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Outline

• An introduction to the Boundary Element Method (BEM)

• Applications of the BEM in solving engineering problems

• BEM in large-scale modeling of fiber-reinforced composites 

• Discussions
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• Further Information



CAE Research Lab3

An Introduction to the BEM
- Two Different Approaches in Computational Mechanics

Engineering Problems

Mathematical Models

Differential Equation (ODE/PDE) 
Formulations

(Boundary) Integral Equation (BIE) 
Formulations

Analytical Solutions Analytical SolutionsNumerical Solutions Numerical Solutions

FDM FEM EFM Others BEM Others



CAE Research Lab4

A Brief History of the BEM

BEM emerged in 1980’s …

Integral equations
(Fredholm, 1903)

Modern numerical 
solutions of BIEs 
(in early 1960’s)

Jaswon and Symm (1963) 
– 2D Potential Problems

F. J. Rizzo (1964, paper 1967) 
– 2D Elasticity Problems

T. A. Cruse and F. J. Rizzo (1968) 
– 2D elastodynamics

P. K. Banerjee (1975)
– coined the name “boundary element method”

(this has been disputed by others)
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Advantages of the BEM and the Mysteries

Advantages:
• Accuracy – due to the semi-analytical nature and use of integrals

• More efficient in modeling stage due to the reduction of dimensions

• Good for stress concentration and infinite domain problems

• Good for modeling thin shell-like structures/materials

• Neat …

Mysteries:
• BIEs are singular which are difficult to deal with (wrong!)

• BEM is slow and thus inefficient (not necessarily!)

• FEM can solve everything. Who needs BEM? (not exactly true!)
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Formulation: The Potential Problem

SV

E
n

r
P (x   )o ok

P(x  )k

• Governing Equation

• For 3D problems, the Green’s function is

• BIE formulation

• Discretization of the BIE using the boundary elements
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Singular or Non-Singular?

• Re-examine the BIE 

The second integral in the BIE is singular and is considered as a CPV integral

• However, the constant in the free term is also a CPV integral

• Re-write the BIE to obtain the weakly-singular form of the BIE

• Non-singular form also exists (Liu & Rudolphi, EABE, 1991 and CM, 1999)
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Example: Results for Heat Transfer in a Fuel Cell

(a) The fuel cell model              (b) BEM (max. temp. = 378.40 K)         (c) FEM (max. temp. = 378.31 K)

Predicted Temperature Distributions Using the BEM and FEM
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Example: Coupled Structural Acoustics Analysis

• Applications
Acoustic radiation/scattering from elastic structures submerged in fluids
Prediction of noises of an elastic structure in vibration
Dynamics of fluid-filled elastic piping system
Acoustic cavity analysis

shell structure (V)

exterior fluid (E)
n

n

interior

Sa

Sb
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The BIE Formulation for Structural Acoustics

• Governing Equations 

In elastic domain:

In acoustic domain:

• BIE Formulations

In elastic domain:

In acoustic domain:

• Interface Conditions

Velocity continuity condition across the interface:

Stress equilibrium condition:

• Discretization of the BIE using boundary elements
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Results for A Structural Acoustics Analysis
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Analysis of the Acoustic Fields of a Submarine

A simplified submarine model with BEM
(Surface elements only)

Sound pressure in the exterior domain
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BEM for Modeling Thin Layered Materials

Advantages:
• BEM is good for modeling thin shell-like materials/structures

• Much fewer elements are needed using the BEM than the FEM in the 
modeling (no element connectivity and aspect-ratio restrictions).

• Accuracy.

Difficulties: Treatment of the nearly singular integrals in the BIEs.
• 3D elasticity case (Liu, IJNME, 1998)

• 2D elasticity case (Luo, Liu and Berger, CM, 1998)

• 2D piezoelectricity case (Liu and Fan, CMAME, 2002)

S+

S−
n+

n−



CAE Research Lab14

Analysis of Fiber-Reinforced Composites with 
the Presence of the Interphases

matrix

fiber

interphase
x

y

a unit cell

A Unit Cell Model of Fiber-Reinforced Composites 

matrix

fiber

Interphase

A fiber-reinforced 
composite

Interphases in fiber-reinforced composites are modeled using the BEM and FEM to investigate 
their effects on the mechanical properties and interface failures of the material.
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Analysis of Fiber-Reinforced Composites with 
the Presence of the Interphases (Cont.)

BEM (384 quadratic line elements)       FEM (10,188 quadratic area elements)
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Analysis of Fiber-Reinforced Composites with 
the Presence of the Interphases (Cont.)

Stress distribution
Fiber volume fraction (Vf)
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Analysis of Fiber-Reinforced Composites with 
the Presence of the Interphases (Cont.)

A Circular-Arc Crack Between the Interphase and the Matrix
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BEM for Thin Piezoelectric Solids
Applications of Piezoelectric Materials

• Thin piezo films and coatings as sensors/actuators in smart materials
• Micro-electro-mechanical systems (MEMS)
• …

The mechanical and electrical coupling effect in piezoelectric materials
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BEM for Thin Piezoelectric Solids (Cont.)
BIE for piezoelectricity (weakly-singular form):

for a finite piezoelectric solid, in which (for 2D case):
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BEM for Thin Piezoelectric Solids (Cont.)
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BEM for Thin Piezoelectric Solids (Cont.)
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(Note that the thickness of the layers can be made arbitrarily small without the 
need to use smaller and smaller elements in the BEM)
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Current Status of the BEM Research
• Fast solvers that can solve problems beyond the reach of other methods
• Large-scale analyses with DOFs above 20M
• Multi-physics and multi-scales

Electromagnetic wave scatterings from targets
(Chew, et al., 2004)

MEMS
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Large-Scale Modeling of Fiber-Reinforced 
Composites with a 

Fast Multipole Boundary Element Method 

In collaboration with:
Professor Naoshi Nishimura at Kyoto University
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The Approach

• A model with elastic matrix and rigid inclusions for fiber-reinforced composites 
is adopted (the rigid-inclusion model)
• This model is likely to be valid for short fibers or long fibers with much higher 
stiffness than that of matrix
• This approach is the first step towards more general elastic matrix/elastic fiber 
models
• The fast-multipole method is used to solve the large-scale BEM equations for 
this problem
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Boundary Integral Equation Formulation
Representation integral:

(1)

with 

For each rigid inclusion       :
(2)

with d and ω being the rigid-body translation and rotation, respectively

It can be shown that:
(3)

for each rigid inclusion 
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Boundary Integral Equation Formulation (Cont.)

“Simplified” BIE formulation for rigid-inclusion problems:
(4)

Both u and t are unknown. Need six more equations for each inclusion

Consider the equilibrium of each inclusion (6 equations):
(5)

(6)

for α = 1, 2, …, n

Eqs. (4-6) provide enough equations for solving the rigid-inclusion problem
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Fast Multipole Method (FMM)

(From Yoshida, 2001)

• Ranked among the top ten algorithms 
of the 20th century (with FFT, QR, …)

• Developed by Rokhlin and 
Greengard (mid of 1980’s)

• For 3-D elasticity: Peirce and Napier
(1995); Rodin, et al. (1997); Popov
and Power (2001), and many others

• More research (more large-scale 
applications)

• Education or re-education

• A review: Nishimura, Applied 
Mechanics Review, July 2002
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Fast Multipole Algorithm

(Nishimura, 2002)

• The entire boundary is 
divided into multi-level cells

• Each boundary element is 
placed in a cell, which contains 
a specified number of elements

• A tree structure of the 
boundary elements is obtained

• Interactions (integrations) of 
element-to-element is replaced 
by those of cell-to-cell

• Expansions are employed to 
accelerate the evaluations of 
these interactions



CAE Research Lab29

Fast Multipole Expansions
Apply the following expansion:

(7)

where O represents a third point,                      are solid harmonic functions 

Displacement kernel is written as:
(8)

which is in the form:

The FMM expansion:
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Fast Multipole Algorithm (Cont.)

(Nishimura, 2004)

y x
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A Rigid Sphere in Elastic Medium
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A BEM mesh with 1944 constant elements

A sphere with tri-axial loading
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A Rigid Sphere in Elastic Medium (Cont.)
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A Rigid Sphere in Elastic Medium (Cont.)

Contour plot for stress on the surface of the sphere 
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Study of Fiber-Reinforced Composites:
The Representative Volume Element (RVE)

Matrix

A data-collection surface

Fiber (rigid inclusion)
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A BEM Mesh

A BEM mesh used for the short fiber inclusion (with 456 constant elements) 
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Load Transfer Studies

A model with 216 “randomly” distributed and oriented short fibers 

Location of 
maximum stress
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Efficiency of the Fast Multipole BEM

CPU time used for solving the BEM models for the short-fiber cases 
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Modeling of CNT-Based Composites (Cont.)

A small RVE containing 2,000 CNT fibers with the total DOF = 3,612,000 (CNT 
length = 50 nm, volume fraction = 10.48%). A larger model with 16,000 CNT fibers
and 28.9M DOFs was solved successfully on a FUJITSU HPC2500 supercomputer 

(at the Kyoto University) within 34 hours.
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Modeling of CNT-Based Composites (Cont.)

Computed effective moduli of CNT/polymer composites using three RVEs and 
compared with NASA’s multi-scale results
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• BEM is a very efficient numerical tool for many problems 
in engineering
• Computational mechanics can play a significant role in 
the development of composite materials
• Multi-scale, multiphysics and large-scale approaches are 
urgently needed for the development of new materials
• There are plenty of opportunities for the computational 
mechanics (FEM/BEM/BNM/Meshfree methods) in 
material modeling, bio-engineering and many other fields

Discussions
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A Bigger Picture of 
Computational Solid Mechanics

FEM: Large-scale structural, nonlinear, 
and transient problems

BEM: Large-scale continuum, linear, 
and steady state (wave) problems

Meshfree: Large deformation, fracture 
and moving boundary problems “If the only tool 

you have is a 
hammer, then 
every problem 
you can solve 

looks like a nail!”
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Future of Computational Mechanics

(A. Nakano, et al., 2001)

An Example:
Virtual Reality (VR) 
with large scale MD 
simulations of a 
fractured ceramic 
nanocomposite 
(Spheres with different 
colors represent atoms 
of different materials 
in the nanocomposite)

Large scale, multiscale, instant and visual!
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