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COMPUTATION OF LAPLACIAN POTENTIALS BY AN EQUIVALENT
SOURCE METHOD
Prof. R. F. Harrington, Ph.D., K. Pontoppidan, Civ.Ing., P. Abrahamsen and N. C. Albertsen

An algorithm for the computation of the solution to
Laplace's equation in a 2-dimensional region is given
in terms of equivalent sources on the boundary. The
region may be of an arbitrary shape, and the boundary
conditions may be an arbitrary combination of Dirichlet,
Neumann and impedance types. The solution is obtained
by a moment method, using either a step approximation
to the source, or a piecewise-linear approximation.
Point matching is used for testing the boundary condi-
tions. Computer programs are available for the general
problem, and some electromagnetic-field applications
are discussed.

List of symbols
a, j8, y = arbitrary functions of c

<xc = attenuation constant due to metallic losses
r) = yX/z/e) = intrinsic impedance of a medium
CT = equivalent flux source on curve C
e = permittivity

/x = permeability
p — radius vector to a point (x, y)

<$> = solution to Laplace's equation
VF, = potential from strip of uniform source on AC,
A,- = length of element AC,- of curve C

c = length variable along curve C
g = conductivity
k = constant

Iji = elements of matrix [/]
n = outward unit vector normal to curve C
u = unit vector tangential to curve C
w = complex function

x, y — co-ordinates of point in space
z — x + Jy = complex variable
C = capacitance
D = electric-flux density
E = electric-field intensity
H = magnetic-field intensity
/ = current
J = current density
P = power

• P-, = pulse function
Q — electric charge
R = resistance
V = constant potential

Zo = characteristic impedance of a transmission line
* denotes a complex conjugate

1 Statement of problem
Laplace's equation is one of the most important

differential equations of physics. In this paper, we give a
convenient method for computing solutions to Laplace's
equation in a region which is subject to general boundary
conditions on the bounding surface. Only 2-dimensional
problems are considered explicitly, but the procedure is
applicable to Laplace's equation in three or more dimensions.
The general method of solution is to transform the boundary-
value problem into an integral equation,1 and then to solve
this integral equation by a moment method.2*3

Consider a 2-dimensional region R bounded by the contour
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C as shown in Fig. 1. Let the radius vector p denote the
coordinates (x, y) of a point in space, the unit vector n denote
the outward unit normal to C, and the variable c denote the

Fig. 1
Geometry of problem

length measured along C. The problem is to find ^(p) in R
which satisfies Laplace's equation

~bx2

— A

in R, and the boundary condition

j8(c) ~ = y(c)

( I )

(2)

on C. Here a, jS and y are given functions of c. The general
conditions of eqn. 2 include, as specialisations, the following
cases:

(a) Dirichlet boundary conditions, with ct> specified on
C ( a = 1, jB = 0)

(b) Neumann boundary conditions, with ?)<£>/7)n specified on
C (a = 0, j8 = 1)

(c) impedance boundary conditions, with O/(d<I>/()/0 speci-
fied on C (a = 1, y = 0).

Also included are mixed boundary conditions, i.e. combina-
tions of a, b and c over mutually exclusive subsections of C.
In cases b and c it is necessary to specify O at one point in
R or on C; otherwise O is indeterminate by a constant.

2 Method of solution
An arbitrary Laplacian potential O in R can be

produced by sources on C. If flux sources and dipole sources
are allowed, there are infinitely many distributions on C
which produce the same <D in R. This concept, known as the
equivalence principle,4 is discussed in terms of Green's
theorem in Appendix 8.1. Letting cr(c) denote a distribution
of flux sources on C, the potential at any point p can be
expressed by the superposition

= <f>o(c') In T r
Tc \p - p

dc (3)

Here k is a constant which, for reasons discussed in Section 4,
is chosen so that

k > \ p - p'\ (4)

with p and p on C. Specialising eqn. 3 to C, and applying
the boundary condition of eqn. 2, we have
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This is an integral equation for determining a on C. Once a
is found, O in R is given by eqn. 3. Eqn. 3 also applies
externally to C, and we are solving the internal and external
boundary-value problems simultaneously.

Approximate solutions to eqn. 5 can be obtained by the
general method of moments.3 In this Section, we use pulse
functions for expansion and point matching for testing. This
gives a step approximation to the equivalent sources. In
Appendix 8.2, the corresponding solution for a piecewise-
linear approximation to a is discussed.

Define N points pt on C, i = 1, 2, . . ., N, and approximate
C by the N straight-line segments AC,- between points i and
/ + 1. Consider the pulse functions

(I on AC,

' '(e)-\0 elsewhere ( 6 )

and represent a by the step approximation

a ~ S o,P,{c) (7)

Substituting eqn. 7 into eqn. 3, we obtain

<D(p) ~ S °F,(P) (8)

r k
where Y((p) = In , jj dc (9)

Now define points pj, j = 1, 2, . . ., N as the midpoints of
AC,-. Eqn. 8 is substituted into eqn. 5, and the resulting
equation is satisfied at each pj. This gives the set of equations

S <*ihi = yj y = 1,2, . . . . . W . . . . (10)
/ = i

where yy- = y(p7) and

zt+1 k

d/» JP=PJ

Eqns. 10 can now be solved for ah which gives a step approxi-
mation to a according to eqn. 7.

This solution is conveniently expressed in matrix notation
as follows. Let [/] denote the square matrix of the ljh [a] the
column matrix of the ah and [y] the column matrix of the y,.
Then eqns. 10 become

(12)

and the solution

Let [P] denote the row matrix of the pulse functions Ph

defined by eqn. 6. Then the functional expression (eqn. 7)
for the equivalent source is

a = [P][a) - [ /»][ / ]" ' [y] (14)

Finally, let [*F] denote the row matrix of ¥", of eqn. 9. The
potential d> at any point p in R is then given by

The matrix [/] is usually well conditioned, and can be inverted
by any convenient algorithm.

3 Evaluation of matrix elements
For the 2-dimensional case, the matrix elements can be

conveniently evaluated using complex-function theory. Let
z = x + jy represent a point in space, and use the identities

In
\p-p\ \ z - r

dc'= \dz'\=dz'lu (17)

where u is the unit tangent to C. Now eqn. 9 can be written as

T / = Re(w/) (18)
1716

1 f k
where wt = — In ,dz'

ui J*, z - z

(19)

Next, change variables according to z — z' = kv, and inte-
grate In v to obtain

w,: = — \v In v — v\ (20)

This can be rearranged to

M,,<Z) = Z - ^ l in 2 - A,.(j + In
i+x

Ui Z - Z; \ Z - Zi

. . . .' (21)

where A,-= 12,.+ , - z , | (22)

« /=(^ /+ i -* / ) /A/ (23)
VF,- is given by the real part of eqn. 21, according to eqn. 18.

y t

- • x
Fig. 2
Two segments AC; and AC,

Fig. 2 shows two straight-line segments AC,- and ACy in
the approximation of the contour C. The point

iy=(Zy+| +Zy)/2 (24)

is the midpoint of ACy, and the unit vectors «y and uj are
normal and tangential to ACy, respectively. To evalute the
matrix elements by eqn. 11, in addition to xFn we need
^Ts^PjnJ- In terms of complex quantities5,

AT = (*?

a • b = Re (ab*)

Now /7y = —juj, whence

(25)

(26)

and
Z; — Z;1+1- = — In

j "i Zj - *i

(27)

• (28)

Now all the quantities of eqn. 11 are evaluated. As a word of
caution, 7^y¥il'bni is discontinuous at AC,-, equal to TT internal
to C, and equal to — TT external to C.

These formulas are easily programmed using either a
complex algorithm or a real algorithm. We have written
programs for both cases. An outline of a solution in terms of a
piecewise-linear equivalent source is discussed in Appendix
8.2. The computer programs STEPSOURCE and LINEARSOURCE
for the step-source solution and the piecewise-linear-source
solution have been deposited in the TEE Program Library.

4 Test problems
Problems to test the accuracy and rate of convergence

of the solution are easily constructed by choosing arbitrary
PROC. IEE, Vol. 116, No. 10, OCTOBER 1969



known solutions and arbitrary boundary shapes. The case
O = 1 on C was tried for several shapes, and typically gave
O = 1 in R to within 0-25% or better. The case when
C is a circle of unit radius is interesting, because it illustrates
the effect of k on the solution. If k = 1 and a is a constant in
eqn. 3, O = 0 at the centre of the circle, regardless of the
magnitude of a. The problem becomes mathematically in-
determinate, and requires infinite a to produce a finite O.
This cannot occur if we choose k according to eqn. 4.
Physically, we can think of this restriction as requiring that
positive a produce positive O at every point on C. The matrix
then becomes diagonally dominant, ensuring nonsingularity.
Most computations were made with k = 100 and C bounded
by the square |x| = 1 and \y\ = 1.

1- O

0-5

ft.1

A *

§4>=o
dn

dn

0-5 1-0
Fig. 3
Test problem to illustrate convergence

A second test problem is shown in Fig. 3. This is con-
structed by assuming that

O = in R (29)

and evaluating the boundary conditions on C as shown. To
illustrate convergence, the problem was solved using eight
segments AC,-, then 16, then 24 etc. The potential and its
gradient were evaluated at the points A, B and C as shown.
The approximate solution using pulse functions is compared
to the exact solution in Table 1.

Table 1
POTENTIALS AND GRADIENTS COMPUTED FOR THE PROBLEM

OF FIG. 3 USING N SEGMENTS

N

8
16
24
32
40
48

Exact

<!>„

0-7360
0-7482
0-749I
0-7495
0-7497
0-7498

0-7500

|V<D,, |

0 9118
0-9943
0-9967
0-9978
0-9985
0-9990

10000

<I>6

0-5060
0-5012
0-5004
0-5002
0-5001
0-5001

0-5000

!V<D*I

0-9574
0-9911
0-9963
0-9980
0-9988
0-9992

10000

Or

0-2614
0-2519
0-2508
0-2504
0-2502
0-2502

0-2500

|V<Pf|

0-9938
10027
10006
10001
10000
10000

10000

Additional test problems are easily constructed, and we
have tried the programs on a number of them. Some general
trends observed were:

(a) Specification of $ on C tends to give more accurate
solutions than specification of dO/d/j on C. This is to be
expected, because the original integral equation becomes
more singular in the latter case.

(b) Approximate solutions are more accurate in R away from
C than on C. This is reasonable,, because the effect of the
approximation to a becomes smaller the further we are
from C.

(c) The effect of k on the accuracy of the solution is very small,
PROC. IEE, Vol. 116, No. 10, OCTOBER 1969

provided eqn. 4 is satisfied. Except when C was a circle,
we obtained accurate solutions regardless of the choice of
k.

5 Some applications
The computer programs can be used to calculate the

Laplacian field inside or outside C, subject to arbitrary
boundary conditions on C. Such problems arise in many
diverse fields of physics, e.g. heat flow, fluid flow, electro-
statics, magnetostatics etc. In this Section, we consider three
types of electrical problems.

5.1 Resistance
The problem is to calculate the resistance between two

conducting surfaces on or within a homogeneous conducting
medium. If the thickness of the conductor is uniform, the
problem is 2-dimensional. Fig. 4a shows the basic configur-
tion. Conductor Q is maintained at a potential V{ and con-
ductor C2 at a potential V2. The boundary condition over the
rest of C is dO/d/7 = 0. The electric-current flux is given by

J =gE= - (30)

where g is the conductivity of the medium. In complex
notation, AO is given by eqn. 25, and hence

(30

dwj I z - z,+

where -r1 = — In
dz u, z — Z-,

(32)

The notation of eqn. 31 means that Re (VO) = dO/dx and
Im (VO) = dO/dy, which are the x and y components
of VO, respectively. The total current out of C| is

/
Jr . " Jc, <>«

dc (33)

This can be evaluated numerically by summing over the ACy
which belong to C(. The resistance between C| and C2 is
then

04)

Extension to a resistance system of M conductors C h C2, . . •,
CM is straightforward.

5.2 Capacitance
A 2-body capacitance problem is illustrated by

Fig. 4b. Here C, and C2 are conductors maintained at

Fig. 4
Electrical properties
a Resistance
b Capacitance

potentials V{ and V2, and the dielectric medium is homo-
geneous with permittivity e. The electric-flux density is

D = eE = - eVO (35)

where, in complex notation, VO is given by eqn. 31. The
charge per unit thickness on Q is

~rfc (36)

which, again, can be evaluated numerically. The same charge
1717



resides on the inside of C2, but there may be an additional
charge on the outside of C2. The capacitance between Q and
C2is

<3 7 )

Extension to a multiconductor capacitance system is straight-
forward. Note the analogy between the resistance and the
the capacitance problems. Except for the boundary condition
dcD/<)/7 = 0 at a conductor boundary, the two problems are
mathematically identical.

The available computer programs are written for a singly
connected boundary, and require slight modifications to treat
the multiply connected boundary of Fig. 4b. However, if the
problem has one axis of symmetry, such as the broken line
in Fig. 4b, the available computer programs can be applied to
half of C| and C2 connected by the broken line. The boundary
condition on the broken line is dO/d/j = 0, as required by
symmetry.

5.3 Transmission lines
The 2-conductor transmission-line problem is basically

the same as the 2-conductor capacitance problem. If Fig. 4b
represents the cross-section of a transmission line, the
characteristic impedance is

z"-t (38)

where 17 = V(We) *s t n e intrinsic impedance of the medium
between the two conductors. If the conductors are perfect,
the propagation constant is the intrinsic propagation constant
of the medium. If the conductors are imperfect (e.g. they are
metals), the attenuation constant is given by

IP,
(39)

Here Pd is the power dissipated per unit thickness in the
conductors, and Pf is the power flow along the transmission
line. The power dissipated in the walls is given by

(40)

where r — \/(ojfxl2gm) is the surface resistance of the metal
and

rj
(41)

is the tangential component of magnetic field along C. The
power flow along the transmission line is simply

(42)

where Zo is given by eqn. 38. Substitution from eqn. 40, via
eqn. 42, into eqn. 39 gives

Zor
dc . (43)

which can be evaluated numerically once the boundary-value
problem is solved. Again, the extension to a multiconductor
transmission line is straightforward.

6 Discussion
The solution presented is easily applied to boundaries

of an arbitrary shape and to arbitrary boundary conditions.
The principal approximations are:

(a) The contour is approximated by N straight-line segments.
(6) The equivalent source is approximated as either a step

function or a piecewise-linear function,
(c) Boundary conditions are satisfied at discrete points on the

boundary.

No further mathematical approximations are made. All these
approximations can be carried to higher orders by general
methods described in References 2 and 3. If the equivalent-
source distribution is truly continuous, the piecewise-linear
1718

solution converges faster than the step solution. However,
for some boundary conditions and boundary shapes, the true
equivalent-source distribution may be discontinuous. In this
case, the step solution might be better than the piecewise-
linear one.

The accuracy of the solution depends, in general, on the
shape of the boundary and on the boundary conditions. For
any particular problem, it depends on the number N of AC,
used. Since the solution involves a matrix inversion, we are
restricted to N of the order of about 100, because of com-
puting-time and storage considerations. If more accuracy
than this is desired, more sophisticated analyses must be
used.2*3 In the examples used to test the program, we never
encountered any ill-conditioned matrices. A previous attempt
by Cristal to solve the different integral eqn. 47 resulted in
ill-conditioned matrices.6 Perhaps the reason for this is that
eqn. 47 is a more singular equation than eqn. 3, which we
used.

A quantitative comparison of our solution with the finite-
difference method is given in Fig. 5. The finite-difference

0-54

052

<f>P
O-5O

048

0 4 81 12 16
number ot subdivisions in x andy

Fig. 5
Comparison of equivalent-source solutions and finite-difference
solutions
a Finite-difference solution
b Piecewise-linear equivalent source c Step equivalent source

solution shown is that obtained by Schneider.7 The contour
C and the boundary conditions are as shown in Fig. 5. The
xco-ordinate and the ^co-ordinate were each divided into
equispaced increments, which defined the meshes in the
finite-difference solution and the increments in the equivalent-
source solution. A quantitative comparison with the finite-
element solution8 has not been made.

Some qualitative comparisons of these methods are as
follows. Both the finite-difference and finite-element solutions
apply to a differential operator in the 2-dimensional space R.
Our solutions apply to an integral operator on the 1-dimen-
sional contour C. For given increments of length, better
accuracy is to be expected from our solution, because integral
operators are better behaved than differential operators.
However, the finite-difference and finite-element solutions
result in sparse matrices, and can be applied to larger matrices.
The only fair comparison should be based on the time of
computation required for a given accuracy.

A major advantage of our solution is the ease with which
arbitrary boundary conditions can be treated. Treatment of
boundary conditions by the usual finite-difference method is
often complicated. Treatment of boundary conditions by the
finite-element method is less complicated, but general
boundary conditions of the type of eqn. 2 have not been
considered.

The equivalent-source solution of this paper can be
extended to regions which contain two or more homogeneous
dielectrics. In this case, we need additional surface sources on
the boundary contours dividing the dielectric regions. If the
dielectrics are inhomogeneous, we must go to an integral over
R, as discussed in the literature.3

We have used our solution with automatic-plot routines to
give equipotential and gradient plots. The increments used
for such plots can be as small as is desired, since the solu-
tion varies continuously in R. This is in contrast to the
finite-difference solution, which is defined only at points in
R, and to the finite-element solution, which is piecewise-
linear in R. There may, of course, be some irregularities in

PROC. IEE, Vol. 116, No. 10, OCTOBER 1969



our solution on the boundary C due to the approximation to
ex, but this effect is not noticeable at points in R away from C.
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8.2 Piecewise-linear source solution

8.1

Appendix

Integral equations
The usual derivation of integral equations from

Laplace's equation involves the application of Green's
theorem

(44)

to the unknown field <P and to the Green's function

-7T (45)

The Green's function is the potential of a point source, i.e.
the solution to

-V2 VF = 8(p - p') (46)

where 8 is the Dirac delta. Use of eqns. 45 and 46 in eqn 44
gives the familiar identity

on 0

p in R

p in R'
(47)

where R is the region internal to C and R' is the region
external to C. If eqn. 47 is applied to the surface just inside C,
we obtain an integral equation. Note that both O and
dO/<)/7 are discontinuous across C in eqn. 47.

To derive the integral equation (eqn. 3), we apply eqn. 47
twice, once for the region R and once for R'. Letting super-
script / denote quantities in R (internal to C) and e quantities
in R' (external to C), we have

Tin

on 0*

p in R

p in R ' J
p in R

p in R' j

(48)

The minus sign in front of the second equation arises from the
direction of n, which is kept fixed. Now add eqns. 48 to
obtain

. . . . (49)

where <J> = O' in R and O = <De in R'. An infinite number of
integral equations is generated by choosing various <De in
R'. The least-singular integral equation is obtained by
choosing O' = <I>e on C, in which case eqn. 49 becomes

(50)

(51)

The quantity Irreo can be thought of as the equivalent charge
density on C which produces an electric potential O.
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Eqn. 3 of the text is eqn. 50 with

For a piecewise-linear approximation to a, we use
triangle functions3 Tj(c), each extending over two adjacent
AC, as shown in Fig. 6. Then, instead of eqn. 7, we have

i=\

Eqn. 8 is still valid, except that

k= J Uc') In
Jc \p ~ p I

dc'

(52)

(53)

instead of eqn. 9. The midpoints of the triangle functions
are at ph which are also the points of intersection of the

Fig. 6
Triangle function and Dirac-delta functions on contour C

AC. The normal direction at such points is discontinuous,
and the normal derivative may be infinite there. Hence
we cannot point-match at ph We could continue to point-
match at the midpoints of the AC/, but this can lead
to singular matrices in some cases. (For example, Dirichlet
boundary conditions on a square of side AC, point-matched
at the centre of each side, gives rise to a singular matrix).
To avoid such a possibility, define points which are one
quarter of an interval on each side of ph and Dirac-delta
functions at each point, as shown in Fig. 6. Define testing
functions

(54)

and the inner product

</i,/2> = 6 AW2(c)dc (55)
Jc

and apply the method of moments2 to eqn. 5. The result is an

Fig. 7
Ramp source a on an element A
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equation of the form of eqn. 12, where the elements of [/] and
[ y ] a r e

Iji = </y,Lr,-> (56)

YJ = <0» y> = y(cr) + y(cf) (57)

In eqn. 56, L is the left-hand side of eqn. 12. Once [/]
is evaluated, equations of the type of eqns. 13-15 again
apply.

To evaluate the ljh we need the potential and its gradient
from triangle functions on C. Each triangle function is the
sum of two ramp functions. Hence the basic source is a ramp
function on each increment A. We can use complex-function
theory, in the manner of Section 3, to evaluate the desired
fields. Let Fig. 7 represent a ramp source a on A, with
local co-ordinates z = x + j'y. Then the complex poten-
tial is

(58)W = -r

A-^

and the real potential is
1i r (59)

These integrals are readily evaluated by integrating once by
parts, and using the antiderivative of the logarithm. The
result is

A, k A z z2 z - A
W=l n A T ^ + 4 + 2 + 2 A l n ^ ~ • ' ( 6 0 )

with *F given by eqn. 59. The gradient of the potential, in
complex form, is given by eqn. 25. Differentiating eqn. 60,
we obtain

dw z z - A
— = 1 + -7 In
dz A z (61)

Z - z

The normal derivative at a point 2j is again given by eqn. 27.
The matrix elements /,,- are obtained by translating these results
to global co-ordinates and evaluating eqn. 56. We shall not
discuss the details; the results are given in the computer
program LINEARSOURCE which has been deposited in the IEE
Computer Program Library.

Discussion on

Divided-winding-rotor synchronous generator. A comparison of simulated
30 MW conventional- and divided-winding-rotor turbogenerators
and

Improvement of alternator stability by controlled quadrature excitation
H. B. Laine: Both these papers are important contribu-

tions to our knowledge of the factors which influence the
performance of alternating-current generators associated with
large interconnected power systems.

The papers offer different approaches to the problems of
absorption of reactive power and generator stability. Each
discusses the use of unconventional windings on the rotor,
in one case a divided winding with an effective angle of 60°
between the two parts, and, in the other, a separate quadrature
winding in addition to the conventional direct-axis-excitation
winding. Each seeks to demonstrate significant improvements
in reactive-power absorption in the range of stable operation,
and tests theory by experiment on micromachines in one case,
and in the other by the use of the mathematical model of
Shackshaft [Proc. IEE, 1963, 110, (4), pp. 703-713], together
with experiments on a 5kVA motor-generator.

The papers are, and were intended to be, complementary
to each other. I think that the underlying philosophy of both
papers is in competition with that of high-speed voltage
regulators acting on the direct-axis excitation of a conven-
tional generator.

The problems of the absorption of reactive power and
generator stability in large interconnected systems have been
with us for a long time. 35 years ago it was a regular practice
to switch out 66kV and 132kV cable circuits in the London
area at times of light load, to keep the voltage below what
was then thought to be the maximum permissible safe levels.
Excursions into the zone of leading-power-factor operation
of generating plant were regarded in most quarters as adven-
turous and hazardous, and generator instability a calamity to
be avoided at all costs.

Paper 5773 P pays particular attention to an analysis of
many arrangements of control feedback loops, and it comes
to the conclusion, substantiated by practical results, that
straightforward generator-angle feedback to the quadrature
winding is adequate for the control of generators with load
and reactive-power conditions which would be impossible to
control by conventional means.

Paper 5680 P by SOPER, J. A., and F A C C , A. R. [see 116, (1), pp. 113-
126] and Paper 5773 P by KAPOOR, S. C , KALSI, S. S., and ADKINS, B.
[Proc. IEE, 1969, 116, (5), pp. 771-780]
Read before the IEE Power Division, Professional Group PI , 31st
April 1969
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I thought the maximum reactive absorption was about
— l-8p.u., and this would appear to be accompanied by
a fall in terminal voltage of more than 50%; but the
simulation of a 30 MW machine described in Paper 5680 P
suggests that the generator terminal voltage was 1 • 1 p.u.
(or just above) in the steady state condition, that a reactive
absorption of —2-3p.u. was obtained, and that this was
not the limit of control. I would like to ask the authors
where the limit of control actually lies, what the limiting
parameter is, and to what extent it is dependent on the
generator terminal voltage?

I note that there is a different approach in the two papers
to the definition of the problem, in so far as Paper 5773 P
appears to lump the transformer and line reactance together,
whereas Paper 5680 P splits these quantities and the generator
reactance into their various components.

Another interesting difference between the two approaches
to the problem concerns the saliency which is related to the
quadrature-axis reactance. The simulation in the case of the
cylindrical-rotor 30MW turbogenerator used a saliency of
15% as stated in Section 5.1, whereas the Imperial College
micromachine was a salient-pole alternator with about 22%
saliency. Steady-state quadrature-winding generator-angle
control is shown to operate satisfactorily on a salient-pole
generator, as well as on a turbogenerator. Are the limits
likely to be the same?

Is the basic reason for the claim that the transient stability
of a machine with a divided-winding rotor is better than that
of a conventional machine because it is not the axis of the
rotor body which moves in relation to the axis of the rotating
field in the stator, but rather the axis of the resultant m.m.f.
provided in the rotor by the two windings?

I should like to know the difference between a phasor
diagram and what I would have called a vector diagram. Is
there a good reason for this difference in description?

It would be of real advantage to the economic operation of
a large interconnected power system, such as that of the
Generating Boards, if the reactive-power requirements, both
positive and negative, could be met at all times by the most
economic generating plant which the load demands, with a
minimum use of shunt reactors or synchronous compensators.

V. Easton: I was present in 1965 at a demonstration
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