dynamic method
in MFS ECGI.

The “inflation-deflation” procedure used in our recon-
structions was designed and tested using data from the
human-shaped torso-tank experiments,62 where directly
measured epicardial potentials provided a gold standard
for evaluation. Because the heart surface is globally con-
vex, the “inflation-deflation” procedure works well for most
heart geometries. In the presence of structural heart disease,
the heart surface could contain concave regions. For such
geometry, static inflation or deflation relative to a fixed
point may place some fictitious points in the domain of
interest. In these cases, special care is needed to insure that
all fictitious points lie outside the domain of interest. An
alternative approach is to employ a more general “inflation-
deflation” procedure, which does not inflate or deflate the
boundary relative to a fixed point and insures that the vir-
tual source points are placed outside the domain of interest.
For example, in the FastRBF toolbox,17,18 inflation and
deflation are achieved by computing isosurfaces based on
the distance from the actual boundary, which insures that
the fictitious nodes are placed outside the domain for all
types of heart geometry. This method is demonstrated in
panel A of Fig. 9 for the complex geometry of the atria in
Fig. 7. A 3D Radial Basis Function (RBF)17,18 computes
a signed distance from the actual object’s surface. If the
normal direction is inward, points inside the object have
positive distances (red) while points outside have negative
distances (green-blue). The object’s surface is defined as
the zero set of the function (yellow). In Panel A, the RBF
function grid values are shown on three orthogonal planes:
x = 60 (mm), y = 90 (mm), and z = 30 (mm). By setting dif-
ferent RBF values, different inflated (or deflated) surfaces
of the atria can be obtained. Panel B of Fig. 9 shows an
inflated atria surface obtained by selecting RBF = 5(mm).
This figure demonstrates that this more general procedure
can be used for complex heart geometry such as the atria in
this example, or ventricles with irregular geometry due to
disease (e.g. diverticuli or aneurisms).

Determination of the optimal position of the fictitious
nodes relative to the actual boundary is a difficult problem
that is the subject of ongoing research.37 For noise-free
boundary conditions, Golberg and Chen37 have shown that
the accuracy of MFS improves when the fictitious nodes
are moved far away from the actual boundary. However,
for noisy boundary conditions that always exist in actual
engineering applications, Mera55 has found that accuracy
deteriorates when the fictitious points are placed too close
or too far from the actual boundary. If the fictitious points
(singularities) are placed too close to the actual boundary,
MFS will have to evaluate nearly-singular matrix elements
( f (r ) = 1

4πr and ∂ f (r )
∂n ) during formation of the matrix Â

(Eq. (4)). If the fictitious points are placed too far from the
actual boundary, the rows in the top half of matrix Â become

very similar to each other, as do the rows in the bottom half;
this increases the singularity of the matrix. We used several
datasets from the human-shaped torso-tank experiments,62

to evaluate the dependence of accuracy on the positions
of fictitious nodes. The most accurate reconstructions were
obtained for deflating by a factor in the range 0.6 to 0.9
and inflating by a factor in the range 1.1–1.5 (within these
ranges, accuracy did not depend significantly on the exact
parameter value). Based on this empirical observation in a
realistic human-shaped heart-torso geometry, we chose 0.8
as the deflating parameter and 1.2 as the inflating parameter
for all studies presented here.

With this simple “inflation-deflation” scheme, the num-
ber of fictitious points is chosen based on practical consid-
erations to be equal to the number of actual boundary nodes.
This is a simple choice employed in this paper, and is not a
requirement of the MFS method. Mera55 has shown that the
accuracy of inverse computation using MFS for a backward
heat conduction problem improved with increasing number
of fictitious nodes. He also found that the accuracy did
not improve once the number of fictitious nodes exceeded
a certain limit. Since very good reconstruction accuracy
was obtained here with the number of fictitious nodes set
equal to the number of boundary nodes, we did not attempt
to increase this number. It is possible that the number of
fictitious nodes could be reduced without significant loss of
accuracy as suggested by Mera.55 Systematic evaluation is
needed to determine the optimal number of fictitious points
in the context of ECGI.

APPENDIX: FORMULATION OF MFS FOR
LAPLACIAN OPERATOR

MFS has evolved from traditional boundary integral
methods. Without forming a mesh, MFS uses a set of points
to solve numerically partial differential equations. Details
of this method can be found in the review article.37 The
following Dirichlet boundary value problem is used to de-
scribe the theoretical formulation of MFS for the Laplacian
operator:

∇2u(x) = 0, x ∈ � (a1)

u(x) = b(x), x ∈ �, � = ∂� (a2)

where ∇2 is the Laplace differential operator with a known
fundamental solution f (r ) in 3D space. u(x) is a potential
function in a source-free domain � and b(x) is the Dirichlet
boundary condition. According to the definition of funda-
mental solution,27 the fundamental solution of the Laplace
operator can be obtained by solving the following equation
for f (r ):

∇2 f (r ) = δ(r ) (a3)

where δ(r ) is the delta function, r = ‖x − y‖ is the 3D
Euclidean distance between point x and point y, x, y ∈ �.
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f (r ) in two dimensions (2D) and three dimensions (3D)
is:53

f (r ) =






− 1

2π
ln r, 2D

1

4πr
, 3D

(a4)

Both BEM and MFS use the same Green’s function f (r ) =
1

4πr in 3D space. However BEM integrates this function
locally over elements of the real surface and requires com-
putation of complex singular integrals. By placing the fic-
titious source points outside the domain of interest, MFS
employs global integration and avoids the need to compute
complex singular integrals.

The traditional boundary integral approach is to rep-
resent the solution u(x) in term of a double layer poten-
tial:36,63

u(x) =
∫

�

∂ f (‖x − y‖)

∂n
e(y)dy, x ∈ �, y ∈ � (a5)

where, n is the outward pointing normal at point y, e(y) is
an unknown density function. Equivalently a single layer
potential representation of u(x) can be used19,36

u(x) =
∫

�

f (‖x − y‖) e(y) dy, x ∈ �, y ∈ � (a6)

The source density distribution e(y) can be determined
by solving the following equation under the assumption of
a double layer:

∫

�

∂ f (‖x − y‖)

∂n
e(y) dy = b(x), x ∈ �, y ∈ �

(a7)
or under the assumption of a single layer:

∫

�

f (‖x − y‖) e(y) dy = b(x), x ∈ �, y ∈ � (a8)

However, singular integrals are involved in both cases.
To alleviate this difficulty, the following formulation, sim-
ilar to the single layer potential in (a6), has been used:50

u(x) =
∫

�̂

f (‖x − y‖) e(y) dy, x ∈ �, y ∈ �̂ (a9)

where the auxiliary boundary �̂ is the surface of the auxil-
iary domain �̂ containing the domain � (Fig. 1).

Two different approaches for selecting �̂ and its ficti-
tious source points y are described in the literature:36 static
configuration and dynamic configuration. In static configu-
ration, the fictitious boundaries are fixed and pre-selected.
The method is easy to implement and use in practical appli-
cations. For dynamic configuration, the location of fictitious
boundaries is determined together with the solution50 by
a complex, time-consuming nonlinear optimization proce-
dure, which greatly limits its practical application. Since
the geometry of the 3D domain between the torso surface
and the heart surface is similar for all humans, the static
approach is the method of choice for ECGI application.

Because f (‖x − y‖) is the fundamental solution of the
Laplace operator [Eq. (a3)], (a9) satisfies the differential
Eq. (a1). Therefore we need only to apply the boundary
condition (a2):

∫

�̂

f (‖x − y‖) e(y) dy = b(x), x ∈ �, y ∈ �̂

(a10)
where the source density distribution e(y), y ∈ �̂, is to be
determined. Once the source density is determined, Eq. (a1)
subject to (a2) is solved. The analytic integral representation
of (a10) implies that there is an infinite number of source
density points on �̂. In order to apply numerical methods
to the solution, it is necessary to discretize e(y). Assume
ψi (y), i = 1, 2, . . . ∞ is a complete set of functions on �̂,
e(y) can be approximated by:

e(y) =
∞∑

i=1

ciψi (y), y ∈ �̂ (a11)

Substituting (a11) into (a10) and satisfying the bound-
ary conditions at the N boundary points xk ∈ �, k =
1, 2, . . . N ; we have

∞∑

i=1

ci

∫

�̂

f (‖xk − y‖) ψi (y) dy = b(xk),

1 ≤ k ≤ N , y ∈ �̂ (a12)

Since the fictitious boundary �̂ is located outside the
physical domain (Fig. 1), the integrand f (‖xk − y‖) is
nonsingular and standard quadrature rules can be applied
giving

∫

�̂

f (‖xk − y‖)ψi (y) dy ≈
M∑

j=1

w j f (‖xk − y j‖)ψi (y j ),

y j ∈ �̂, j = 1, 2, . . . , M (a13)

where w j is a weight factor and M is the number of fictitious
nodes on the fictitious boundary �̂.37

From (a12) and (a13), we obtain:

∞∑

i=1

ci

M∑

j=1

w j f (‖xk − y j‖)ψi (y j )

=
M∑

j=1

w j

[ ∞∑

i=1

ciψi (y j )

]
f (‖xk − y j‖) = b(xk),

1 ≤ k ≤ N . (a14)

Then:

M∑

j=1

a j f (‖xk − y j‖) = b(xk), 1 ≤ k ≤ N . (a15)
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where:

a j = w j

∞∑

i=1

ciψi (y j ) (a16)

For completeness,11 a constant a0 is added to (a15):

a0 +
M∑

j=1

a j f (‖xk − y j‖) = b(xk), 1 ≤ k ≤ N . (a17)

After Eq. (a17) is solved for a0 and a j ( j = 1, 2, . . . , M),
the solution to (a1) can be approximated by:

ua(x) = a0 +
M∑

j=1

a j f (‖x − y j‖), x ∈ �, y j ∈ �̂

(a18)

The approximate solution ua to Eq. (a1) is represented by
a linear combination of fundamental solutions of the gov-
erning equation with the singularities y j , j = 1, 2, . . . , M
placed outside the domain of the problem.

MFS is applicable not only to the above boundary value
problem, but also to the Cauchy problem42 that underlies
ECGI. In this problem, both Dirichlet and Neumann bound-
ary conditions are given only on portion of the boundary:42

∇2u(x) = 0, x ∈ � (a1)

Dirichlet conditions : u(x) = b(x), x ∈ �1,

�1 ⊂ � = ∂� (a19)

Neumann conditions :
∂

∂n
u(x) = i(x), x ∈ �1,

�1 ⊂ � = ∂� (a20)

For the Neumann condition (a20), the gradient at point
x is along the outward normal to the boundary at that point.
Similar to Eq. (a17), MFS can be used to discretize the
Dirichlet and Neumann boundary conditions (Eqs. (a19)
and (a20)) as follows:

a0 +
M∑

j=1

a j f (‖xk − y j‖) = b(xk), xk ∈ �1,

k = 1, 2, . . . , N , y j ∈ �̂. (a21)

M∑

j=1

a j
∂

∂n
f (‖xk − y j‖) = i(xk), xk ∈ �1,

k = 1, 2, . . . , N , y j ∈ �̂. (a22)

After solving for the coefficients (a0, a j , j =
1, 2, . . . , M), subject to the boundary conditions (a19)
and (a20), the solution to (a1) can be approximated using
Eq. (a18).

Convergence analysis of MFS for Laplace’s equation
was conducted by Cheng.21 When the problem boundary
and boundary conditions are smooth functions, MFS con-
verges exponentially to the solution of the problem. This
analysis was conducted for 2D; Golberg and Chen36 pro-
vided arguments that similar convergence properties exist
in 3D.
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