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the ratio of the maximum height of the deformation to
the thickness of the dielectric slab. If ¢ is reasonably
small, for example e < 0.2, the second-order scattered
fields may be neglected without effecting much the
accuracy of the previous results.

In conclusion, the present example shows how to
apply the formulas in previous sections. It shows how
those calculated quantities vary when the shape of the
perturbed boundary changes.
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Numerical Aspects on Coupling Between
Complementary Boundary Value
Problems

JEAN-CHARLES BOLOMEY anxp WALID TABBARA

Abstract—The consequences of nonuniqueness for integral
equations used in the numerical resolution of electromagnetic
scattering problems are investigated from a practical point of view.
The scatterers are closed perfectly conducting cylinders of arbitrary
cross section illuminated by a plane wave in both E and H polariza-
tions, It is shown how to detect the frequencies at which non-
uniqueness occurs, and how to avoid the resulting errors by the
use of the notion of an equivalent problem. This approach is com-
pared to other ones proposed by different authors, A new interpreta-
tion of the computed solution, when uniqueness conditions are not
satisfied, is given and it is shown how to use such a solution in
the computation of the resonant modes of the interior problem,
even for degenerate modes.

I. INTRODUCTION

HE INTEGRAL formulation is well suited to the
numerical solution of scattering and radiation prob-
lems, particularly when the scatterers or radiators are in
the resonance domain (i.e., when their dimensions are
of the order of-the wavelength). This formulation is of
increasing interest to engineers.
The integral formulation leads to a great diversity of
integral or integro-differential equations which can be
reduced, by means of a moment method, to a high-order
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system of linear equations. As long as existence and
uniqueness conditions are satisfied and the limits of
storage and speed of actual computers are respected, the
solution of the linear system can be obtained without
great difficulties,

The discussion concerning existence and uniqueness
of a solution would seem to be of only theoretical interest,
especially when we deal with a practical problem whose
solution exists and is unique. This is true when it is
possible to obtain a closed form solution. In this case,
nonphysical solutions, which usually appear when the
formulation is not accurate, can be eliminated afterwards.
This is no longer possible when we try a numerical resolu-
tion, and, as we shall see later, the interpretation of the
results appearing in an array might be difficult. One can
imagine then the practical importance of a discussion
about existence and uniqueness conditions.

In fact, this discussion can be found at the base of
many theoretical investigations of electromagnetic and
acoustic scattering and radiation problems. Though many
papers have been written on this subject (for substantial
references see [11-[3]) most of them are arduous for an
engineer whose interest is the result of the discussion.

For the equations, ordinarily deduced from the Green’s
theorem, the existence conditions are always satisfied,
but uniqueness is not guaranteed (see for instance [1]).
Generally speaking, uniqueness is related to the existence
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of solutions of the associated homogeneous equations.
Some of these solutions may be linked to the problem
under investigation (i.e., resonant modes of a cavity,
eigenmodes of a surface wave structure externally excited
«++), whereas others are parasitic solutions usually
related to eigensolutions of other problems. For an exterior
scattering or radiation problem in a domain D,, these
solutions correspond to the interior cavity problem in
the complementary domain D, For these reasons such
exterior and interior problems are called complementary.

Our purpose here is to study, from a practical point of
view, the consequences of the coupling between com-
plementary problems on numerical resolution of the
problem. We shall particularly emphasize two points:
first, the detection of the errors resulting from the coupling
in the classical formulation, second the use of the notion
of an equivalent problem to avoid such errors [61-[8].
This approach is compared to other ones proposed by
different authors [47], [5]. We shall give & new interpreta-
tion of the solution computed when uniqueness conditions
are not satisfied and show how to use such a solution in
the computation of the resonant modes of the interior
problem, even for degenerate modes. Finally, a series
of numerical results will be given which illustrate the
different aspects of the problem.

II. GENERAL CONSIDERATIONS

A. Classical Integral Formulation

For the sake of simplicity we shall consider only a two
dimensional problem as is the case for a perfectly con-
ducting infinite cylinder receiving an incident wave whose
electrical field (E case) or magnetic field (H case) is
parallel to its generators. Let C denote the contour of
the obstacle in a cross section plane, and D. and D,
respectively, the exterior and interior domains with
respect to C.

The Green’s theorem provides us with the following
representation for the total field

Hu(z) = ub(x) —|—/ {G(2,2") 0nru (")

— 0., Gz, 2 )u(z')} de” (1)

where % and u° are the longitudinal components of the
total field and the incident field, respectively, H, the
characteristic function of D,, 8, is the symbol of the
derivative along the interior normal to C, and G the free-
space Green’s function. With the time dependence
e, Glz,2’) = (J/HH@k |z — 2'|) where k is the
propagation constant in D, and H,® the Hankel function
of second type and zero order.

In each case of polarization, one may deduce from (1)
a Fredholm’s integral equation of second kind

1
= U — f 3.F0u = 3,u°, for E case

5 (2)

for H case.

1
5“ + / 3G u =, (3)
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The existence and uniqueness of a solution for these
equations can be discussed by means of the Fredholm
alternative. (This would not be possible with an integral
equation of the first kind). Let {k.F} and {%.7} denote
the eigenvalues of the interior cavity D; bounded by
perfectly conducting walls, in the £ case and the H case,
respectively. Equations (2) and (3) then have a unique
solution if &k # k.7 and k # k.%, respectively. If these
conditions are not realized the homogeneous equations
associated with (2) and (3) have no vanishing solutions
and (2) and (3) have an infinite number of solutions [1].

The existence of these eigensolutions may seem sur-
prising especially if one considers the fact that they do
not correspond to any possible physical solution of the
scattering problem. It turns out that these parasitic
solutions are related to the complementary interior
problem for the other polarization and result from the
fact that (2) and (3) correspond to the physical boundary
conditions of the considered scattering problem only
when the total field is zero in D;. But, this field is precisely
nonvanishing for the resonant frequencies of the interior
problem. It can be shown that among all the solutions
of (2) and (3), only the physical solution of the scattering
problem creates a zero field in D; Furthermore the
parasitic solutions correspond to the resonant modes of
the cavity D, [10], [11].

B, Numerical Problems

The consequences of the aforementioned coupling must
not be underestimated in the numerical resolution. By
means of the well-known moment method [127], (2) and
(8) can be reduced to a system of linear equations of
finite dimensions.

We shall briefly recall here the principles of this method.
Equations (2) and (3) can be written in the form Lf = g,
where L is a linear operator, ¢ a known source function
and f the unknown function. The solution can be ap-
proximated, using a norm, in a Hilbert space 3¢, by a
function such that

N

f(N) = Z aﬂfﬂ

n=1

lim || f ~ 7] =0 (4)

with { f.} a complete set of base functions in 3¢. The
unknown coefficients o, satisfy the matrix equation

AX =B (5)
with Am.n = <wm7Lfn>7 B, = <wm;g>: X, = Qn, for n = 8)2:
ceo,N; m =82, ,N; {wa} is another set of base

functions in 3¢ and (- | ) represents the scalar product
o) = [ H@5* ) do

where the asterisk represents the complex conjugate.
Theoretically, when k is equal to an eigenvalue of the
interior complementary problem, and when N — o,
the system (5) is singular. Practically the problem
is more complicated. In fact, when N has a finite value
the system is only approximate. Furthermore computa-~
tions are made with a finite number of significant digits.
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These remarks have two consequences: on one hand, the
system is never exactly singular and on the other hand,
the consequences of the coupling do mnot only occur
exactly at the eigenvalues but rather in the neighborhood
of the latter,

Often, the occurrence of an eigenvalue is not sufficient
t0 render useless the algorithm employed for the computa-
tion of the solution. Nevertheless, the computed solution
appears as an arbitrary linear combination of the re-
searched external physical solution and of parasitic solu-
tions of the internal complementary problem. As we shall
see later this kind of error is more hazardous when the
" orders of magnitude of the solution remain reasonable.
- It is obvious that any numerical test (double inversion,

substitution) is not significant.

C. Numerical Tests

The small value of the determinant can make us
presume that an error exists, but only a continuous
variation of the determinant with respect to & clearly
indicates resonances. As this method is lengthy it is
more suitable to use systematic tests.

One test is to substitute the computed solution in the
right-hand side of (1), this is done for different points
in D;. If the computed field vanishes at these points,
then the computed solution is correct. If not, the fre-
quency used is near an eigenfrequency of the comple-
mentary interior problem and the total field computed
in D; determines the resonant mode [157]. This procedure
can be easily used in the study of internal problems.

A second test is to check the energy conservation at
infinity. In the case of an incident plane wave, with 8
the angle of incidence, the power scattering diagram
| F(9)|? satisfies the well known relation

2
| 1F@Fde = —20Re (F (a0} (6)
0
where Re { f} denotes the real part of f and F(6) is
evaluated in the forward scattering direction. Thus,
the calculation of the quantity & such that
2%
g= [ |F@OFd+2wRe [FG}  (T)
o

indicates how good is the energy conservation. The
expression giving & is somewhat more complicated for
an arbitrary distribution of sources. Nevertheless, its
computation using the solution of the integral equations
remains a suitable check especially because the result can
be characterized by a single number which can be easily
deduced from | F'(8) |2, a quantity of practical interest. As
we shall see later, it is possible to determine &i, the
maximum allowed value of & such that for & > &4 the
result is surely false and for & < & the result can be
considered as true with some confidence.

D. The Particular Case of Circular Cylinder

‘When we examine the coupling between complementary
problems, the case of the circular cylinder is particularly
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interesting, because it is practically the only one for
which the external and internal problems possess analytical
and easy computable solutions. Thus it is possible to
emphasize some important points of the preceding
sections.

In the case of a circular cylinder of radius a, Table I
gives the analytical expressions of the coefficients A,
and B, deduced from (2) [similar consideration ocecurs
for (3)] for different choices of the base functions. When
the set of base functions { f.} and {W.} coincides with
the eigenfunctions of the kernel of the integral equation,
the matrix 4 is obviously diagonal. Then one can easily
see that A is singular if ka is a zero of J,,’(ka) in the E
case [or a zero of J,(ka) in the H case] for m < N.
When an analytical resolution is performed, no difficulty
occurs because the corresponding coeflicient B, is also
zero. On the other hand, in the case of a numerical resolu~
tion one cannot predict the behavior of the system.
The A,.,. are computed numerically and those which
must be zero, have in faet very small values. Thus,
matrix A is never exactly singular.

In the case of the second choice of the base functions,
matrix A is entirely filled, but the singularities can be
easily determined, because in a resonant case all elements
in a row are zero. In the third choice it is not obvious
that we have a singularity and we do not know for which
value of N they will start appearing. Thus one can easily
imagine that the extent to which a singularity occurs
depends on the choice of the base funetions and on the
accuracy of computation of the coefficients A, ..

E. Methods of Resolution in a Singulor Case

When one of the previously described tests indicates
a resonance of the complementary interior problem,
(2) and (3) cannot be directly used. One method of
retaining only the correct solution consists in formulating,
explicitly or not, the condition that the total field vanishes-
iIl D-;.

Waterman [4] proposed to use the “generalized
boundary condition” in D;

0 = u(z) —|—[ {G(2,2") dnu(z’) — 0.G (22 )u(a’)} do,

x € D (8)

Making use of polar coordinates and of the well known
expansions of the kernel in series of Bessel and Hankel’s
functions, we are led to a system of integral equations
which allows us to compute the field or its normal deriva-
tive on C under the unique condition that the total field
vanishes inside a circular domain in D;. By an analytic
continuation of the field in D; one can show that this
necessary condition is also sufficient in order that the
field vanishes on the entire domain D, provided that the
contour of the obstacle is not diseontinuous [4]. Numeri-
cally it becomes less sufficient when the ratio of the largest
dimension of the cylinder to the smallest dimension has
a large value or in the case of an edge-type contour.
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TABLE I

A w A B_

j mé . .
JP M SLLSCIC T (k)

j , -jn@ jkacosg

™ lse)| jejeangad™® |t g

) _ ka ) _jp(G,;en) . +jkacos8,
H(6-6)|6(6-8)| - i ZcpJp(la)Hp(ka)e tje keosh,,

. in
e (5%

Schenck [57 resolved (2) and (3) in a similar manner
by introducing the additional constraints which force
the field to be zero at a finite number of points in D..
These points must be chosen in such a way that the con-
straints have a maximal efficiency. The resolution of the
resultant overdetermined system, can be effectuated by
means of an optimization algorithm.

Another method is based on the idea of an equivalent
problem. It allows us to formulate a fictitious problem
equivalent to the physical one in D, only, in such a way
that the complementary parasitic problem does not
possess Tesonant frequencies for real values of k. Thus,
we may represent the scattered field as a linear combina-
tion of single and double layer retarded potentials [6],
[77], [13] or more generally as a linear combination of
higher order potentials [8]. For instance the field in D,
can be represented by

wu(z) = u(z) + / [8.-G(z,x") + jkG(2,2") Jr (") d='.

(9)

Such a linear combination of potentials can be called
hybrid potential. The unknown density r(2’), in each
case of polarization, is deduced from one of the following
equations:

%7‘(x) — f [02G(z,x") + 7RG (x,2") Jr(2") d’

= u’(2), for E case (10)

— %-r(x) —j f 0.G(z,2)r (2) dz’ — FP f 9 G ()

r{z') da’ = 9.u%(x), for H case (11)
where FP stands for “finite part in the sense of

Hadamard”” [14]. The knowledge of the order of sin-
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gularity of 8,..%G allows us to write

FP f BunG (z,2)f(z') da’

- tm |

C
zey

86 () f (') di’ ~ M} (12)

=M (v)

where M () is the length of the arc v, and z being at the
center of v. The introduction of a finite part avoids the
uneasy manipulation of an integro differential equation.
The right-hand side of (12) can be easily computed by
the usual integration methods.

ITI. NuMERICAL RESULTS

A. General Considerations

Two approximation processes have been used. In both
cases, { f»} are of the rectangular pulse type, but in the
second process, Lf, is computed with a crude approxima-~
tion consisting in the replacement of the integral by the
value of the integrand at the center of the interval of
integration. In both cases, the testing base functions
W. are of the Dirac pulse type. The sampling rate on
the contour C is about 10 per wavelength. Such a sampling
rate provides an accuracy of the order of 1073, in the
absence of interior resonance.

Two different algorithms were used to solve the systems
of linear equations. The first one is the well-known Gauss-
Jordan algorithm for which it is very difficult to find a
genuine criterion to check the singularity of the system.
Indeed, computations have shown, that very good results
can be obtained even if the determinant of the system is
very small. Numerical examples will later illustrate
the behavior of this algorithm in quasi-singular cases.
The second one is due to Le Foll [16]. For this iterative
algorithm, the occurrence of a singularity does not
perturb the numerical process: in such a case, or, more
generally, when the system is underdetermined, the
Le Foll algorithm converges to a core solution of the
system.

B. Circular Contour

Let us consider the same problem as in section II-D.
The singular character of matrix A clearly appears in
(Fig. 1) when the first approximation process is applied
to (2) and (3). The variations of the determinant with
respeet to ka, are very rapid in the neighborhood
of a singularity. These variations provide an accurate
determination (4 significant digits) of the resonant
frequencies of the complementary problem. On the other
hand, when (10) and (11) are used, the determinant has
monotonic variations (Fig. 1).

The value ka = 3.8317 corresponds to a resonance
for both £ and H cases (Jo'(ka) = —Ji(ka) = 0) and
thus is a singular value for both (2) and (3). In Figs. 2
and 3 the computed results are compared with the exact
solution. The Gauss-Jordan algorithm provides an
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Fig. 1. Determinant variations for linear systems deduced from
equations relevant to classical and hybrid potential formulations.
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(11).
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Fig. 2. Normalized current density, E case. Curve (O corresponds

to exact solution, curves (@ and (® to computed solutions from
(2) with Gauss—Jordan and Le Foll algorithms, respectively.
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Fig. 3. Normalized current density H case. Curve (O corresponds

to exact solution, curves @ and (® to computed solutions from
(2) with the Gauss—Jordan and Le Foll algorithms, respectively.
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4. Near-field distribution computed from eclassical method
(XX X) and hybrid potential method (11) (OOQ). Con-
tinuous line corresponds to exact distribution. For kz > ka,
u represents external electric field component, for kz < ka, u is
proportional to magnetic field component of eigenmode.
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Fig. 5. Near-field distribution computed from classical method
(1) (XX X) and hybrid potential method (11), (OQQ). Con-
tinuous line corresponds to exact distribution. For kz > ka, u
represents external magnetic field component, for kz < ka, u is
proportional to electric-field component of eigenmode.

~e -
S,

S

(a)

(b)

Fig. 6. Farfield distribution computed from classical method
(---) and hybrid potential method (——), coinciding with
exact solution).
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arbitrary linear combination of the exact solution and the
one related to the complementary interior problem. Le
Foll’s algorithm gives the core solution. The variations
of the computed solutions are very different from those
of the exact solution, but it must be remarked that the
orders of magnitude are not absurd. Therefore, if these
solutions are introduced into (1), one must not be
surprised to find erroneous values for the near field
(Figs. 4 and 5) and for the scattering diagram (Fig. 6).
If the computation concerning the near field have no
particular significance in the region exterior to the obstacle,
in the region interior to the latter, they provide the
configuration of the resonant eigenmode. When the
external problem corresponds to an E or H case, the
field computed in D; is relevant to a magnetic or electric
eigenmode, respectively. For the problem here con-
sidered, the magnetic eigenmode varies like Jo(kz) and
the electric one like J1(kz). The use of hybrid potentials
gives satisfactory results in the outside of the scatterer.

C. Rectangular Contour

In the case of a rectangular contour, the second ap-
proximation process was applied. The exact solution for
the external problem is not analytically known. To check
the validity of the solution, the energy test was used. It
was experimentally found that the corresponding quantity
must be less than a few percent in order that the solution
be correct. Fig. 7 shows the correlation between determi-
nant and energy test variations in the case of a quasi-
degenerate rectangular contour. Resonant values are not
so sharply defined as in the circular contour case because
the approximation process here used is less accurate.
The curves reported here show how far we can go into
the detection of neighboring resonant modes. Fig. 8
shows the continuous deformation of the interior mode
between the resonant modes (1,2) and (2,1) When the
complementary interior problem is degenerate, the
interior field is a linear combination of all degenerate
modes. Nevertheless, we can separate them by using
different values of the parameter 6, (Fig. 9). Thus, in
the case of the square contour, modes (1,2) and (2,1)
have the same resonant frequency and appear separately
for different values of the incident angle 6,.

D. Elliptic Contour

The case of the elliptic contour enables some com-
parisons between the methods used to avoid the difficulty
resulting from the coupling between complementary
problems. We shall consider, for instance, the E case. As
a reference we have used two methods deduced from an
integral equation of the first kind. This equation can be
easily obtained from (1) by direct use of the appropriate
boundary condition. It can be shown that the singular
values of k& for this equation are those of the comple-
mentary interior problem for the same boundary condi-
tion. A first set of results were obtained by solving directly
this equation by the first approximation process. A second
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TABLE II
Method Classical Waterman Classical Schenk pot}ztizgs
System of
Type of equations first kind fyrst kind second kind second kind + constraints second kind,
equations - I
Algorithm Gauss Jordan Gauss Jordan Gauss Jordan Le Foll Le Foll Gauss Jordan
B - o 0.946 0.947 0.786 0,785 0.934 0.945
30° 0.047 0,046 0.038 0,039 0.047 0,047
60° 0,058 0.058 0.120 0.119 0.057 0.059
s IE (O 90° 0,071 0,071 0.080 0,081 0,070 0.072
N 120° 0,099 0.099 0,034 0.034% 0,098 0.102
150° 0,144 0.144 0,105 0,104 0.145 0,145
180° 0.169 0.168 0.438 0.432 0.173 0.168
B“e’gyz‘“c j 0.02 0.03 2.0 2,0 0.6 0.5
Y RO LRGN
~¢x Re (F(5))
TABLE III any of the uncertainty, as in the preceding case, con-
cerning the distribution of the interior points.
E““:“;l:y £ 7 At this point, it is interesting to examine the degrada-
3/kb tion of the energy test as a function of the ellipticity for
¢ 1ot the Waterman method. Clearly, it appears that the
t.0 ¢ o, energy test becomes worse and worse when the ellipticity
0.8 10 . . . .
< 103 increases in spite of careful renormalization of the systems
0.6
0.4 0.3 (Table I1I).
15.0
0-2 > IV. CoNcLUsION

set was obtained by using the Waterman method. For
both sets, the numerical results concerning the scattering
diagram are very closely related and the energy test is
of the order of 3 X 10—* (Table IT).

Equation (2) was then resolved with and without
additional constraints as indicated by Schenk. In the
first case, it is interesting to note that in spite of an
energy test of 2 X 1072 there are many differences between
the corresponding result and the preceeding ones. There-
fore it would seem necessary to have energy test inferior
to 1 X 1072 in order for the solution to be considered as
good. In the second case, two different choices for the
interior constraint points were made. When the points
are spread over the major axis of the ellipse it appears
that the constraints are of no use because the major
axis probably corresponds to a nodal line of the interior
resonant mode (Table IT). The corresponding scattering
diagram is nearly identical to the one computed without
constraints. When on the other hand, a point is taken at
the origin and one point is chosen in each quadrant,
then the solution is greatly improved. The energy test
is equal to 6 X 1073 and the computed diagram is in good
agreement with the reference diagrams. Similarly favor-
able results are obtained with hybrid potentials, without

The consequences of nonuniqueness in the classical
formulation have been illustrated by some numeriecal
examples. On the other hand, it appears that representing
the diffracted field as a suitable linear combination of
single and double layer retarded potentials constitutes
a good manner in order to overcome difficulties in the
numerical resolution of scattering and radiation problems.
This method seems to be very reliable compared to the
Waterman and Schenck methods which presents some
limitative eonditions of applicability.

Whatever the method, the energy test, properly used,
constitutes a good check preserving against accidental
errors resulting from nonuniqueness. For the sake of
simplicity, only scalar problems have been considered
but the previous considerations can be extended to
vector problems.
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On Numerical Convergence of Moment Solutions of
Moderately Thick Wire Antennas Using
Sinusoidal Basis Functions

WILLIAM A. IMBRIALE axp PAUL G. INGERSON

Abstract—Wire antennas are solved using a moments solution
where the method of subsectional basis is applied with both the
expansion and testing functions being sinusoidal distributions.
This allows not only a simplification of near-field terms but also
the far-field expression of the radiated field from each segment,
regardless of the length L. Using sinusoidal basis functions, the
terms of the impedance matrix obtained become equivalent to
the mutual impedances between the subsectional dipoles. These
impedances are the familiar impedances found using the induced
EMF method. In the induced EMF method an equivalent radius
is usually used in the evaluation of the self-impedance term to
reduce computation time. However, it is shown that only for very
thin segments that the correct equivalent radius is independent
of length. When the radius to length ratio (¢/L) is not small, an
expansion for the equivalent radius in terms of a/L is given for
the self-impedance term. The use of incorrect self-term, obtained
by using a constant equivalent radius term, is shown to be re-
sponsible for divergence of numerical solutions as the number of
sections is increased. This occurrence is related to the ratio of
a/L of the subsections and hence becomes a problem for moderately
thick wire antennas even for a reasonably small number of segments
per wavelength. Examples are given showing the convergence with
the correct self-terms and the divergence when only a length
independent equivalent radius is used. The converged solutions
are also compared to King’s second- and third-order solutions
for moderately thick dipoles.

I. INTRODUCTION

The method of moments is applied to wire antennas as discussed
in other papers [1], [2], but carried to a higher order of approxima-
tion which allows treating the case where the length to radius ratio
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is small. The theory will discuss the straight wire antenna but the
extension to wires of arbitrary shape is straightforward.

Fig. 1 shows a sfraight section of wire of cireular cross section,
and defines the coordinate system. The wire extends from z = 0
to z = L along the z axis and is of radius a. It is assumed that the
radius is small compared to a wavelength but the ratio of a to L
need not be small. The only significant component of current on
the wire is then the axial component, which ean be expressed in
terms of the net current 7(z) at any point z along the wire. The
current distribution will then be modeled as an infinitely thin sheet
of eurrent forming a tube of radius a, with the density of current
independent of circumferential position on the tube.

An operator equation for the problem is given by

o) = J (dz” )j{/

where E.(z) is the z component of the impressed electric field at
the wire surface, I(z’) is surface current density, &, dc represents
the integration around the circumference, and R is the distance
from the source point to the field point. The boundary condition
for the current is I(0) = I(L) = 0.

(1

II. TaEory

The procedure is basically one for which the wire is divided into
subsections, and a generalized impedance matrix (Z) obtained to
describe the electromagnetic interactions between subseetions. The



