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Abstract

Numerical modelling techniques are now becoming common for understanding the complicated nature of seismic wave propagation in
fractured rock. Here the Indirect Boundary Element Method (IBEM) is applied to study scattering of elastic waves by cracks. The problem
addressed in this paper is the diffraction of P and S waves by open 3-D cracks of arbitrary shape embedded in a homogeneous isotropic
medium. The IBEM yields the value of the jump of displacements between opposite surfaces of the crack, often called Crack Opening
Displacement (COD). This is used to evaluate the solution away from the crack. We use a multi-regional approach which consists of splitting a
surface S into two identical surfaces S+ and S− chosen such that the crack lies at the interface. The resulting integral equations are not hyper-
singular and wave propagation within media that contain open cracks can be rigorously solved. In order to validate the method, we compare
results of displacements of a penny-shaped crack for a vertical incident P-wave with the classic results by Mal (1970) obtaining excellent
agreement. This comparison gives us confidence to study cases where no analytic solutions exist. Some examples of incidence of P or S waves
upon cracks with various shapes are depicted and the salient aspects of the method are also discussed. Both frequency and time-domain results
are included.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The scattering of elastic waves by cracks and other
inhomogeneities is a long standing physical and mathematical
problem. It has been of interest to geophysicists because it has
many applications concerning the Earth's crust: underground
storage, oil and gas prospecting and more generally investiga-
tion of the propagation of seismic waves in heterogeneous
media. For example, in naturally fractured reservoirs changes in
the physical properties can sometimes be explained by the
extensive presence of empty or fluid-filled cracks and cavities.
These features determine the pathways and volume of crustal
fluid movements and can drastically change productivity in oil
fields.
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When analysing the phenomenology of elastic wave
propagation in fractured rock one of the approaches consists
of the assessment of the wave properties as the outcome of
multiple scattering by a large number of individual fractures. In
such considerations the scattering properties of each individual
crack's edge, serve as building blocks in the future analysis, and
for the theory to be successful, the knowledge of these
properties in a manageable form is an indispensable prerequi-
site. For instance, using statistical hypothesis or equivalent
media theories, diffraction patterns caused by many cracks can
be deduced from that of a single crack (see Hudson, 1986).

Many results are already available for three dimensional
crack analysis. Some of these include the earlier works by Mal
(1968, 1970) where the author uses dual integral equations to
compute displacements. Collected results by Tada et al. (1973),
static solutions by Weaver (1977), Bui (1977), Mastrojannis
et al. (1980), Murakami and Nemat-Nasser (1983), Lee and
Keer (1982); dynamic solutions by Krenk and Schmidt (1982),
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1 We will consider cracks with other shapes, this is only to illustrate the
procedure.
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Angel and Achenbach (1984, 1985), Martin and Whickham
(1983), Visscher (1985) and Lin and Keer (1986, 1987) are
examples of various approaches used. Compared to domain
methods, like finite-differences or finite-elements, boundary
integral equation methods (BIE) have a conceptual advantage
which is the reduction of one space dimension for both
discretization and handling of the unknowns. This discretization
gain is reinforced by the fact that the grid step sizes are larger
than in domain methods. Other advantage is that these methods
match easily the boundary conditions and do not suffer from
grid dispersion. For crack diffraction problems, the boundary
element method (BEM) or BIE is regarded as a natural choice
because of its flexibility in defining the boundary cracks. It is
also widely recognized as an effective modelling tool to solve
problems in fracture mechanics (see Cruse, 1988). However, a
number of difficulties present in the BEM formulation must be
overcome in order to use it. The standard displacement-BIE
formulation has been known to degenerate for crack problems
(e.g. Cruse, 1978) since the displacements are allowed to be
discontinuous on a single surface. This problem may be
resolved through one of several approaches. One such approach
consists of the use of dual boundary element method (Portela
et al., 1992) which resolves the degeneracy by applying the
traction-BIE on one of the crack surfaces. This approach is
efficient in that it retains the displacement-BIE for much of the
surface of the body, but hyper-singular integrals are introduced
on the crack surface. Other approaches are used as in Rizzo et al.
(1985), Bonnet (1995), Zhang and Gross (1998), Aliabadi
(1997), Prosper (1998) and Prosper and Kausel (2001) where
particular care is taken to regularize and solve the resulting
integral equations. Here we choose instead the simpler Indirect
Boundary Element Method (IBEM) that formulates the problem
in terms of force densities which have to be obtained as an
intermediate step. Perhaps, this is the reason why the IBEM is not
as popular as the BEM in spite of the fact that these densities can
give a deeper physical insight of diffracted waves. Moreover this
approach is equivalent to that of Somigliana's representation
theorem (see Sánchez-Sesma and Campillo, 1991) and can be
regarded as a realization of the Huygens' principle. To deal with
the crack we use sub-domains in which the cracked body is
represented as two or more uncracked bodies with appropriate
boundary conditions. This strategy implies that the non-physical
boundaries generate extra unknowns increasing memory require-
ments, but with significant benefits. For instance, we may
rigorously solve zero thickness cracks and choose to study any
crack regardless its shape. This technique provides reliable results
that can be used both to evaluate or to combine with other
numerical techniques.

We assume mathematical cracks, therefore no contact
between the faces of the crack is allowed and the crack tips
are fixed. Thus, the cracks are linear and the material remains
elastic everywhere. This approximation is enough to study
diffracted waves. In fact, the cracks considered here act as
scatterers and the asymptotic behaviour at the crack tip do not
affect the radiated waves because of linearity. The crack tip
stress concentrations, which are very important in fracture
mechanics, reveal a local effect with little influence on the
diffracted waves. It can be shown that the exact radiated waves
depend upon an integral of the traction Green's tensor weighted
by the COD and are somewhat insensitive to stress concentra-
tions, see Sánchez-Sesma and Iturrarán-Viveros (2001). On the
other hand, it is well known that high frequency waves are
radiated if the crack tip propagates. Indeed, this radiation is
controlled by variations in rupture velocity (Madariaga, 1976).
This fact is very important in strong motion seismology,
however it is beyond the scope of the present work. In the next
section we proceed with the formulation of the problem. We
explain how the multi-regional approach can lead to a single-
layer integral representation without hyper-singularities. The
multi-regional approach is somewhat different to the one used
by Bonnet (1995). Therefore, numerical instability related to the
interior problem if any, is avoided. In our formulation the
domain in which we can obtain stable and accurate results is
limited, but we can easily extend it by means of the Somigliana
representation theorem (see for instance Achenbach, 1973; Aki
and Richards, 1980; Banerjee and Butterfield, 1981). In order to
validate our results we compare the solution obtained using the
Indirect Boundary Element Method (IBEM) with the classical
analytic solution by Mal (1970) for a penny-shaped crack. The
validation of the IBEM for this problem enables us to use it
confidently to solve problems where there are not known
analytic solutions. Finally, in the last section we show and
discuss some new numerical results for cracks of different
shapes in both time and frequency domains.

2. Formulation of the problem

In crack scattering problems the total wave-field u(t) is
written as the superposition of the free field u(0) (i.e. the
reference field in the absence of scatterer) and the diffracted
field u(d) as follows:

u tð Þ ¼ u 0ð Þ þ u dð Þ: ð1Þ

Let us consider a Penny-shaped1 crack under an incident plane
wave as depicted on Fig. 1(a). The radius of the crack is taken as
a=1, γ is the plane wave incident angle measured with respect
to the z-axis and φ is the backazimuth measured with respect to
the x-axis. Consider a surface extension at the crack's edge to
form an auxiliary crack's neighbourhood. For flat cracks the
surface extension is on the same plane, see Fig. 1(b) Other non-
planar crack shapes may require special devices (e.g. splines) to
construct the surface extension. These auxiliary surfaces are
constructed finite and in practice can be relatively small. The
smallest region we have used in the given examples for the
crack's neighbourhood is a, half the crack's size. Then the
surface in which the crack is embedded is divided into two
identical and complementary 3-D sub-domains: S+ and S−. The
illuminated surface S+ is the one which is first struck by the



Fig. 1. (a) Penny-shaped crack under an incident plane wave. The radius of the crack is taken as a, γ is the plane wave incident angle measured with respect to the
z-axis and φ is the backazimuth measured with respect to the x-axis. We consider SH and P-SV incident waves. (b) The surface in which the crack is embedded is
divided into two complementary and identical 3-D sub-domains: S+ and S−. The illuminated surface is the one first stuck by the incident wave. We have assigned
L number of nodes or elements to discretized the crack and M nodes to discretized the crack's elongation or neighbourhood. We discretized in the same way both
surfaces S+ and S−.
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incident wave, the shaded surface is denoted by S−. The physics
of the problem is given by suitable boundary conditions along
S+ and S−. Particularly, we need to set continuity of displace-
Fig. 2. (a) Discretization for the moon-shaped crack. We have 961 nodes from whic
(b) Similarly, we have the discretization for the penny-shaped crack with 961 nodes
ments and tractions on the crack's elongation and zero tractions
on the crack's faces. We propose to split the domain into two
regions.
h 305 nodes are inside the crack and 656 discretize the elongation of the crack.
from which 441 are inside the crack and 520 outside.



Fig. 3. A normal P wave is impinging upon a penny-shaped crack. The wave-
numbers are qa=0.8, qa=2.4 and qa=3.6 respectively for each curve (being q
the P-wave-number). Amplitude of the displacement calculated using Mal
(1970) for this vertical incident P wave for three frequencies. The result is
normalized to the displacement at the centre of the crack. Symbols correspond to
Mal's solution and curves are IBEM results. We note a good agreement between
the two solutions.
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Following Sánchez-Sesma and Campillo (1991) for each of
the boundaries S+ and S−, the IBEM equations (with appropriate
+ or − superscripts) are:

u dð Þ
i xð Þ ¼

Z
S
/j nð ÞGij x; nð ÞdSn; ð2Þ

t dð Þ
i xð Þ ¼ F

1
2
/i xð Þ þ

Z
S
/j nð ÞTij x; nð ÞdSn ð3Þ

where (i, j=1,2,3) ui
(d ) (ti

(d ) ) is the diffracted displacement
(traction) for a given nj(x);Gij(x, ξ) (Tij(x, ξ)) is the displacement
(traction) Green's function, i.e. the displacement (traction) at a
point x (on a surface with a normal vector nij(x)) caused by a unit
force at a point ξ; ϕj(ξ) is the force density at ξ and S is the
corresponding S+ or S− boundary. The first term in (3) is for x∈S
and the signs correspond to regions S+ and S− respectively.
Further details are in Sánchez-Sesma and Luzón (1995). The
integrals are computed along S. Exact formulations for both
displacement and traction 3-D Green's functions are given by
Sánchez-Sesma and Luzón (1995) and are included here in
Appendix A.

Green's functions are singular when x= ξ, but with
appropriate discretization they can be integrated analytically
using power series for the G and T terms. For a circle the
integral of T, in the Cauchy principal value sense, is null.
Moreover Gij(x, ξ) on S+ is identical to Gij(x, ξ) on S− since
the two surfaces perfectly match. The same can nearly be
stated for T when the unit normal vectors to S+ and S− are
equal, the only difference being in the sign of the term outside
the integral.

Let L and M be the number of elements considered to
discretize, the crack and the associated neighbourhood,
respectively. Then the total number of elements used to
discretize both the crack and its neighbourhood is given by
N=L+M. Boundary conditions at a point x on the crack are
expressed by:

1
2
/þ
i xð Þ þ

Z
S
/þ
j nlð ÞTij x; nð ÞdSn ¼ �t 0ð Þþ

i xð Þ; ð4Þ

� 1
2
/�
i xð Þ þ

Z
S
/�
j nlð ÞTij x; nð ÞdSn ¼ �t 0ð Þ�

i xð Þ;
l ¼ 1; N ; L;

ð5Þ

where the tractions ti
(0) are related to the incident wave field as

follows. Given the incident field ui
(0) the tractions at a point x

associated to a plane with normal n can be computed using
Cauchy equations in terms of the stress tensor and the normal n.
This can be written as:

t 0ð Þ
i xð Þ ¼ r 0ð Þ

ij xð Þnj xð Þ ¼ cijkl
Au 0ð Þ

l xð Þ
Axk

nj xð Þ ð6Þ

where the stress tensor σij
(0) and displacement's gradient ∂ul(0) /

∂xk are related by the fourth order tensor cijkl=λδijδkl+μ(δikδik+
δilδik), where λ and μ are the Lamé constants.
Boundary conditions of continuity of displacements and
tractions at a point x on the crack neighbourhood are expressed
by:

Z
S

/þ
j nlð Þ � /�

j nlð Þ
h i

Gij x; nð ÞdSn ¼ 0; ð7Þ

1
2

/þ
i xð Þ þ /�

i xð Þ� �þ Z
S

/þ
j nlð Þ � /�

j nlð Þ
h i

Tij x; nð ÞdSn ¼ 0;

l ¼ Lþ 1; N ;LþM ; ð8Þ
where Eq. (7) corresponds to continuity of displacement and (8)
defines continuity of traction. Eqs. (4), (5), (7) and (8) once
discretized allow us to form a non-singular system for which
there is a unique solution. Once the unknown force densities are
found one can substitute them into Eq. (2), properly discretized,
to obtain the displacement at any point x of the medium.
However, the discretized zone is small and the accuracy could
quickly deteriorate away from the crack. Therefore we should
adopt a better strategy. Considering the full 3-D space domain
and recalling Somigliana's identity in the frequency domain, we
can write the following integral equation:

u dð Þ
i nð Þ ¼

Z
S

t dð Þ
j xð ÞGij x; nð Þ � u dð Þ

j xð ÞTij x; nð Þ
h i

dSx ð9Þ

where ξ lies inside one of the sub-domains, x∈S and S=S+∪S−.
It is convenient that normal vector points away from the physical
domain (as for S+). This means that the normal at S− should



Fig. 4. (a) Real part of the COD at y=0 obtained numerically using IBEM for a 3-D rectangular crack of size (2a×4a), normal incidence of SH-waves. The results are
compared to a 2-D analytic solution for an infinite slit (see Sánchez-Sesma and Iturarán-Viveros, 2001). (b) Same as (a) but this is the imaginary part of COD.
(c) Amplitude of COD at y=0 as in (a). (d) The COD obtained for a rectangular crack of and normal incidence of SH-waves with unit amplitude. Normalized
frequency g ¼ xa

pb
¼ 1. Results show good agreement although the differences are due to 3-D effects not considered by the 2-D analytic solution.

Fig. 5. Contour maps for a penny-shaped crack for incoming SH-waves with incidence angles γ=0° (top) and γ=30° (bottom), respectively, for both illuminated (left) and
shaded (right) sides and backazimuthϕ=0°. This (f-x) diagram displays the total crack displacement amplitudes (|uy|) along the crack sides against the normalized frequency
g ¼ xa

pb
.
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change direction. In that case diffracted and Green's tractions
should satisfy:

t dð Þþ
i xð Þ ¼ �t dð Þ�

i xð Þ; xaS
Tþ
ij x; nð Þ ¼ �T�

ij x; nð Þ; xaS:
ð10Þ

Moreover, as the Green's functionsG(x, ξ) are independent of the
normal vector definition, Eq. (9) can be rewritten as:

u dð Þ
i nð Þ ¼

Z
Sþ

Duj xð ÞTþ
ij x; nð ÞdSx ð11Þ

where T+ is the traction Green's function calculated accordingly
to the unit normal vector pointing outward the illuminated space,
and Δui(x)=ui

+(x)−ui−(x) is the COD which is the displacement
difference between the illuminated and shaded sides of the crack.
The COD is null at the crack's neighbourhood. Unnecessary
operations are cleared away and accuracy increases by using Eq.
(11) instead of (9). In numerical applications there is an important
benefit on the use of Somigliana's identity instead of the classical
IBEM equations. S+ and S− should be infinite surfaces, but this is
manifestly inconsistent with any numerical realization. The
cutting of S is required at any effect. The numerical method we
choose (the IBEM) can be seen as realization of the Huygens'
principle: wave fronts are reproduced by radiating sources
distributed along a surface. When S is cut, the set of sources
along this boundary is interrupted and artificial diffraction at the
edges is introduced. These spurious effects are not visible inside
Fig. 6. This (f-x) diagram displays the total crack displacement amplitudes (|uz|) alo
P-wave with incident angle γ=0° (top) and γ=30° (bottom) illuminated (left) an
suitable space–time windows, depending on the length of S, the
location of the observer and on wave speeds. In practice
displacements along the crack can be calculated considering a
short extension of S. By introducing the continuity conditions at
the crack's neighbourhood, we are adding extra unknowns to the
system of linear equations to be solved. In order to profit of the
structure of the matrix, we could use sparse matrix computations
(see Ortiz-Alemán et al., 1998). In this approach the IBEM is used
to compute the COD which is the input of Somigliana's identity.
Therefore, numerical noise is easily avoided and we obtain clean
solutions at any point or time with low computational costs.

3. Numerical results

In this section we show a comparison between the results
obtained using the IBEM and the classic results by Mal (1970)
for a penny-shaped crack showing excellent agreement. This
strongly suggest that our approach may give reliable results for
cracks of arbitrary shape. Then we show numerical results for a
rectangular crack, for a penny-shaped crack and for a moon-
shaped crack in both time and frequency domains. In the next
section we discuss details about discretization of the regions.

3.1. Discretization

In order to solve the resulting boundary integral equations
we have to discretize them. In order to have the same number of
ng the crack sides against the normalized frequency g ¼ xa
pb
. Contour maps for a

d shaded (right) side.
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equations and unknowns we may assume a set of regions and
enforce boundary conditions. These boundary conditions are set
at selected points, usually the centroids of each region. This is a
feature that makes the IBEM to be regarded as a collocation
method. The discretization of a surface is a well-known problem
and several algorithms are available. In any case, the choice of
discretization scheme depends upon the problem and the
mathematical formulation to be used. For instance, in many
applications, triangular elements are used to discretized surfaces
(e.g. Manolis and Beskos, 1988; Brebbia and Dominguez,
1992; Yokoi and Sánchez-Sesma, 1998). In this work we choose
a simplified scheme and discretize the surfaces using circles of
various sizes that approximately cover the boundaries. More-
over, the force densities ϕi(ξl) are assumed to be constant over
each circle. These might be regarded as crude choices.
However, they allow us to keep the formulation simple and
easy to implement. This is because the Green's functions on
circles can be easily obtained in a closed form. Their contri-
butions to the solution are computed by Gaussian numerical
integration except in the case where the wave-field is evaluated
on the source element itself. We have used four aligned
elements per shortest wavelength. The surface S, the interface
between the two sub-domains, is discretized using circles of the
same size (though the sizes might vary, each one with surface
ΔSl and centre at ξl) that approximately cover the boundaries.
Let L be the number of elements considered to discretize the
Fig. 7. This (f-x) diagram displays the total crack displacement amplitudes (|ux|) along
wave with incident angle γ=0° (top) and γ=30° (bottom) illuminated (left) and sha
crack and M the number of elements to discretize the neigh-
bourhood of the crack. Then we have 3(2L+2M) equations
which is the same number as the number of unknowns. This
number corresponds to the three displacements in the
illuminated and the shadow areas (here comes the factor of 2).
Eqs. (4), (5), (7) and (8) allow us to form a non-singular system
for which there is a unique solution. In order to clarify ideas, let
us write the discretized version of Eqs. (2) and (3) as follows:

ui xð Þ ¼
XN
l¼1

/j nlð Þ
Z
DSl

Gij x; nð ÞdSn ð12Þ

ti xnð Þ ¼
XN
l¼1

/j nlð Þ 1
2
dijdnl þ

Z
DSl

Tij x; nð ÞdSn
� �

: ð13Þ

The integral in Eq. (12) is computed numerically except in the
case when x is in the neighbourhood of ξl for which we obtained
analytical expressions. In particular, for x=ξl, i.e. at the centre
of a circle of radius R, it is possible to show that:Z
DSl

Gij x; nð ÞdSn ¼ 1
4A

F2 þ F1ð Þdij þ F2 � F1ð Þninj
� � ð14Þ

where Fk, k=1, 2 is simply the integral of fk from 0 to R and
ni= ith component of the normal vector at the element.
Functions fk, k=1, 2 are defined by Eqs. (A.2) and (A.3)
respectively. For x not in the centre we performed analytical
the crack sides against the normalized frequency g ¼ xa
pb
. Contour maps for a SV-

ded (right) side.
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integration in polar local coordinates and considered the
ascending power series of f1 and f2. Up to cubic terms were
retained and this is enough if the minimum wavelength is at
least four diameters. The integral in Eq. (13) is also computed
numerically except when xn=ξl. In this case we have:Z
DSn

Tij xn; nð Þdn ¼ 0; ð15Þ

because the contribution from the traction Green's tensor Tij is
null as long as the element is circular and flat, which is the case
Fig. 8. Synthetic seismograms for a penny shaped and a moon-shaped cracks are co
equally spaced receivers. The first one is located at x=−2a and with a spacing b
(a) illuminated side of the crack and on the (b) shaded side of the crack.
assumed here. Once the values of ϕj (ξl) are known, the
scattered field is computed by means of the appropriated version
of (12).

For the numerical simulations of scattering of elastic waves by
a moon-shaped and a penny-shaped cracks we have used the
discretizations shown in Fig. 2(a) and (b) respectively. In the case
of a penny-shaped crack we have used 961 nodes fromwhich 441
are inside the crack and 520 are to discretize the neighbourhood of
the crack. For the moon-shaped crack we have used 961 nodes
from which 305 nodes are inside the crack and 656 outside.
mputed from frequency-domain. The traces correspond to the total field for 13
etween them of Δx=0.333a at y= z=0.0. Displacements uz are shown on the



Fig. 9. Synthetic seismograms for a moon-shaped crack are computed from frequency-domain. The traces correspond to the total field for 101 equally spaced receivers
located along the interval x∈ [−2a, 2a] at y= z=0.0. This case is for a P, SV and SH incident waves (top, middle and bottom, respectively). Displacements ux, uy and
uz are shown on the shaded side of the crack.
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Fig. 10. Synthetic seismograms for a moon-shaped crack are computed from frequency-domain. The traces correspond to the total field for 101 equally spaced
receivers located along the interval x∈ [−2a, 2a] at y= z=0.0. This case is for a P, SVand SH incident waves (top, middle and bottom, respectively). Displacements ux,
uy and uz are shown on the illuminated side of the crack.
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3.2. Validation of the method

In a classic paper, Mal (1970) computed the crack opening
displacement for various wavelengths of excitation using a
dual integral equations for P-wave normally incident on a
very thin crack located in an infinite elastic medium with
radius a. Here we compare results obtained using the IBEM
with those obtained by Mal. Let q be the P-wave number. The
used parameters are μ=ρ= β=1 (length units for ρ, β and a
have to be in agreement) where β is the shear wave velocity
given by b ¼

ffiffi
A
q

q
, ρ is the density, μ is the shear modulus, the

Poisson's ratio is ν=0.333 and the wave-numbers are qa=0.8,
qa=2.4 and qa=3.6 respectively for each curve depicted on
Fig. 3. Excellent agreement has been found between our results
and Mal's (1970). This is encouraging since it suggests that the
numerical method can be used to deal with cracks of arbitrary
shape.

We study the spectral response of a plane wave impinging
upon a crack. Henceforth, we use a normalized frequency
η=ωa /πβ, where ω is the circular frequency and a is the radius
of the crack. We computed the COD for a rectangular crack
(2a×4a) with normal incidence of a SH wave (motion along the
y-axis, the largest side of the crack). Fig. 4 displays the COD
|Δuy| for a normalized frequency η=1. We also display the
COD at y=0 (the crack's centre, at half the largest side 4a / 2)
and compare it with an analytic solution for a 2-D crack (see
Sánchez-Sesma and Iturrarán-Viveros, 2001). The agreement is
very good and it shows that, for the given frequency, the 3-D
COD at the centre of a rectangular cracks almost match the
behaviour of the slit.

Results on Fig. 5 correspond to contour maps for a penny-
shaped crack for incoming SH-waves with incidence angles
γ=0° (top) and γ=30° (bottom), respectively, for both illumi-
nated (left) and shaded (right) sides and backazimuth ϕ=0°.
This (f-x) diagram displays the total crack displacement
amplitudes (|uy|) along the crack sides against the normalized
frequency η=8. In Figs. 5 and 6 the receivers are located along
the x-axis between x∈ [−a, a], being ρ=β=1 (length units
for ρ, β and a have to be in agreement) and Poisson's ratio
ν=0.333.

Similarly on Fig. 6 we can see |uz| displacements for an
impinging P-wave with incident angle γ=0° and γ=30° for
both illuminated side (on the left) and shaded side (on the
right). On Fig. 7 we plot |ux| contour maps for SV-waves with
incident angle γ=0° and γ=30° for both illuminated side (on
the left) and shaded side (on the right) and backazimuth
ϕ=0°. Note that |ux| for the P-wave and |uz| for the SH-wave
are not included. The reason is that for an incident P-wave
with γ=0° we have that |ux| is the same for the illuminated and
shaded sides. Similarly when we consider |uz| for an incident
SV-wave we will have anti-symmetric results but we are
considering the modulus |uz| so there will not be a difference
between the shaded and the illuminated sides. Observe that for
an S-wave with incident angle γ=0° we will expect to see the
same |uy| and |ux| along the y-axis. However, since we are
plotting the displacements along the x-axis the results are
different.
3.3. Penny-shaped and moon-shaped cracks

In this section we compare results obtained for a penny-
shaped crack and for a moon-shaped crack. The results show the
differences of the arrival times due to the different shape of the
cracks. We construct the moon-shaped crack in such a way that
it lies within a region for which the conditions rba and RNb
hold, where r2 =x2 +y2 and R2 =x2 + (y–a)2. In other words, it
is limited by the intersection of two circumferences taking
b=0.65a and a being a length unit.

On Fig. 8 synthetic seismograms for a penny-shaped and a
moon-shaped cracks are computed from frequency-domain
results using the Fast Fourier Transform (FFT) algorithm. The
traces correspond to the total field for 13 equally spaced
receivers. The first one is located at x=−2a and with a spacing
between them of Δx=0.333a at y= z=0.0. In Figs. 8 and 9 the
incident time signal is a Ricker wavelet with characteristic
period tp=0.5a /β and ts=2tp where a is the radius of the crack.
This case is for a P incident wave a Poisson's ratio of ν=0.333,
backazimuth ϕ=0°, γ=0° and ρ=β=1 (length units for ρ, β,
and a have to be in agreement). Displacements uz are shown on
the (a) illuminated side of the crack and on the shaded side (b) of
the crack. We can see that the difference between the arrival
times are due to the difference in the shapes.

We show synthetic seismograms for a moon-shaped crack on
Fig. 9 for the shaded side and on Fig. 10 for the illuminated side.
The traces correspond to the total field for 101 equally spaced
receivers located along the interval x∈ [−2a, 2a] at y= z=0.0.
We can see in some cases the differences between the shaded
and illuminated sides. For example, for an incident SV-wave the
component ux shows the clear difference between receivers
located on the shadow, where there is no direct arrival and the
direct arrival on receivers located on the illuminated side.

4. Conclusions

We have tested the IBEM to solve the problem of scattering of
elastic waves by a 3-D open crack. Themethodwas tested against
the analytical solutions, for a canonical case, obtaining excellent
agreement. By splitting the crack into two different domains,
problems related to hyper-singularities have been overcome. The
IBEM allows us to study media with arbitrary shaped cracks SH
and P-SV wave scattering. More complex configurations of
heterogeneities, fluid filled cracks or cavities can be dealt with
using this technique and are currently being investigated.
Computational costs increase with the frequency, this limits the
resolution and is a serious constrain. However parallel computing
for methods in the frequency domain is much simpler than time
domain computation based on domain decomposition. This is an
advantage of the IBEM and it will help to study more realistic
problems in the near future. Numerical results are encouraging but
further work is needed to be able to deal with the inverse
problems. These results dealt with simple configurations because
we regarded as building blocks of more complex configurations.
The COD for various crack configurations have relatively simple
behaviour and approximations may be devised to generate fast
computational devices for multiple crack configurations.
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Appendix A. 3-D Green's functions in unbounded space

For an homogeneous isotropic elastic unbounded medium,
the Green's function is due to Stokes (1849), see (Love, 1944).
For harmonic time dependence exp(iωt), where i2 =−1, ω is the
circular frequency and t is the time, the Green's tensor can be
expressed in the following compact form:

Gij x; nð Þ ¼ f2dij þ f1 � f2ð Þgigj
� �

=4pAr; ðA:1Þ
where γj=(xj−ξj) /r, r2=(x1−ξ1)2+(x2−ξ2)2+(x3−ξ3)2. Here
and in the sequel μ=ρβ2, λ+2μ=ρα2, being λ and μ the Lamé's
constants, ρ the mass density, δij the Kronecker's delta, k=ω /β
the S-wave-number, q=ω /α the P-wave-number, β and α the S
andPwave velocities, respectively.We define f1 and f2 as follows:

f1 ¼ b2

a2
1� 2i

qr
� 2

qrð Þ2
" #

exp �iqrð Þ

þ 2i
kr

þ 2

krð Þ2
" #

exp �ikrð Þ ðA:2Þ

f2 ¼ b2

a2
i
qr

þ 1

qrð Þ2
" #

exp �iqrð Þ

þ 1� i
kr

� 1

krð Þ2
" #

exp �ikrð Þ; ðA:3Þ

which have constants 1 and (1+(β /α)2) /2, respectively, as limits
if ω or r tend to zero. The corresponding Green's tractions are
given by:

Tij ¼ g1 � g2 � 2g3ð Þgigjgknk þ g3ginj þ g2gjni þ g3gknkdij
� �

=4pr2

ðA:4Þ
with functions gj, j=1, 2, 3 expressed as:

gj ¼ krA1j þ B1j þ C1j

kr
þ D1j

krð Þ2
" #

exp �ikrð Þ

þ krA2j þ B2j þ C2j

kr
þ D2j

krð Þ2
" #

exp �iqrð Þ: ðA:5Þ

The coefficients A, B, C, andD for this expression are given on
the Table A. In Eqs. (A.1) and (A.4), Table A the usual summation
convention for subscripts is assumed. Similar expressions for
Green's functions have been presented by Auersch and Schmid
(1990) using vector notation. Eqs. (A.1) and (A.4) allow a direct
view of singularities at the point of application of the force. The
singularity of displacements is 1/r, this is clear from Eq. (A.1).
Regarding the tractions, the singularity is explicitly of the form
1/r2. In particular, when frequency tends to zero, these equations
lead to their static counterparts (see e.g. Love, 1944).

Table A
Coefficients for Eq. (A.5)
j

1
 2
 3
A1j
 0
 0
 − i

A2j
 − iβ /α
 i(2β3 /α3–β /α)
 0

B1j
 4
 −2
 −3

B2j
 −4β2 /α2−1
 4β2 /α2−1
 2β2 /α2
C1j
 −12i
 6i
 6i

C2j
 12iβ /α
 −6iβ /α
 −6iβ /α

D1j
 −12
 6
 6

D2j
 12
 −6
 −6
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