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the  ratio of the  maximum  height of the  deformation  to 
the  thickness of t,he  dielectric  slab. If E is reasonably 
small,  for  example E < 0.2, the second-order  scattered 
fields may be  neglected  without  effecting  much the 
accuracy of the previous  results. 

In conclusion, the  present example shows how to  
apply  the  formulas  in previous  sections. It shows how 
those  calculated  quantities  vary when the sha.pe of the 
perturbed  boundary  changes. 
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Numerical Aspects on Coupling Between 
Complementary  Boundary Value 

Problems 
JEAN-CHARLES  BOLOMEY AND WALID TABBARA 

. Abstracf-The consequences of nonuniqueness for  integral 
equations used in the numerical  resolution of electromagnetic 
scattering problems are investigated from a practical point of view. 
The scatterers are closed perfectly conducting cylinders of arbitrary 
cross section  illuminated by a plane  wave in both E and H polariza- 
tions. It is shown how to detect the frequencies at which non- 
uniqueness occurs, and how to avoid the resulting errors by the 
use of the notion of an equivalent problem. This approach is com- 
pared  to  other  ones proposed by different  authors. A new  interpreta- 
tion of the computed solution, when uniqueness conditions are not 
satisfied, is given and  it is shown how to  use  such a solution in 
the computation of the  resonant  modes of the interior problem, 
even for degenerate modes. 

T 
I. INTRODUCTION 

HE INTEGRAL  formulation is well suited to  the 
numerical  solution of scattering  and  radiation  prob- 

lem,  particularly when the  scatterers or radiat.ors  are  in 
the resonance doma.in (i.e., when  their  dimensions  are 
of the order of.the  wavelength).  This  formulation is of 
increasing  interest to  engineers. 

The  integral  formulation leads to a  great  diversity of 
integral or integro-differential  equations which can  be 
reduced,  by  means of a  moment  method, t.0 a high-order 
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system of linear equations. As long as existence and 
uniqueness  conditions are satisfied a.nd the  limits of 
storage  and  speed of a.ctua.1 computers a.re respected,  the 
solut,ion of the linea,r system  can  be  obtained  without 
great. difficulties. 

The discussion concerning  existence and uniqueness 
of  a. solution would seem to be of only  theoret,ical  interest, 
especially when we deal  with  a  practical  problem whose 
solution  exists and is unique.  This is true when it is 
possible to  obtain  a closed form  solution. I n  this case, 
nonphysical  solutions, which usually  appear when the 
formulation is not  accurate,  can  be  eliminated  afterwards. 
This is no longer possible when we try a  numerical resolu- 
tion,  and, as we shall  see  lat.er,  the  interpretation of the 
results  a.ppearing  in a.n array  might  be difficult. One can 
imagine then t.he practical  importa.nce of a  discussion 
about exist,ence and uniqueness  conditions. 

In fact,  this discussion can  be  found at  the ba.se of 
many  theoretica,l  investigations of electromagnetic and 
acoustic  scattering  and  radiation problems. Though  many 
papers  have  been mitten on this  subject (for substantial 
references see [l]-[3]) most of them  are  arduous for an 
engineer whose interest is the  result of the discussion. 

For the  equations,  ordinarily deduced  from the Green’s 
theorem,  the existence  conditions are always satisfied, 
but uniqueness is not  guaranteed (see  for  instance [l]). 
Genemlly  speaking,  uniqueness is related t o  the existence 
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of solutions of t,he  associated homogeneous equat,ions. 
Some of these  solutions may  be linked to  t.he problem 
under  investigation  (i.e.,  resonant modes of a cavity, 
eigenmodes of a surfa.ce wave  structure externally excited - ) , whereas  others are parasitic  solutions usua.lly 
related to eigensolut.ions of other  problems. For an exterior 
scat,tering  or  radiation  problem  in a domain De, these 
solut*ions correspond to t.he  interior  cavity  problem  in 
t.he  complement,ary  domain Di. For  these rea.sons such 
exterior a,nd int,erior  problems are called complementary. 

Our  purpose  here  is to st,udy,  from a practical  point of 
view, the consequences of the coupling beheen com- 
plementary  problems  on numerica.1 resolution of the 
problem.  We  shall  particularly  emphasize  two points: 
first., the detection of the errors  resulting  from the coupling 
in the classica.1 formulation, second the use of the notion 
of an equivalent  problem to  avoid  such  errors [S]-[S]. 
This approach is compared to other ones  proposed by 
different  aut,hors [4], [5 ] .  We  shall  give  a new int,erpret,a- 
tion of t.he solut,ion computed when uniqueness  conditions 
a.re not satisfied and show how to use such  a  solution in 
the comput.ation of the resonant, modes of the interior 
problem,  even  for  degenerat,e modes. Finally,  a  series 
of numerical  results will be given which illustmte  the 
different  aspects of the problem. 

11. GENERAL CONSIDER.4TIOE;S 

A .  Classical IntegraJ Formulation 
For  the  sake of simplicity we shall consider only a two 

dimensional  problem as is t,he case for a perfectly con- 
ducting infinit,e cylinder receiving an incident  wave whose 
elect.rica1 field ( E  case) or magnetic field (H case) is 
parallel to  its generators. Let C denote the contour of 
the obst,acle in a. cross section  plane, and De a.nd Di, 
respectively, the exterior and  interior domains with 
respect to C. 

The Green’s  t.heorem provides us  with  the following 
representation  for the  total field 

H e u ( z )  = u0(z) + {G(z,x’)a,a(x’) l 
-a,fG(z,z’)u(x’)} dz’ (1) 

where u and uo are  the  longitudinal components of the 
total field and  the  incident field, respectively, H e  the 
characteristic  funct,ion of De, ant is the symbol of t,he 
derivative along the inOerior normal to C,  and G the free- 
space  Green’s  function. Wit.h the  time dependence 
ejw‘ ,  G(x,x‘ )  = ( j/4)Hp(*) ( k  I z - x’ I) &-here k is the 
propagation  const.ant in De and HO(2) the Hankel  function 
of second type  and zero order. 

In  each case of pola.rization, one may deduce from (1) 
a Fredholm’s  integral  equation of second kind 

- a,u - dnGdnlu = a n d ,  for E case (2) 2 l l  
u + [ d,jG u = uo, for H case. (3) 

The existence a.nd uniqueness of  a. solution  for t,hese 
equations  can  be discussed by mea.ns of the Fredholm 
alternative.  (This would not  be possible wit.h a.n integral 
equa.tion of the first kind).  Let [ k n E )  and [ k n H }  denote 
the eigenva,lues of the int.erior cavity D; bounded by 
perfectly  conducting walls, in  the E ca.se and  the H case, 
respect,ively. Equations ( 2 )  and (3) then  have a unique 
solutrion if k # knH and k # knE, respectively. If t.hese 
conditions are  not realized t,he homogeneous equations 
associated  wit,h (2) a.nd (3) have  no  vanishing  solutions 
a.nd ( 2 )  and (3) have an infinite  number of solutions [l]. 

The existence of t,hese eigensolutions may seem  sur- 
prising especially if one considers the fact that  they  do 
not correspond to  any possible physical  solution of the 
scat,tering  problem. It. t.urns out  t.hat  these  parasitic 
solutions are rela.ted t.0 the complementa,ry  int,erior 
problem for the other  polarization and  result  from the 
fa.ct that (2) and (3) correspond to t,he  physical boundary 
conditions of the considered sca.ttering  problem  only 
when the tot$al field is zero in Di. But, this field is precisely 
nonvanishing for the resona.nt. frequencies of t,he  interior 
problem. It can  be  shown  t.hat,  among  all the solutions 
of ( 2 )  and (3 ) ,  only the physica.1 solution of the scatt.ering 
problem creat.es a zero field in D;. Furthermore  the 
parasitic  solutions  correspond to  the resonant modes of 
the  cavity D i  [lo], [ll]. 

B. Tumerical  Problem 
The consequences of the aforement,ioned  coupling must 

not be  underestimated in t.he  numerical  resolution. By 
means of t.he well-known moment  method [l2], (2) and 
( 3 )  can  be  reduced t.o a  system of linear  equat,ions of 
finite dimensions. 

We shall briefly recall  here t.he principles of this  method. 
Equations (2) and (3) can  be  writ,ten in  the form Lf = g, 
where L is a  linear  operator, g a known source  function 
and f t.he unknown function.  The solution  can be  ap- 
proximat,ed, using a  norm, in a Hilbert space X, by a 
function  such that 

N 
f‘l”’ = CY& lim 1 1  f - f‘“’ 1 1  = 0 (4) 

n=l .V-w 

with { f,} a  complete set of base  functions in X. The 
unknown coefficient,s CY, satisfy the  matrix  equation 

A X = B  ( 5 )  

with A,,, = {w,,Lfn), B, = {w,,g), X ,  = CY,, for n = s,2, 
-..,X; m = s,2,. -,AT; {to,) is anot.her set of base 
functions in X and { - I * ) represents the sca1a.r product 

where the ast,erisk  represents  t,he complex c0njugat.e. 
Theoretically,  when k is equal to an eigenva,lue of the 

interior  complementary  problem, and when N 3 03, 
the system (5) is singular.  Practically the problem 
is more  complicated. In  fa.&, when N has a finite value 
the system is only  approximate. Furthermore  computa- 
tions  are  made  with a finite  number of significant digits. 
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These  remarks  have  two consequences: on one hand, the 
system is never  exactly  singular and on the other  hand, 
the consequences of the coupling do not only occur 
exactly at the eigenvalues but  rather  in  the neighborhood 
of the latter. 

Often, the occurrence of an eigenvalue is not sufficient 
to render useless the algorithm employed for the computa.- 
tion of the solution. Nevertheless, the computed solut,ion 
appears as an  arbitmry linear combination of the re- 
searched  external physical solution and of parasitic solu- 
tions of the internal  complementary problem. As we shall 
see later t.his kind of error is more hazardous when the 

’ orders of magnit.ude of the solution  remain reasonable. 
. It is obvious that  any numerical test (double inversion, 
substitution) is  not significant. 

C. Numerical  Tests 
The small  value of the determinant  can  make us 

presume that  an error exists, but only a continuous 
va,riation of the determinant  with  respect to k clearly 
indicates resonances. As this  method is lengthy it is 
more  suitable to use  systematic  tests. 

One t.est is to subst,itute the computed solution in  the 
right-ha.nd side of (1), this is done for different  points 
in Di. If the computed field vanishes a t  these  points, 
then  the computed solut.ion is correct. If not,, t.he fre- 
quency used is near a.n eigenfrequency of the comple- 
mentary interior problem and  the tot.al field computed 
in Di determines the resonant mode [l5]. This procedure 
can  be easily used in  the  study of interna.1 problems. 

A second test is to check the energy conservation  at. 
infkity.  In  the case of an incident  plane wave, with 00 

the angle of incidence, the power scattering  diagram 
I F ( 0 )  l 2  satisfies the well known relation 1 I F(0)I2  d8 = - 2 ~  Re { F ( e 0 )  1 (6) 

where Re { f 1 denotes the rea.1 part of f and F(0o) is 
evaluated in the forward  scattering direction. Thus, 
the calculation of the  quantity & such that 

& = [ I F ( e )  Iz d8 + 2~ Re {F(eo )  1 I (7) 

indica,tes how good is the energy conservation. The 
expression giving & is  somewhat  more complica.t,ed for 
an arbitrary  distribution of sources. Nevertheless, its 
computation using the solution of the integral  equations 
remains  a  suitable check especially because the result  can 
be characterized by a single number which can  be easily 
deduced from I F ( 8 )  12, a quantity of practical int,crest*. As 
we shall see later, it is possible to determine &‘If, the 
maximum a,llowed value of & such that for & > &M t,he 
result  is surely false and for & < &M the result  can be 
considered as true  with some confidence. 

D. The Particular  Case of Circular  Cylinder 
When we examine the coupling between complementary 

problems, t,he case of the circular cylinder is particularly 

interesting, because it is practically the only one for 
which the external and  internal problems possess analytical 
and easy computa,ble solutions. Thus it is possible to  
emphasize some important points of the preceding 
sections. 

In  the case of a. circular cylinder of radius a, Table I 
gives the analytical expressions of the coefficients A,,, 
and B, deduced from (2) [similar consideration occurs 
for (3)] for different. choices of the base functions. When 
the set of base  functions { fn) and .{Wm] coincides n.it,h 
the eigenfunctions of the kernel of the integral equa.tion, 
the matrix A is obviously diagonal. Then one can ea.sily 
see that A is  singular if ka is  a zero of J,’ ( k a )  in  the E 
case [or a zero of J ,  ( k a )  in  the H case] for 711 5 N .  
When an analytical  resolution  is performed, no difficulty 
occurs because the corresponding coefficient B, is also 
zero.  On the other  hand, in the case of a numerical resolu- 
tion one ca.nnot predict the behavior of the system. 
The A,,,,,, a.re computed  numerically and those which 
must  be zero, have in fact  very small values. Thus, 
ma,trix A is  never  exactly  singular. 

In  the case of the second choice of t.he  base  functions, 
matrix A is entirely  Bled, but  the singularities  can be 
easily determined, because in a resonant case all  elements 
in a row are zero. In  the  third choice it is not obvious 
t-hat we have  a  singularity a.nd we do  not know for which 
value of N they will start. appea.ring. Thus one  can easily 
imagine that.  the extent  to which a  singularity occurs 
depends on the choice of the base  functions a.nd on the 
accuracy of computation of the coefficients A,,,,. 

E. ,Methods of Resolution in a Singular Case 
When one of the previously described tests indicates 

a resonance of the complementary int.erior problem, 
(2) and (3) cannot  be  directly used. One method of 
retaining only the correct  solution consists in formulat.ing, 
explicit,ly or not,  the condition  tha.t the t,otal field vanishes. 
in Di. 

Waterman [4] proposed to use t,he “generalized 
boundary  condition” in Di 

0 = ua(x) + / {G(x,x’)&~u(x‘) - d,tG(z,x’)u(x’) ] dx’, 
c 

z E Di. (8 )  

Making use of polar coordinates a.nd of the well known 
expansions of the kernel in series of Bessel a,nd  Hankel’s 
funct,ions, we are led to a, syst,em of integral  equations 
which allows us to compute the field or its normal  deriva- 
t.ive on C under the unique  condition that t.he total field 
vanishes inside a circular domain in D,. By an analytic 
cont,inuation of the field in Di one can show t,ha.t this 
necessary condition  is also sufficient in order that  the 
field vanishes  on the  entire domain D; provided  t,hat, the 
cont,our of t.he obstacle is  not  discontinuous [4]. Numeri- 
ca.lly it. becomes less sufficient. when the  ratio of the largest 
dimension of the cylinder to  the smallest. dimension ha.s 
a la.rge value  or in t,he case of an edge-type cont.our. 



BOWMEY  AND  TABBARA: COMPLEMENTARY  BOUXDARY  VALUE  PROBLEMS 359 

TABLE I 

I I I 
I i 

I I I I 
I I 

I I I I t 

Schenck [5] resolved (2) and (3) in a similar manner 
by int.roducing the addit>ional const,raint,s rhich force 
t.he field t.0 be zero a t  a finite number of points  in Di. 
These  points must  be chosen in  such  a way that  the con- 
st-raint.s  have  a  maximal efficiency. The resolution of the 
resulta.nt overdet.ermined system,  can  be effectuated  by 
means of an optimization  algorithm. 

Anot,her method is based on the idea of a.n equiva.lent 
problem. It allows us to formulate  a fictitious problem 
equivalent to  the physical one in De only, in such  a  way 
that  the complementary  parasitic problem does not 
possess resonant. frequencies for real va.lues of k. Thus, 
we may represent. the scattered field as a  linear combina- 
tion of single and double lager  retarded  potentials [SI, 
[7], [13] or more generally as a linear conlbinat,ion of 
higher order  pot,entials [SI. For instance the field in De 
can be represented by 

U ( X )  = u’(z) + [&~G(x,x’) + j k G ( ~ , d ) ] r ( ~ ’ )  dx‘. J ,  
(9) 

Such a linear  combination of potentials ca.n be called 
hybrid  potential. The unknown  densitmy ~ ( x ’ ) ,  in each 
case of polarization, is deduced from one of the following 
equa.tiom : 

I r ( 2 )  - 1 [a,.G(x,~‘) + jkG’(x,x’)]r(d) clx’ 
2 

= ?/(X), for E ca.se (10) 

- - r(5) - j a,G(x,x’)r(d) dx’ - FP d , , , 2 G ( ~ , ~ ’ )  j 
2 /1 I 

~ ( z ’ )  dx‘ = anuo(x),  for H case (11) 

where FP stands for “finite part in the sense of 
Ha.damard” [14]. The knowledge of the order of sin- 

gularity of ann12G allows us to write 

FP annf2G(x,x’) f (2’) dx’ i. 

where M(y)  is the length of the a.rc y, and x being at the 
cent,er of y. The  introduction of a finite part,  avoids the 
uneasy manipula.tion of an integro  differential  equation. 
The right-hand side of (12) can  be easily computed by 
the usual  integration methods. 

A .  Genwal Considerations 

Two  approximation processes have been used. In both 
cases, { j n }  are of the rectangular pulse type,  but.  in t.he 
second process, Lf, is comput.ed with a crude approxima- 
tion consisting in t,he replacement of the integral by t,he 
value of the  integrand at. the center of the interval of 
integration. In  both cases, the  testing base functions 
W m  are of the  Dirac pulse type. The sampling rate  on 
the contour C is about 10 per wave1engt.h. Such  a  sampling 
rate provides an accumcy of the order of in  the 
absence of interior resonance. 

Two different algorit,hms were used t,o solve the systems 
of linear equations. The first one is the well-known Gauss- 
Jordan algorit,hm for which it is  very difficult. t.0 find a 
genuine criterion to check the singularity of t.he system. 
Indeed,  computations  have shown, trhhat very good results 
can be obtained even if the determinant of the syst.em is 
very small. Numerical examples will later  illustrate 
the behavior of this  algorithm in quasi-singular cases. 
The second one is due  to Le Foll [lS]. For  this  iterat,ive 
algorit.hm, the occurrence of a singularit,y does not 
perturb  the numerical process: in such a case, or, more 
generally, when the system is underdetermined, t.he 
Le Foll algorithm converges t.o a core solution of the 
system. 

B. Circular Contour 
Let us consider the same problem as in  section II-D. 

The singular  character of matrix A clearly appears in 
(Fig. 1) when the first, approximation process is  applied 
to (2) and (3) .  The  variations of t.he determinant  with 
respect to  ka, a.re very ra.pid in  tlhe neighborhood 
of a  singularity. These variations  provide an accurate 
determination (4 significant digits) of t.he resonant 
frequencies of t.he complementary problem. On the ot,her 
hand, when (10) and (11) are used, the det.ernlinant  has 
monot.onic variations  (Fig. 1). 

The value ka = 3.8317 corresponds to a resonance 
for both E and H cases ( J { ( k a )  = -J l (ka )  = 0) a.nd 
thus is a singular va.lue for both (2) a,nd (3) .  I n  Figs. 2 
and 3 the computed  results are compared with the exact 
solution. The Gauss-Jordan  algorithm provides an 
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I 

i 
Fig. 1. Determinant variations for linear  systems deduced from 

equations relevant to  clasical  and hybrid potential formulations. 
Curves 0, 0, @, 0, correspond, respectively, to (a ) ,  (3), (lo), 
(11). 

IJ,I 
2.5 

2-0 

15 

10 

Fig. 2. Normalized current density, E case. Curve 0 corresponds 
to  exact  solution,  curves @ and @ to computed  solutions from 
( 2 )  with Gam-Jordan  and Le Foll  algorithms,  respectively. 

0 

Fig. 3. Normalized current density IT case. Curve @ correspouds 
to  exact  solution,  curves @ and @ to  computed  solutions from 
(2) with  the Gauss-Jordan and  Le Foll  algorithms, respectively. 

lul , 

Fig. 4. Near-field distribution computed  from classical method 
(1) ( X X X )  and  hybrid  potential method (11) (000). Con- 
t.inuous line corresponds to exact distribution.  For kx > ku, 
IL represents external elect,ric field component, for kx < ka, u is 
proportional to magnetic field component of eigenmode. 

- 
2~ 311 4 kx 

Fig. 5. Near-field distribution computed from classical method 
(1) ( X X X )  and hybrid potential method ( l l ) ,  (000). Con- 
tinuous line corresponds to  exact distribution.  For ks > ka, u 
represents  external  magnetic field component, for kx < ka, u is 
proportional to elect,ric-field component of eigenmode. 

(8) (b) 

Fig. 6. Far-field distribution computed from classical method 
(---) and hybrid potential method (-), coinciding with 
exact  solution). 



BOLOMEY AKD  TABBAR%:  COYPLEMEKTA4RF  BOUNDARY  VALUE P R O B L E M  361 

mbitrary linea,r combinat-ion of the exa.ct solution and  the 
one related to  the complement,a.ry interior problem. Le 
Foll's algorit,hm gives the core solution. The variat,ions 
of the computed solutions are  very  different from  those 
of the exact solution, but it must  be rema.rked t,hat, the 
orders of magnit,ude a.re not  absurd. Therefore, if these 
solutions a,re intzoduced into ( l ) ,  one must  not  be 
surprised to find erroneous values  for the near field 
(Figs. 4 and 5 )  and for the scattering  diagram  (Fig. 6). 
If the comput,ation concerning t,he  near field have  no 
particular significance in  the region exterior to  the obstacle, 
in  the region interior to  the  latter,  they provide the 
configuration of the resonant eigenmode. When  t,he 
external problem corresponds to  an E or H case, t,he 
field computed in Di is  relevant t.0 a  magnetic or electric 
eigenmode, respectively. For the problem here con- 
sidered, the magnetic eigenmode varies like Jo(kz) and 
the elect,ric one like Jl(kz). The use of hybrid  potentials 
gives satisfactory  results in t,he out.side of t.he scatt,erer. 

C .  Rectangular Contour 
In  the ca.se of a rect,angular  contour, t,he second ap- 

proximation process was applied. The exa.ct solution for 
the ext.erna.1 problem is not analyt,ically known. To check 
the validity of the solution, the energy test was used. It 
was experimentally found  t,hat. the corresponding quantity 
must  be less than a few percent in order that t.he solution 
bc correct,. Fig. 7 shows the correlat,ion bct.wecn det,ermi- 
nant a.nd energy test va,riat.ions in the case of a quasi- 
degenerate rect.angular contour.  Resonant values a.re not 
so sharply defined as  in  the circular contour case because 
t.he approximation process here used is less accurate. 
The curves  reported  here show  how far we can go int.0 
the detection of neighboring resonant modes. Fig. 8 
shows the cont.inuous deforma.tion of the interior  mode 
between the resonant modes (1,2) and (2 , l )  When the 
conlplenlent.ary interior problem is  degenerate, the 
interior field is a linear combination of all  degenerate 
modes. Nevertheless, we can  separate t,hem by using 
different.  values of the pammeter Bo (Fig. 9). Thus, in 
the case of the square  contour, modes (1,2) and (2,l) 
have the same  resonant  frequency  and  appear  separately 
for different, values of the incident. a,ngle eo. 

D. Elliptic C0ntou.r 

The cstse  of the elliptic contour enables some com- 
parisons  between the met,hods used to avoid t.he difficulty 
result,ing from the coupling between  complementary 
problems. We shall consider, for inst,ance, t,he E case. As 
a reference we have used two  methods deduced from an 
integra.1 equation of t,he first kind,  This  equation ca,n be 
easily obtained from (1) by  direct use of t,he appropriate 
boundary condit.ion. It can  be shown that t.he singular 
values of k for t.his equation  are those of t.he comple- 
mentary interior problem for the same  boundary condi- 
t-ion. A iirst set of result,s mere obt.ained by solving directly 
this  equation  by  the  iirst a.pproximation process. A second 

ka 
Fig. 7. Correlation between variations of the  determinant  and 

energy test for a  rectangular cylinder. 

IE' 110 

F: 1.IN5 

3 ka.3.5150 , m=2,n=l 

Fig. 8. Computed field distribution inside rectangular cylinder 
illustrating transit.ion  between two neighbored eigenmodes. 

kz = 35115 

Fig. 9. Computed field distribution inside square cylinder illus- 
trating possibilit,y of separating degenerate eigenmodes by mean 
of incident  angle eo. 
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TABLE I1 
t I I I I I i 

I I 1 Method C las s i ca l  Waterman Class ica l  Schenk po ten t i a l s  
Hybrid I 

Tvw of  eauations  first  kind  second  kind + cons t ra in ts  I second  kind. 
System  of 

1 -  . 

equations 

I I Algori  thm Gauss Jordan Gauss Jordan Gauss Jordan Le Foll Le Foll  Gauss Jordan I I I 
I 60’ 

0.946 

0.058 
0.047 

0.071 
0.099 

0.169 
0.144 

0.9L7 
0.046 
0.058 
0.071 
0.099 
0.144 
0.168 

0.786 

0.120 
0.038 

0.080 
0.034 
0.105 
0.438 

0.78 5 
0.039 
0.119 
0.081 
0.034 
0.104 
0.432 

0.934 

0.057 
0.047 

0.098 
0.070 

0.145 
0.173 

0.945 
0.047 
0.059 

0.102 
0.072 

0.145 
0.168 

I Energy test 
0.03 1 2.0 1 0.6 1 0.5 

I I I I 1 I I I 

TABLE I11 
t I I 

~~ ~ ~~~ 

set wm obtained by using the Waterman  method. For 
both sets, the numerical  results concerning the sca.t,tering 
diagram are  yery closely related and  the energy test is 
of the order of 3 X lo4 (Table 11). 

Equation (2) was then resolved ‘Nit,h and  ndhout 
additional  constraints a.s indicated by Schenk. In  the 
first ca.se, it is interesting to  note that in spite of an 
energy test of 2 X there  are  many differences between 
the corresponding result and  the preceeding ones. There- 
fore it would seem necessary to have energy t.est inferior 
to  1 X 10-2 in order  for the solution to be considered as 
good. In  the second case, two  different choices for the 
interior  constraint  points were made. When the points 
are spread  over the major axis of the ellipse it. appea.rs 
that  the constraints  are of no use because the  major 
axis probably corresponds to a  nodal line of the  interior 
resonant mode (Table 11). The corresponding scattering 
diagram is nearly  identical to  the one computed  without 
constraints.  When on the other  hand,  a  point  is  taken a t  
the origin a.nd one point  is chosen in each quadrant, 
then  the solution is greatly improved. The energy test 
is equal to  6 X lW3 and  the computed  diagram is in good 
agreement  with the reference diagrams. Similarly favor- 
able  results a.re obtained  with  hybrid  potentials,  without 

any of the uncerta.inty, as in the preceding case, con- 
cerning the  distribution of the interior  points. 

At this point, it is  interesting to examine the degrada- 
tion of the energy test as a  function of the ellipticity for 
t,he  Waterman  method. Clea.rly, it appears that  the 
energy test becomes  worse and worse when the ellipticity 
increases in  spite of careful renormalization of the systems 
(Table 111). 

117. CONCLUSION 

The consequences of nonuniqueness in the classical 
formula.tion have been illustrat,ed by some numerical 
examples. On the other  hand, it appears that representing 
the diffracted field as a suitable  linear  combination of 
single and double layer  retarded  potentials  constitutes 
a.  good manner  in order to overcome difficulks  in t,he 
numerical resolution of scatt.ering and  radiation problems. 
This method seems t.o be very reliable compared t o  the 
Waterman  and Schenck methods which presents  some 
limit.ative condit.ions of applicability. 

Whatever  the met.hod, the energy t,est., properly used, 
constitutes a good check preserving aga.inst, accidental 
errors result,ing from nonuniqueness. For t,he  sake of 
simplicity, only scalar problems have been considered 
but  the previous considerations can  be  extended to  
vector problems. 
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Communications 

On Numerical Convergence of Moment Solutions of 
Moderately Thick Wire Antennas Using 

Sinusoidal  Basis Functions 

WILLIAM A.  IMBRIALE AKD PAUL G. INGERSON 

Absirucf-Wire antennas  are solved  using a moments solution 
where  the  method of subsectional basis  is applied with both the 
expansion and  testing functions  being  sinusoidal  distributions. 
This allows not only a simpli6cation of near-field terms  but also 
the far-field expression of the radiated field from each segment, 
regardless of the  length L. Using sinusoidal basis functions, the 
terms of the impedance  matrix  obtained  become  equivalent to 
the  mutual impedances  between the subsectional dipoles. These 
impedances are the f ami l i a r  impedances  found using the induced 
EMF method. In the induced EMF  method an equivalent radius 
is usually used in the evaluation of the self-impedance term to 
reduce computation time. However, it is shown that only for very 
thin segments  that  the correct  equivalent radius  is  independent 
of length. When  the  radius to length ratio (u/L) is  not  small, an 
expansion  for the equivalent radius in terms of u/L  is given for 
the self-impedance term. The  use of incorrect self-term, obtained 
by using  a  constant  equivalent radius term, is shown to  be re- 
sponsible  for divergence of numerical  solutions as  the  number of 
sections is increased. This occurrence is related  to  the ratio of 
a/L  of the subsections and  hence becomes a problem for  moderately 
thick wire antennas even  for a reasonably small  number of segments 
per  wavelength.  Examples are given showing the convergence with 
the correct self-terms  and  the divergence when only a length 
independent equivalent radius  is used. The converged solutions 
are  also compared to King’s second- and third-order  solutions 
for  moderately thick dipoles. 

I. IKTRODUCTIOK 

The method of moments is applied to wire antennas as discussed 
in other papers [l], [Z], but carried to a higher order of approxima- 
tion which allon~s treating  the case where the length to radius ratio 
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Fig. 1 Straight mire and coordinate system. 

is small. The theory will discuss the st.raight wire antenna  but  the 
extension to wires of arbitrary  shape is straight.forward. 

Fig. 1 shows a straight section of -xire of circular cross section, 
and defines the coordinate  system. The wire extends from z = 0 
to z = L along the z axis and is of radius a. It is assumed that  the 
radius is small  compared to a wavelength but  the  ratio of a to L 
need not  be small. The only significant component of current on 
t,he wire is then  the axial  component, ahich can be expressed in 
terms of the  net  current I ( z )  a t  any  point z along the wire. The 
current distribution will then be modeled as an infinitely thin  sheet 
of current forming a tube of radius a, with  the  density of current 
independent of circumferential position on the tube. 

An operator  equation for the problem i s  given by 

where E,’@) is the z component of the impressed electric field at 
the wire surface, I @ ‘ )  is surface current density, .fc dc represents 
the integration around  the circumference, and R is the dist.ance 
from the source point  to t.he  field point,. The  boundary condit,ion 
for t,he current. is I ( 0 )  = I ( L )  = 0. 

11. THEORY 

The procedure is basically one for which the wire is divided into 
subsect.ions, and a generalized impedance matrix ( Z )  obtained  to 
describe the electromagnetic  interactions between subsections. The 


