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Abstract

In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading
problem of prismatic beams of arbitrary simply or multiply connected cross section. The analysis of the beam is accomplished with
respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal ones.
The transverse shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. A
boundary value problem is formulated with respect to a warping function and solved employing a pure BEM approach requiring only a
boundary discretization. The evaluation of the transverse shear stresses at any interior point is accomplished by direct differentiation of
this function, while the coordinates of the shear center are obtained from this function using only boundary integration. The shear defor-
mation coefficients are obtained from the solution of two boundary value problems with respect to warping functions appropriately aris-
ing from the aforementioned one, using again only boundary integration. Numerical examples are worked out to illustrate the efficiency,
the accuracy and the range of applications of the developed method. The accuracy of both the thin tube theory and the engineering beam
theory is examined through examples of practical interest.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of a prismatic beam subjected in shear tor-
sionless loading has been widely studied from both the ana-
lytical and numerical point of view. Theoretical discussions
concerning flexural shear stresses [1], or the problem of the
center of shear [1,2] and text books giving detailed repre-
sentations of these topics [3,4] are mentioned among the
extended analytical studies. In all these studies which pres-
ent a stress function formulation either the employed stress

function is split into a primary part independent of the
beam material describing the beam equilibrium and a sec-
ondary one dependent on the Poisson’s ratio satisfying
compatibility equations or the governing differential equa-
tion is split into two parts representing shear and torsion
problems. Moreover, these studies are limited in the analy-
sis based on the principal cross section system of axes.

Numerical methods have also been used for the analysis
of the aforementioned problem. Among these methods the
majority of researchers have employed the finite element
method. Mason and Herrmann [5] based on assumptions
for the displacement field and exploiting the principle of
minimum potential energy developed triangular finite ele-
ments for a beam of arbitrary cross section and isotropic
material subjected to bending. This method using triangu-
lar or quadrilateral finite elements has also been used for
beams with orthotropic material [6] or anisotropic material
[7]. Later, a finite element solution for the evaluation of the
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shear stresses [8,9] and the shear deformation coefficients
[10] was developed formulating all basic equations to an
arbitrary coordinate system, using isoparametric element
functions and introducing a stress function which fulfils
the equilibrium equations.

Moreover, boundary integral methods seem to be an
alternative powerful tool for the solution of the aforemen-
tioned problem, having in mind that finite element methods
require the whole cross section to be discretized into area
elements and are also limited with respect to the shape (dis-
tortion) of the elements. BEM solutions require only
boundary discretization, while a small number of boundary
elements are required to achieve high accuracy. The bound-
ary element procedure was first employed by Sauer [11] for
the shear stresses calculation based on Weber analysis [1]
and neglecting Poisson’s ratio. BEM was also used for
the calculation of the shear center location in an arbitrary
cross section by Chou [12] and for the presentation of a
solution to the general flexure problem in an isotropic only
simply connected arbitrary cross section beam by Fried-
man and Kosmatka [13]. In this research effort the analysis
is accomplished with respect only to the principal bending
axes of the cross section restricting in this way its general-
ity. Finally, Sapountzakis and Mokos in [14] and Mokos
and Sapountzakis in [15] presented a stress function solu-
tion employing the BEM for the general transverse shear
loading problem of homogeneous and composite prismatic
beams of arbitrary cross section, respectively.

In this paper the boundary element method is employed
to develop a displacement solution for the general trans-
verse shear loading problem in prismatic beams of arbi-
trary simply or multiply connected cross section. The
formulation of the problem follows the displacement field
adopted in the FEM solutions presented in [8,9,16]. The
shear loading is applied at the shear center of the cross sec-
tion, avoiding in this way the induction of a twisting
moment. A boundary value problem is formulated with
respect to a warping function and solved employing a pure
BEM approach requiring only a boundary discretization.
The evaluation of the transverse shear stresses at any inte-
rior point is accomplished by direct differentiation of this
function, while the coordinates of the shear center are
obtained from this function using only boundary integra-
tion. The shear deformation coefficients are obtained from
the solution of two boundary value problems with respect
to warping functions appropriately arising from the afore-
mentioned one, using again only boundary integration.
The essential features and novel aspects of the present for-
mulation compared with previous ones are summarized as
follows.

(i) The proposed displacement solution constitutes the
first step to the solution of the nonuniform shear
problem avoiding the use of stress functions.

(ii) All basic equations are formulated with respect to an
arbitrary coordinate system, which is not restricted to
the principal axes one.

(iii) The shear deformation coefficients are evaluated
using an energy approach [17] instead of Timo-
shenko’s [3] and Cowper’s [18] definitions, for which
several authors [19,20] have pointed out that one
obtains unsatisfactory results or definitions given by
other researchers, for which these factors take nega-
tive values.

(iv) The present formulation is also applicable to multiple
connected domains without fulfillment of further
constraints.

(v) The developed procedure retains the advantages of a
BEM solution over a pure domain discretization
method.

Numerical examples are worked out to illustrate the effi-
ciency, the accuracy and the range of applications of the
developed method. The accuracy of both the thin tube the-
ory and the engineering beam theory is examined through
examples of practical interest.

2. Statement of the problem

Consider a prismatic beam of length L with a cross sec-
tion of arbitrary shape, occupying the two dimensional
multiply connected region X of the y, z plane bounded by
the K + 1 curves C1, C2, . . . ,CK, CK + 1, as shown in
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Fig. 1. Prismatic beam subjected to torsionless bending (a) with a cross-
section of arbitrary shape occupying the two dimensional region X (b).
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Fig. 1. These boundary curves are piecewise smooth, i.e.
they may have a finite number of corners. The material
of the beam, with shear modulus G and Poisson’s ratio l
is assumed homogeneous, isotropic and linearly elastic.
Without loss of generality, it may be assumed that the
beam end with centroid at point C is fixed, while the x-axis
of the coordinate system is the line joining the centroids of
the cross sections.

When the beam is subjected to torsionless bending aris-
ing from a concentrated load Q having as Qy, Qz its com-
ponents along y and z axes, respectively, applied at the
shear center S of its free end cross section, the displacement
components in the x, y and z directions are approximated
as

u ¼ � owðxÞ
ox
� z� ovðxÞ

ox
y þ ucðy; zÞ;

v ¼ vðxÞ; w ¼ wðxÞ ð1a; b; cÞ

where uc(y, z) is the warping function due to shear with re-
spect to the centroid C of the cross section. From the above
definition, it follows that this function is a parameter of the
cross section assuming it independent of its x coordinate.
However, in a more refined model the influence of this
coordinate may also be considered.

Employing the strain – displacement equations of the
three-dimensional elasticity the following nonzero strain
components can be easily obtained

ex ¼ �
o2w
ox2

z� o2v
ox2

y; exy ¼
1

2

ouc

oy
;

exz ¼
1

2

ouc

oz
ð2a; b; cÞ

while the resulting from three-dimensional elasticity stress
components in the region X are given as

rx ¼ �
ð1� lÞE

ð1þ lÞð1� 2lÞ
o

2w
ox2

zþ o
2v

ox2
y

� �
; ð3aÞ

sxy ¼ G
ouc

oy
; sxz ¼ G

ouc

oz
ð3b; cÞ

after setting equal to zero the rest of them ry, rz and syz,
according to the beam theory. Applying the stress compo-
nents (3) in the first elasticity equation of equilibrium
neglecting the body forces

orx

ox
þ osxy

oy
þ osxz

oz
¼ 0 ð4Þ

we obtain the following relation

o
2uc

oy2
þ o

2uc

oz2
¼ ð1� lÞ
ð1þ lÞð1� 2lÞ

E
G

o
3w

ox3
zþ o

3v
ox3

y
� �

ð5Þ

while the last two elasticity equations of equilibrium are
identically satisfied. Substituting Eq. (3a) into the well
known relations

My ¼
Z

X
rxz � dX; Mz ¼ �

Z
X

rxy � dX ð6a; bÞ

we obtain the expressions for the bending moments as

My ¼ �
ð1� lÞE

ð1þ lÞð1� 2lÞ
o2w
ox2
� Iy þ

o2v
ox2
� Iyz

� �
ð7aÞ

Mz ¼
ð1� lÞE

ð1þ lÞð1� 2lÞ
o

2v
ox2
� Iz þ

o
2w

ox2
� Iyz

� �
ð7bÞ

where

Iy ¼
Z

X
z2dX; Iz ¼

Z
X

y2 dX; Iyz ¼
Z

X
yzdX ð8a; b; cÞ

are the moments of inertia of the cross section with respect
to y and z axes, respectively and its product of inertia. Dif-
ferentiating these relations with respect to x we come to the
expressions for the shear forces as

Qz ¼
oMy

ox
¼ � ð1� lÞE
ð1þ lÞð1� 2lÞ

o3w
ox3
� Iy þ

o3v
ox3
� Iyz

� �
ð9aÞ

Qy ¼ �
oMz

ox
¼ � ð1� lÞE
ð1þ lÞð1� 2lÞ

o
3v

ox3
� Iz þ

o
3w

ox3
� Iyz

� �
ð9bÞ

Eq. (5), after eliminating the third derivatives of the deflec-
tions w000, v000 with respect to x employing Eqs. (9a,b), can be
written as

r2ucðy; zÞ ¼
o2uc

oy2
þ o2uc

oz2

¼ �
½ðQzIz � QyIyzÞzþ ðQyIy � QzIyzÞy�

GðIyIz � I2
yzÞ

ð10Þ

The boundary condition of the aforementioned warping
function with respect to the cross section’s centroid C is de-
rived from the physical consideration that the traction vec-
tor in the direction of the normal vector n vanishes on the
free prismatic surface of the beam, that is

sxn ¼ sxyny þ sxznz ¼ 0 ð11Þ

where ny = cosb, nz = sinb (with b ¼ ŷ; n as shown in
Fig. 1b) are the direction cosines of the normal vector n
to the boundary C. Substituting Eq. (3b,c) in Eq. (11),
the Neumann type boundary condition for the warping
function can be written as

ouc

on
¼ 0; on C ¼

[Kþ1

j¼1

Cj ð12Þ

where o/on � nyo/oy + nzo/oz denotes the directional deriv-
ative normal to the boundary C. It is worth here noting
that the evaluated warping function uc due to the solution
of the Neumann problem contains an integration constant
c (parallel displacement of the cross section along the beam
axis), which can be obtained from the request thatZ

X

�ucdX ¼ 0 ð13Þ

as

c ¼ � 1

A

Z
X

ucdX ð14Þ
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and the main warping function �uc is given as

�uc ¼ uc þ c ð15Þ

Obviously, after the evaluation of this constant the dis-
placement component of Eq. (1a)–(c) should be modified
appropriately.

Finally, Eq. (3a), after eliminating the second derivatives
of the deflections w00, v00 with respect to x employing the
integrated Eqs. (9a,b), can be written as

rx ¼ �
½ðQzIz � QyIyzÞzþ ðQyIy � QzIyzÞy�ðL� xÞ

ðIyI z � I2
yzÞ

ð16Þ

Having in mind that the shear center S is defined as the
point of the cross section at which the torsional moment
arising from the transverse shear stress distribution van-
ishes, the coordinates {yS, zS} of this point with respect
to the system of axes with origin the cross section centroid
can be derived from the condition

ySQz � zSQy ¼
Z

X
ðsxzy � sxyzÞdX ð17Þ

For Qy = 0, after substituting Eq. (3b,c) in Eq. (17), the yS

coordinate of the shear center S can be obtained from

yS ¼ G
Z

X
y
oucy

oz
� z

oucy

oy

� �
dX ð18Þ

while for Qz = 0 the zS coordinate is given as

zS ¼ G
Z

X
y
oucz

oz
� z

oucz

oy

� �
dX ð19Þ

Eqs. (18) and (19) declare that the {yS,zS} coordinates of
the shear center S are independent from shear loading.
Moreover, it can be shown that in the case of zero Pois-
son’s ratio, the coordinates of the shear center S and the
center of twist M coincide, that is

yS ¼ yM ; zS ¼ zM ð20a; bÞ
where the equations for the coordinates {yM,zM} are given
in Sapountzakis [21]. This coincidence of these centers was
first recognized by Weber [1] applying the Betty-Maxwell
reciprocal relations.

Furthermore, the shear deformation coefficients ay,az

and ayz = azy, which are introduced from the approximate
formula for the evaluation of the shear strain energy per
unit length [19]

U appr: ¼
ayQ2

y

2AG
þ azQ

2
z

2AG
þ

ayzQyQz

AG
ð21Þ

are evaluated equating this approximate energy with the
exact one given from

U exact ¼
Z

X

s2
xz þ s2

xy

2G
dX ð22Þ

and are obtained for the cases {Qy 5 0,Qz = 0},
{Qy = 0,Qz 5 0} and {Qy 5 0,Qz 5 0}, respectively, as

ay ¼ AG2

Z
X

oucz

oy

� �2

þ oucz

oz

� �2
" #

dX ð23aÞ

az ¼ AG2

Z
X

oucy

oy

� �2

þ
oucy

oz

� �2
" #

dX ð23bÞ

ayz ¼ �AG2

Z
X

oucy

oy
oucz

oy
þ

oucy

oz
oucz

oz

� �
dX ð23cÞ

It is worth noting that the warping function ucy of Eq.
(18,23b,23c), results from the solution of the boundary va-
lue problem

r2ucyðy; zÞ ¼
Iyzy � I zz

GðIyIz � I2
yzÞ

in X ð24aÞ

oucy

on
¼ 0 on C ¼

[Kþ1

j¼1

Cj ð24bÞ

and the warping function ucz of Eqs. (19) and (23a,c) from
the boundary value problem

r2uczðy; zÞ ¼
Iyy � Iyzz

GðIyIz � I2
yzÞ

in X ð25aÞ

oucz

on
¼ 0 on C ¼

[Kþ1

j¼1

Cj ð25bÞ

Employing the shear deformation coefficients ay, az, ayz

using Eqs. (23a,b,c) we can define the cross section shear
rigidities of the Timoshenko’s beam theory as

GAsy ¼ GA=ay ; GAsz ¼ GA=az;

GAsyz ¼ GA=ayz ð26a; b; cÞ

It is worth here noting that in the case of an asymmetric
cross section, the principal shear axes defined as [19]

tan 2uS ¼ 2ayz

ay � az
ð27Þ

do not coincide with the principal bending ones defined by
the engineering beam theory. Due to this difference, the
deflection components in the y and z directions are in gen-
eral coupled, even if the system of axes of the cross section
coincides with the principal bending one [17]. If the cross
section is symmetric about an axis, the principal shear axes
system coincides with the principal bending one. In this
case, the deflection components with respect to the princi-
pal directions are not coupled any more (ayz = azy = 0 and
Iyz = Izy = 0).

3. Integral representations – numerical solution

According to the precedent analysis, the shear prob-
lem of a beam reduces in establishing the warping func-
tions uc(y,z), ucy(y,z), ucz(y,z) having continuous partial
derivatives up to the second order and satisfying the
boundary value problems described by Eqs. (10,12,
24a,24b,25a,25b). The numerical solution of these
problems is similar. For this reason, in the following we
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will analyze the solution of the problem of Eqs. (10) and
(12).

The evaluation of the warping function uc is accom-
plished using BEM [22] as this is presented in Sapountzakis
[21]. According to this method employing the Green iden-
tity and Eq. (10) the following integral representation for
the warping function uc(y,z) is obtained

eucðP Þ ¼
Z

X
f ðQÞ ln rdXQ

þ
Z

C
ucðqÞ

cos a
r
� oucðqÞ

on
ln r

� �
dsq ð28Þ

where a ¼ r̂; n (as shown in Fig. 1b); r = jP � qj, P,Q 2 X,
q 2 C and e = 2p,p or 0 depending on whether the point P

is inside the domain X, P � p on the boundary C or P out-
side X and the function f is defined as

f ¼ �
½ðQzIz � QyIyzÞzþ ðQyIy � QzIyzÞy�

GðIyIz � I2
yzÞ

ð29Þ

Applying once more the Green identity for the function f
the domain integral of Eq. (28) can be converted into a line
integral along the boundary of the cross section and the
integral representation Eq. (28) can be written as

eucðP Þ ¼
1

4

Z
C

f ð2 ln r � 1Þr cos a� of
on
ðln r � 1Þr2

� �
dsq

þ
Z

C
uc

cos a
r
� ouc

on
ln r

� �
dsq ð30Þ

The values of the function uc(P) inside the domain X can
be established from the integral representation (30) if uc

were known on the boundary C. Thus, using Eq. (12) the
integral representation (30) can be written as

ucðP Þ ¼
1

8p

Z
C

f ðqÞð2 ln r � 1Þr cos a� of ðqÞ
on
ðln r � 1Þr2

�

þ 4ucðqÞ
cos a

r

�
dsq ð31Þ

where r = jP � qj, P 2 X,q 2 C. The unknown boundary
quantity uc(q) can be evaluated from the solution of the
following singular boundary integral equation, which is de-
rived after substituting Eq. (12) in the integral representation
Eq. (30) written for the boundary points of the domain X

pucðpÞ ¼
1

4

Z
C

f ðqÞð2 ln r � 1Þr cos a� of ðqÞ
on
ðln r � 1Þr2

�

þ 4ucðqÞ
cos a

r

�
dsq ð32Þ

where r = jp � qj, p,q 2 C. Thus, using constant, linear or
parabolic boundary elements to approximate the line inte-
grals along the boundary and a collocation technique the
following linear system of simultaneous algebraic equa-
tions is established

½A�fUg ¼ fCg ð33Þ

where

fUgT ¼ ðucÞ1 ðucÞ2 . . . ðucÞNf g ð34Þ

are the values of the boundary quantity of uc at the N no-
dal points of the boundary elements. Moreover, in Eq. (33)
[A] and {C} are square N · N and column N · 1 known
coefficient matrices, respectively. From the solution of the
system of simultaneous algebraic Eq. (33) the values of
the warping function uc for all boundary nodal points
are established. As it was already mentioned the warping
function uc is determined exactly apart from an arbitrary
constant term (Neumann problem). To maintain the pure
boundary character of the proposed method, the domain
integral of Eq. (14) is converted to a boundary line integral
as

c ¼
QzIz � QyIyz

4AGðIyIz � I2
yzÞ

Z
C

y2z2nzdsþ
QyIy � QzIyz

8AGðIyIz � I2
yzÞ

Z
C

y4nyds

� 1

A

Z
C

ucynyds ð35Þ

However, the stress components are not influenced by this
arbitrary constant, since only the derivatives of the stress
function uc are required for the evaluation of the afore-
mentioned quantities, as it is easily verified from Eq. (3b,c).

For the calculation of the stress resultants Eq. (3b,c), the
derivatives of uc with respect to y and z at any interior
point of the region X are obtained by direct differentiation
of the integral representation Eq. (30), after substituting
Eq. (12) as

oucðP Þ
oy

¼ 1

2p

Z
C

ucðqÞ
cosðx�aÞ

r2

� �
dsq

� 1

8p

Z
C

�
f ðqÞð2cosxcosaþð2lnr�1ÞcosbÞ:

�of ðqÞ
on
ð2lnr�1Þrcosx

�
dsq ð36aÞ

oucðP Þ
oz

¼ 1

2p

Z
C

ucðqÞ
sinðx�aÞ

r2

� �
dsq

� 1

8p

Z
C

�
f ðqÞð2sinxcosaþð2lnr�1ÞsinbÞ:

�of ðqÞ
on
ð2lnr�1Þrsinx

�
dsq ð36bÞ

with r = jP � qj, P 2 X, q 2 C and x ¼ x̂; r (as shown in
Fig. 1b).

Moreover, since the torsionless bending problem of
beams is solved by the BEM, the domain integrals in
Eqs. (8a)–(c), (18), (19), (23a)–(23c) have to be converted
to boundary line ones in order to maintain the pure bound-
ary character of the method. This can be achieved using
integration by parts, the Gauss theorem and the Green
identity. Thus, for the moments of inertia, the product of
inertia and the cross section area we can write the following
relations

Iyy ¼
Z

C
ðyz2 cos bÞds; Izz ¼

Z
C
ðzy2 sin bÞds ð37a; bÞ
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Iyz ¼
1

2

Z
C
ðzy2 cos bÞds;

A ¼ 1

2

Z
C
ðy cos bþ z sin bÞds ð37c; dÞ

while the {yS, zS} coordinates of the shear center S are ob-
tained from the calculation of the following boundary line
integrals

yS ¼ G
Z

C
½ucyðy sin b� z cos bÞ�ds;

zS ¼ G
Z

C
½uczðy sin b� z cos bÞ�ds ð38a; bÞ

Moreover, the shear deformation coefficients ay, az, ayz =
azy are obtained from the relations

ay ¼ AG2 IyIyz

12D2

Z
C

y2z3nyds�
I2

yz

30D2

Z
C

z5nzds

 

þ Iyz

2D

Z
C
uczz

2nzds�
I2

y

30D2

Z
C

y5nydsþ IyIyz

12D2

Z
C

y3z2nzds

� Iy

2D

Z
C
uczy

2nyds
�

ð39aÞ
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Fig. 2. T-section of the cantilever beam of Example 1 (values in
parentheses are obtained from Cowper’s definition [18]).
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Fig. 4. Box shaped cross section of Example 2 (a) and boundary
distributions of shear stress sxt for (b) Qz = �1 kN and (c) Qy = +1 kN
(values in parentheses are obtained from a stress function solution [14]).
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where D is given as

D ¼ GðIyIz � I2
yzÞ ð40Þ

Finally, the coordinates of the centroid C with respect to
the arbitrary coordinate system Oyz are obtained from

�yc ¼ 2

R
Cð�y�z sin bÞdsR

Cð�y cos bþ �z sin bÞds
;

�zc ¼ 2

R
Cð�y�z cos bÞdsR

Cð�y cos bþ �z sin bÞds
ð41a; bÞ

4. Numerical examples

On the basis of the analytical and numerical procedures
presented in the previous sections, a computer program
has been written and representative examples have been
studied to demonstrate the efficiency, the accuracy and

Table 1
Shear deformation coefficients az, ay and shear center zS with respect to the
centroid C of the box shaped cross section of Example 2

Present study Sapountzakis and Mokos [14] FEM solutions

zS �0.5859 �0.5919 �0.5862 [8]
ay 1.6691 1.6690 1.6686 [10]
az 4.3287 4.3271 4.3253 [10]
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Fig. 5. L-shaped of unequal legs cross section of Example 3.

Table 2
Shear deformation coefficients ay, az, ayz = azy, angle uS (rad) of the
principal shear axes and coordinates of the shear center yS, zS with respect
to the centroid C of the L-shaped cross section of Example 3

Present study Sapountzakis and
Mokos [14]

Schramm et al.
[20]

TTT

ay 3.063591 3.063227 3.058207 –
az 1.899402 1.899355 1.898375 –
ayz = azy 0.036972 0.037235 0.039510 –
uS 0.031715 0.031949 0.034013 –
yS �1.9980 �1.998300 �1.997600 �1.995
zS �4.4255 �4.425422 �4.423925 �4.495
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Fig. 6. Boundary distributions of the transverse shear stress sxt of the L-
shaped cross section of Example 3, for (a) Qz = 1 kN and (b) Qy = +1 kN
(values in parentheses are obtained from a stress function solution [14]).
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the range of applications of the developed method. In all
the examples treated the numerical results have been
obtained using N = 300 constant boundary elements nec-
essary to fulfil the convergence criterion with error less
than e = 10�3.

4.1. Example 1

The T-section cantilever beam of Fig. 2, loaded at its
free end by a concentrated force Qz = 1 kN has been stud-
ied. In Fig. 3 the distributions of the transverse shear stres-
ses sxz along the cross section’s axis of symmetry and sxy

along the midline of the cross section’s flange are presented
as compared with those obtained from the thin tube and
the engineering beam theories. The discrepancy of the
aforementioned theories is remarked.

4.2. Example 2

A box shaped cantilever beam having the cross section
shown in Fig. 4a (E = 2.1 · 108 kPa, G = 1.05 · 108 kPa)
has also been analyzed. In Figs. 4b,c the distributions of
the boundary shear stress sxt for two different cases of con-
centrated loading are presented as compared with those
obtained from a stress function solution [14]. Moreover,
in Table 1 the shear deformation coefficients az, ay and
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Fig. 7. Unsymmetrical welded profile forming the cross section of
Example 4.

Table 3
Shear deformation coefficients ay, az, ayz = azy, angle uS (rad) of the
principal shear axes and coordinates of the shear center yS, zS with respect
to the centroid C of the cross section of Example 4

Present study Wagner and Gruttmann [16]

ay 2.92763 –
az 3.10697 –
ayz = azy 0.24100 –
uS �0.60729 –
yS 1.3278 1.3860
zS 10.0803 10.0580

  165,44 
(170,36)

  149,18 
(153,19)

 -53,54 

-54,80
(-56,59)

  -58,56 
(-57,36)

-138,73
(-142,21)

(-133,43)

 - 1,325

 - 2,921

 -6,090 

 2,010 

 1,940 

 -6,592 
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 -4,513 

8,5 cm

  6,5 cm
 7,7 cm 

a b

Fig. 8. Warping function uc (cm) (a) and transverse shear stress sxt (kN/cm2) of the cross section of Example 4 (values in parentheses are obtained from a
FEM solution [16]).

778 E.J. Sapountzakis, V.M. Protonotariou / Computers and Structures 86 (2008) 771–779



Author's personal copy

the shear center coordinate zS with respect to the cross sec-
tion centroid C are presented as compared with those
obtained from a stress function solution [14] and FEM
solutions [8,10]. The accuracy of the proposed method is
verified.

4.3. Example 3

A cantilever beam having an L-shaped of unequal legs
cross section shown in Fig. 5 has also been analyzed. In
Table 2 the shear deformation coefficients ay, az, ayz = azy,
the angle uS of the principal shear axes and the shear center
coordinates yS, zS with respect to the cross section’s cen-
troid C are presented as compared with those obtained
from a stress function solution [14], a FEM solution [20]
and the thin tube theory (TTT). Moreover, in Fig. 6 the
distributions of the boundary shear stress sxt for two differ-
ent cases of concentrated loading are presented as com-
pared wherever possible with those obtained from a stress
function solution [14].

4.4. Example 4

As a final example the unsymmetrical welded profile
taken from the text book of Petersen [23], consisting of a
U300 (DIN1026) and L160 · 80 · 12 (DIN1029), replaced
by a thin-walled cross section as shown in Fig. 7, subjected
in the shear forces Qy = �120 kN, Qz = �200 kN has been
studied. In Table 3 the shear deformation coefficients ay, az,
ayz = azy, the angle uS of the principal shear axes and the
shear center coordinates yS, zS with respect to the cross sec-
tion’s centroid C are presented as compared with those
obtained from a FEM solution [16]. Moreover, in Fig. 8
the warping function uc and the shear stress sxt distribu-
tions are presented as compared wherever possible with
those obtained from a FEM solution [16]. The accuracy,
the efficiency and the range of applications of the devel-
oped method are easily verified (a small discrepancy in
some values may be due to the small discrepancy in geo-
metrical and inertia data).

5. Concluding remarks

The main conclusions that can be drawn from this inves-
tigation are

(a) The numerical technique presented in this investiga-
tion is well suited for computer aided analysis for
prismatic beams of arbitrary simply or multiply con-
nected cross section, while the analysis is performed
with respect to an arbitrary system of axes and not
necessarily to the principal one.

(b) Accurate results are obtained using a small number of
boundary elements.

(c) Engineering beam theory cannot give accurate results
especially in cross sections with discontinuous varia-
tion of width.

(d) The inaccuracy of the thin tube theory especially near
the intersections of the parts of the thin cross section
is verified.

(e) The developed procedure retains the advantages of a
BEM solution over a pure domain discretization
method since it requires only boundary discretization.
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