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In the numerical implementation of the boundary element method to exterior acoustic
problems, the approximating equations gixveipcorrect results for the surface pressure when pf‘"‘;
the frequency js-in.the neighbourhood of seme critical values. In previous papers, this o

failure has been attributed to L_L_c_o.ug;w_mpg;gbhms which prevail as the singularity is
approached, but issues es such as whether the coefficient matrix will become singular or

whether one will obtain good results when the effects of ill-conditioning can bg annihilated
have not. been discussed. This paper presents a discussion of these questions. Numerical
results for two-dimiensional sound radiation lrom a Wmﬂxﬁer

W@Wmmty of the critical frequencies is not basically
an ill-conditioning probiem, and that the cq____g_ru_g_um_bsmﬂa efficient matrix does not become singular for

L& wmu%
% g #RTREDUCTION -

The boundary element method has been used extensively in recent years in the numerical
solution of acoustic radiation problems. This method essentially consists of discretization
of the exterior surface Helmholtz integral equation and solution of the resulting
approximating equations, a set of non-homogeneous linear algebraic equations, for the
surface pressures at the collocation points. The field pressures are then computed by
using the exterior Helmholtz integral formula. A well known drawback of this approach
is that the approximating equations give incorrect results for the surface pressures when
the forcing frequency is near to a_characteristic frequency associated with the interior of
the body,

Seybert and Rengarajan [1] have pomted out that this numerical failure experienced
in the neighbourhood of the characteristic frequencies is due to the coeflicient matrix of
the approximating equations becoming nearly singular and ill-conditioned, and have used
the matrix condition number to recognize the presence of ill-conditioning. Similar remarks

+ regarding the incidence of singularity and ill-conditioning at or near the characteristic

frequencies have been made also by other authors {2-4]. ¢
These remarks raise certain’ questions which have not been discussed in the previous
papers.

(1) The coefficient matrix is stated to become nearly singular in the vicinity of the
characteristic frequencies, implying that it will become singular for certain frequencies. ;
For these frequencies, as is well known from linear algebra, the approximating equations ! y
may have either a non-unique numerical solution or no solution at all. Previous papers
imply that the coefficient matrix may be singular but make no comments on the question
of existence of a numerical solution when singularity prevails. 1n the present paper the
" conditions that are necessary for the approximating eguations to possess a non-unique
83 0
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solution at the incidence of singularity are derived, and ‘are shown to be satisfied when
ane uses constant planar boundary elements of equal area and linear Gaussian quadrature
I"ox numuu.ﬂi imcszmuon T'te problem oftwo damt.nswna.] soun«ﬁ radiation from a mdmlh

I‘su.nr.mll results .nchmte that the_ cor.ﬂ"lcmm m\trm ml} n.;l b mn_gul.a_r_ for a ﬁnl_\_g +

number of elements.

(2) The failure of numerical solutions in the neighbourhood of the characteristic
frequencies is explained by the effects of ill-conditioning; that is, the round-off errors in
the calculation of the solution; but no comment has been made on whether or not one
will obtain good solutions if the effects of ill-conditioning are annihilated so that solutions
can be computed accum{e!v for all lrequenueq It should be noted t}mt hcr:: the prescnce
and effects of ill-
severely ill- coudm(med for ce:l.-tm Frequcnc. es and round-off errors may lakL over the
computations, producing incorrect results, as ;epontud by the .mthorq cited above. What
is guestioned is whether or not one will obtain good results when solutions can be
computed accurately for all frequencies. In this paper this question is studied numerically,
again with reference to the problem of two-dimensional sound radiation from a radially
vibrating infinite cylinder. Fora umformly vibrating i mﬁmtr‘: Lylmder the coeficient matrix
comes out in the form of a circulant matrix which can be reduced to a single equation
which can be solved accurdtely for all frequencies: that is, in thi se one need not be
concerned about the effects of ill-conditioning, il any, of the actual coeflicient matrix.
However, fyilure of the numerical solutions in the neighbourhood of the characteristic
frequencies still takes place, indicating that this problem is basically notan ill-conditioning
problem but is probably induced by slow convergence of numerical integration at these

frequencies.

2. CONDITIONS FOR THE EXISTENCE OF A NON-UNIQUE
NUMERICAL SOLUTION

In this section an analytical study is presented of the question of existence of a numerical
solution to the approximating equations when the coefficient matrix becomes singular.
First, the conditions that are necessary for the existence of a solution when the coefficient
matrix is singular are derived, and then the problem of numerical implementation of
these conditions is_considered.

2.1. GENERAL CONSIDERATIONS

Let a vibrating body occupy a bounded connected domain with a smooth boundary §
and unit outward normal n, The normal velocity amplitude v and the sound pressure
amplitude p are related by the classical surface Helmholtz integral equation

(=)p(x)~ L (BG(R, )/an(y)lp(y) ds(y) =~ i2mfp J‘S G(R, fHv(y) ds(y), (1)

where x and y denote points on S, R =|x—y|, i=V(~ 1), f denotes the frequency and
exp( i27f1) time dependence is assumed. ds denotes a differential boundary element,
G(R,f) is the free-space Green function, i.e, G=exp(i27#/R/c)/2mR in three
dimensions, p is the density of the medium at rest and c is the speed of sound; the plus
sign applies for the exterior problems and the minus sign for the interior probiems If
the normal velocity v is prescribed on S( (the Neumann boundary ccnchtmn) then equation

(1) takes the form of an 1nhomowmuon of the second type
in p. On the other hand, il the sound pressure p is prescribed on S (the Dirichlet boundary
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condition), equation (1) takes the form of an inhomogeneous Fredholm integral equation
of the first type in v, Alternatively, for the Dirichlet boundary condition, the surfuce
Helmholtz integral equation can be expressed also in the form of a Fredhoim integral

equation ol the second type in v, which is needed here in its homogeneous form: namely,
(£)v(x) "Fj [6G(R, [)/on(x)Ju(y) ds(y) =0. (2)

For the exterior problem with the Neumann boundary condition, say v=1u 0D &
discretization of equation (1) by using boundary elements, as shown in section 2.2, yields
a set of linear algebraic equations which may be written as

[E-K(N)Ip=H(u, ' (3)

where p and u are, respectively, the nodal sound pressure and the prcsc?ibcd nodal normal
velocity vectors. Matrices E, X(f) and H(f) are of size N x N, where N is the total
number of collocation points (nodes). K(f) corresponds to the integral operator on the
left side of equation (1) and H(f) to that on its right side. As to the defigition of matrix
£, a brief digression is in order. Even though the attual boundary is assumed to be
smooth, numerical implementation of the boundary element method in general involves
some kind of geometric discretization which can introduce edges and corners on the
working (approximating) boundary. Then, equation (1) does not apply for a collocation
point, if any, that lies on such an edge or corner. The correct equation to use then is the
general form of equation (1), where the coeflicient of p(x) is given by the outer solid
angle divided by 2 at point x [1]. For this reason, matrix E in equation (4) in general
denotes a diagonal matrix which reduces to a unit matrix if the edges and corners on the
working boundary contain no collocation points.

Now, obviously, if matrix E — K(f) becomes singular for certain [, say, fip, then equation
{3) may not possess a solution. From linear algebra, a necessary and sufficient condition
for equation (3) to have a solution when matrix E-K(f) is singular is

uH (fp)w=0, (4)

where the superscript T denotes matrix transpose and w is the non-trivial solution of the
homogeneaus equation :

i [E-K"(fip)lw=0. ‘ (5)

If equation (4) is satisfed, then equation (3) for f = f, will be a consistent (or, compatible)
system of equations, and can be solved to obtain a non-unique solution by assigning M
of the unknowns arbitrarily, where n is the nullity of matrix E—X(/») [5]. To examine
the conditions under which equation (3) can possess a non-unique solution for f=fp, it
is convenient to consider the interior problem for the same boundary with the
homogeneous Dirichlet boundary condition, p=0on 5, and proceed by expressing these
conditions in the form of assumptions, as follows.

Numerical implementation of the boundary element method does not
involve any surface approximation which introduces edges and/or corners that contain
collocation points. ' |

Under this assumption, the normal derivative of G will be uniquely defined at all
collocation points and, therefore, équa{ion (2) for the interior problem can be discretized
by making exactly the same approximations that have been made in the derivation of
equation (3). Hence, equation (2) will yield N equations, which may be written as

[E-L(N]v=0, (6)
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where v is the unknown nodal normal velocity vector, Note that, with assumption 1,
matrix E reduces to a unit matrix.
/Assumiption 2 This assumption is

L) =K"(/). (7)

With this assumption, equation (6) takes the form of equation (5). Similarly, discretiz-
ation of equation (1) for the interior problem with the homogeneous Dirichlet boundary
condition gives the following set of N equations:

H(f)v=0. (8)
E}}]@}“W This is
H(f)=H"(/). (9)

Under assumption 2, it is clear that the characteristic values of equation (6) are given
by f= f;, and, thcrefcre‘ a non-trivial solution of equation (6) is also 4 solution of equation
(3). Then, with assumption 3, this solution will satisfy equation (4) i the final assumption
is made,

Assumption 4. Equations (6) and (R) have identical characteristic values.

This should t be true approximately if the boundary element mesh is sulfici ently fine,

In summm), assumptions 1-4 express the conditions required for matrix E—K(f) to
have a non-unique solution when it becomes singular. The question of how to discretize
cquation (1) s that these conditions will hold true is considered in the next section.

It should be noted that in the foregoing an‘.lysm, it is tacitly assumed that eguation
{4) is satisfied by virtue of the condition H'(f;)w=0. However, equation (4) may also
be satisfied if u happens to be such that H(fs)u=0, or if w H({fp)u=0but H'(f,;)w#0
or H(/p)u# 0. In both cases, equation (3) will have a non-unique solution for /= f,, with
no additional conditions and assumptions 1-4 are not required. These possibilitics,
however, are concerned with some very special forms of u and are noted here only for
the sake of completeness.

2.2, RESTRICTIONS ON NUMERICAL IMPLEMENTATION OF THE BOUNDARY ELEMENT
METHOD

Assumptions 1-3 place some severe restrictions on the numerica] implementation of
the boundary element method. For example, assumption 1 will not be satisfied with
isoparametric ¢elements which have nodes on their boundaries unless a special technique
is employed for smooth surface approximation. However, as will be shown in this section,
the more critical restrictions are imposed by assumptions 2 and 3.

To begin with, assume that assumption 1 is valid and express equation (1) for the
exterior problem with the Neumann boundary condition, v=u, on &, in the following
form which is more convenient for the discussion of its discretization: namely,

p(x) ~J (=8G/aR) cos y(y, x)p(y) ds(y) =~ i2mfp L G(R, flu(y) ds(y). (10)
S

Here vy(y, x) denotes the angle between the unit normal vector n(y) and the vector x—y.
In the numerical implementation of the boundary element method [6], the boundary is
divided into a number of elements and the parametric equations of an element are written
exactly or, as is more usual, for a working (approximating) boundary which is formulated
by a polynomial interpolation. Sound pressure and normal velocity are collocated at a

number of points. The collocation points which belong to an element are called the nodes
of that element. The distributions of p and u over a boundary element are interpolated
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in terms of their values at the element nodes by using a polynomial expansion which, in
the case of isoparametric elements, is of the same order as that used for geometric
discretization. Finally, integration of equation (10) numerically, always by Gaussian
quadrature in this paper, gives

pe—3 3 [= G'(R, N cos [ylyge, Yo IweJ (y)ayp’

L 4

=~ 2mfp L ¥ G(RE, Nwed (y)auu', (11)
e g :

where e, g=1,2,...and ¢=1,2,..., N superscript e refers to the elements, subscript ¢
to the integration points (the Gauss points) and the subscript ¢ to the collocation points
(the nodes); y denotes a point on the boundary, R, = ly. —¥,l, J is the Jacobian of the
parametric representation of the boundary, q is a row matrix, the,elements of which are
the shape functions [6], p® and u® denote the element nodal pressure and nodal normal
velocity vectors, respectively, w denotes the numerical integration weights and G'=
3G/aR. In matrix notation, equations (11) for ¢=1,2,..., N can be expressed in the
form of equation {3).
Similarly, equation (2) for the interior problem cah be expressed as

v(x)— J (= 8G/aR) cos y(x,y)vly) ds(y) =0, (12)
3 ;

where y(x,y) denotes the angle between the vectors n(x) and y—x. Since assumption }
is supposed to be valid, equation (12) can be discretized by using the same element mesh
and the same integration rule to obtain

v~ L L[~ G'(Riy, f)] eos [y(ve, Y Iwid (yedaey' = 0. (13)

For ¢=1,2,..., N this equation can be expressed in matrix notation as equation (6).

First, consider matrix H(f), the elements of which are given by the expression on the
right side of equation (11). By.assumption 3, this matrix is required to be symimetric.
Since for an arbitrarily shaped body, the distances R, may all be distinct and non-refated,
a necessary condition for matrix H(f) to be symmetric is the following: restriction 1 the
collocation points must all be coincident with the imégratian points.

Now, assume that restriction 1 is valid and let e,, €,, ... be the collocation points for
clement e, and ¢, ¢4, ... those for element ¢ For simplicity, one may assume, without
loss of generality, that elements have no nodes on their boundaries. As can be shown by
writing the right side of equation (11) explicitly, an element of matrix H( /) which is
located on the ¢th row and eth column, say He,,, is given by a linear combination of
GUR . ) GUREu by vs and the transposal element, H,., by a linear combination of
G(Reen)s G(Rigi ) v H(f) will be asymmetric if these two linear combinations
are equal. For an arbitrarily shaped body, this can be true if, and only if, restriction 2
holds: restriction 2; boundary elements must have only one collocation point(node).

An element with a single node, generally known as a constant element, is characterized
by a constant shape function giving a constant distribution of pressure and normal velocity,
defined by their values at the element node which, because of restriction 1, shall at the
same time be the integration point. ;

Under restrictions 1 and 2, ofe can use only a linear integration rule such as linear
Gaussian quadrature for numerical integration over the elements. For this reason, assump-
tion 1 shall always be valid if restrictions 1 and 2 are valid because for linear Gaussian
quadrature the integration point is located in the “middle” of an element.
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With these implications of restrictions 1 and 2, that is, constant boundary elements
and linear Gaussian quadrature, equation (11) may be written as

p. =L~ G'(Re )] €08 [Yer 5OV )W = = 2700 £ O Ry NIy ette (14)

In writing this equation, subseript g is replaced by e and the superscript e is dropped
when superflous. Comparing equations (3) and (14) shows that the elements of matrices
K(/f) and H()), say K,, and F, respectively, may be written as

Koo == G (R S 008 [1(ye, Yol [ ¥ Iy H..==2afpG(R.., ) (y.)w., (15,16)
where ¢, e=1,2,..., N. Therefore, since R, = R, matrix H(f) will be symmetric if
* J(y.)w, = constant. (17)

The product J{y.)w, gives the area of an element exactl}fif' the element is planar and
approximately if it is non-planar. For this reason, equation (17) will be satisfied if
restriction 3 holds: restriction 3 boundary elements must be planar and all have equal area.
Under restrictions 1-3, matrix H{f} will be symmetric.
Now, consider assumption 2 which requires that L(f) = K'(f). With restrictions 1 and
2 assumed to be satisfied, equation (13), after simplification of the indices as described
for equation (14), tan be expressed as '

v.— 2 [— G'(Re, f}) cos [y, Y)W (y ) weo. = 0. (18)

By comparing this with equation (6), an element which is located on the cth row and
eth column of matrix,L(f), say L., can be seen to be :

G(Ru!f}cos[{(‘€$, _}J()(‘}H : ng)

From equations (15) and (19) it follows that if restriction 3 is valid, too, then L. = K,
as required by assumption 2,

In summary, it has been shown that assumptions 1-3 shall be valid if one employs
constant planar elements of equal area and linear Gaussian quadrature for numerical
integration. Here it is important to note that, under restrictions 2 and 3, restriction 1 is
not required when integrating over the source element; that is, the element that containg
point y. in equations (11) or (14). This follows because, with constant elements, the
source element contributes only to the diagonal terms of matrices K( /), H(/) and L(f)
and, with plinar elements, the angle y for any two points on the same element is 90
degrees. Therefore, the transposal relationships L(/) = K'(f) and H(/)=H"(/) will not
be vielated if one uses a higher order Gaussian quadrature when integrating over the
source element. This is an extremely useful feature because linear Gaussian quadrature
gives rise to singular kernels when integrating over the source e¢lement. This problem can
thus be handled simply by switching over to a suitable higher order Gaussian quadrature.

3. ANALYSIS OF NUMERICAL SOLUTIONS FOR ACOUSTIC RADIATION FROM
A RADIALLY VIBRATING INFINITE CYLINDER

The purpose of this section is two fold. First is the examination of the incidence of
singularity in the coefficient matrix. In the previous section it has been tacitly assumed
tlml the co;ﬂicienl mdtrix will be singular For ccrrain frequencies. In this section an

The second purpose of the section is to s[udy l_hehbuh_:_l_\e“;our_gjugb_g_p_mm_pi_gai_sglLuirms
in the vicinity of the characteristic [requencies.

—— Ectee SRS
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A prerequisite for these studies is the ability to compute the solution to the approximat.
ing equation accurately for all frequencies. If the answers are accurate then it is not
necessary to be concerned about ill- u)ndmmung However, it is difficult to tell if @ solution
is accurate by looking at it. Knowledge of the presence of ill- conditioning can put one
on guard against the possible effects of ill-conditioning. The presence ol ili-conditioning

can be recognized by computing the matrix condition number, but this is not un error-proot

test because the matrix condition number may falsely indicate an inaccurate solution.
For this reason, in this section, an approach is adopted whereby the effects of ill-
conditioning, if any, cun be completely annihilated by simplification of the approximating
equations. Such an approach is possible in two-dimensional sound radiation from u
uniformly radially vibrating infinite cylinder. This problem is solved in this section by
using constant planar boundary elements of equal area and linear Guaussian quadrature
for numerical integration, so that the conditions derived in the preyious section for the
existence of a solution to the approximating equation at the incidence ol singulurity are
satisfied. ¢ :ﬂ g =

3.1 DISCRETIZATION IN TWO-DIMENSIONAL PROBLEMS

e-§pace C‘ru;n I'uncucm is given by [7]
G(R, )= (i/2)H (kR), (20)

in two dimensions, the [

where k=2xf/c is the wavenumber and HY' denotes the Hankel function of the first
kind of arder n. The boundary can be conceived as a closed curve in a plane and, therefere,
pianar elements can be represented by two- chmenssondl hmal ‘”‘Et‘il?l‘.h[‘; The parametric
equations of a lineal element e may be written y, = = &)y .md ya=q(E)yy, where £ du‘.me
the local element co-ordinate (- 1= é<1), q(&)=[1-¢ 1+£]/2, the sub%m}ﬂ% 1 and 2
refer to the rectangular co-ordinates of any point on the lmeﬂ.f clement; yi={y/ ¥k
j=1,2, where the superscripts 1 and 2 refer to the ends of the clement. Thus, the

co- mdmdtes of dny pomt on cic.mem ¢ may be wmten as v——[v Vo= q{ ‘}y“. whf.re

cos [7()'(., Ye) 1=:-ul’y.-¢f R J(y.), (21)
where y.. =Y. Y., the prime (‘) denotes differentiation with respect to £ and

el

For linear Gaussian quadrature J(y,) = b/2, where b denotes the length of a lineal element.
Hence, the elements of matrices K(f) and H(/), equations (15) and (16), respectively,
may be written as

=ikH{"(kR.)y.Pyle/ Ree,  Ho=Qufpb/2)H5"(KR..). (22,23)

As discussed at the end of section 2.2, in order to circumvent the appearance of singular
kernels, equations (22) and (23) should be used for caﬁ e and the diagonal elements

should be computed by using a higher order - quadr ;_Mﬂy starting with
equation (11) and assuming constant planar elements but a non-linear Gaussian quad-
rature, the diagonal elements of matrices K(f) and H(f) can be shown to be
K.=0,  H,.=Q2ufpb/4) L H"(kR)wy, (24,25)
B

" where the subscript g refers to the integration points, These expressions are derived by
assuming that the integration points g=1,2,... do not coincide with the collocation
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point on the source element. This condition can be satisfied by using a Gaussian quadrature
formula that requires an even number of integration points.

3.2 NUMERICAL RESULTS FOR A RADIALLY VIBRATING INFINITE CYLINDER

Consider the problem of two-dimensional sound radiation from a radiaily vibrating
infinite cylinder. In two dimensions, the boundary will be in the form of a circle and
equations (22)-(25) can be applied by approximating the circle by u regular polvgon of
N equal sides, inscribed inside the circle, Then, as can be deduced frem the rotational
symmetry of distances R,, and angles v(y., v.), matrices K(;’) and H J) will come out
as.symmetrical circulant matrices, 0 o 0 T

A circulant square matrix A of size N is of the form

Ay, oy Ay

an

A -y

The determinant of a circutant matrix, called a circulans, can be coﬁ"puted without
recourse to the standard co-facter expansion procedur«.s Circulant || can be shown (©
A )
be given by the produgt J__\] |Al: - |Alw, where [5] {Z%
[A], = a‘-i-ang-i-aM (27) Z
A g Falten ;
Here, U; denotes an Nth root of unity. Note that one of the circplant factors will be g
equal 1o the sum of the elements in any row or column of the circulant. For gase of
reference, this factor will be referred to as the {undamental fuctor and denoted by [A]” { %
for a circulant |A]. . 14
If the cylinder is vibrating with a uniform radial velocity of amplitude w,, then

w=1y{l 1 -+ 1} and the right side of equation (3) becomes
T e H(Nu=[H(NT"ufl 1 -~ 1}, (28)
where { } denotes a column vector of N elements. Since matrix E— K(/) is also a circulant
matrix, it follows that the solution to equation (‘4}__(:;11 be expressed as p=py{1 1 -+ 1},
where [/
po= uum(f}r/ vmif . J (29)

Thus lhe solution to egumon (a,, can be computed ac;umtcly for all frequencies by
sin single simple equation,

The real and imaginary parts of the normalized surface pressure, py/ P, computed by
using equation (29) with 100 and 800 elements are shown in Figures 1 and 2, respectively,
as functons of the non- dimensional wavenumber ka, where a denotes the radius of the
cvlinder. The exact suriqce pxeaqure, jzm \ahu.n r*m hc d_ ‘J\r’&d from [ne F‘mdamr_nmi

equations gwen “inTeference [7], can be shown to be

" s L P T i Uka) T (ka). ) W/ (30)
The accuracy of the surface pressures computed by using equation (29) can be assessed
I'rom the real and imaginary parts of pgip“' the closer is the re almﬂ.mni;».and the

ijsﬂcan be seen f‘rom Flgures 1 and 2, equation (?9) ives accurate resuits in the
frequency range considered except in the neighbourhood of ka =24 and ka = 5-52, whic
are approximately the first two zeres-of the Bessel [unction of order zerq, which are in

turn the first two characteristic wavenumbers for the associated interior pmblcrr( JAS
e S, e

s wl s E R
(/)

o * “if o S

m#

(e

1



/?/.

N o

-—""‘f.‘“-#_ .f_,-—"""'-‘-‘

(! (-;) ON BOUNDARY ELEMENT SOLUTION FAILURES 91

2:2

ka =552 )
18

ez to 3-39 for N=100

fo 330 for N xﬁy

Re {pg/ P,

whBlc ] ey ‘|("\‘ L | I

114 18 23,76 36 34 35 57 46 50 5458 62 66 70

ka
Figure 1. Variation of the real part of the norma(lzj }rf’:u pressure, computed by, using equption (29)

with the dimensionless wavenumber ka; , 100 elcn'u:nts - - -, 800 elements (constunt line .tf_p_t_‘:;nuns‘xﬁtbl
one Guuss point). ;
80 AL T T T R P e T g

40} .

/ 0 = N e = -

e B

~

- 40} P

- : : 4

‘-:‘ _Bo - i -]
&

| &/-120} : .

\ E/ -160}- .

/ -200}- : - .

=RARE ko =552 e

to=480 for N=100
-280 to~472 for N =800 -
i L 1 I ! 1 L ! A Je | s, L
1 v4 18 22 26 30 34 38 42 465052 56 60 646870
ko

Figure 2. Variation of the imaginary part of the normalized surface pressure, computed by using equanon
{79) with the dimensionlgss wavenumber ka, Key as Fugure L. =

range but the error peaks continue tg_p_ermst and become @m@ The effect of the number
of elements can be seen more clearly in Eigure 3, which gives a zoomed view of the first
critical region around ka =2-4 Tor the real part of the normalized surface pressure. In
this figure, in addi{iomsum computed by using 100 ar and 800 elements, some

intermediate results for 200 _and 400 00 elements are also shown. A samiiar behaviour is

observed, but not shown here, at the second critical region around ka :=5:32, Similar

numerical phenomena which may be occurring at greater values of ka are not investigated
""‘l——._____—-v—..__h_',_“
in this paper.
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Re (pg/p ex)

- 1.8l - l . . ; |
2 38 2-39 240 2-41 -4z 243 244
ka
Figure 3. A zoomed view of Figure | in the close vicinity of ka = 2- 405, ——, 100 clements: — e 20
elemunis; — — 400 clements; - - -, 800 ¢lements (constant lineal elements \\.u}' one Gauss point,

that lie in

In Figure 4 the zeros of the real *H‘.I imaginary parts of circulant [E-K(1)]
the vicinity of ka=2-4 are given as functions of the number of uc,x._"nu 1 this Fdnge
of wavenumbe 1s the real and imaginary parts of this circulant vanish by wittue of th
vanishing of its fundamental factor, and the zeros given in Figure 4 were calculated by
linear interpolation as the fundamental factor, 5% sign wa ST Ilw m!} RAITaW
frequency interval. When matrix E~ K( /) become g

parts of jts fundamental fuctor must vanish simultaneous 1 2 4 i j.-': shown T.l".,‘
1}1:. real and imaginary parts of the fundumental factor have distinet zeros for u finize

2432 T { T i I
2428} : |
o F1S
9] 1oV
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Figure 5. Variation of the zeros of the real and imaginary purts of circulant [H{ /)] with number of elements
i the close vicinity of ka = 2-4 (constant lineul elements with one Guauss point}.

number of Licmcnl‘; However, they tend to hdve a common zero ultimately as the r,umbcr
of elements increases to mﬁmty

So far, aswmpnon 4 of section 2.1 has been tacitly assumed to be valid throughout
the analysis. This assumption requires that when matrix E~K(/) is singular, so should
be matrix _H(f), The circulant [H( /)| vanishes also by virtue of the vanishing of its
fundamental factor. The zeras of the real and imaginary parts of [H(/ )17 are shown in

' qure 5 as I'uncuons oi 1hu. number of elements Ior ka ciose 1o 2:4. As can be seen, like

the 1m(1011m1y pdrl of the funddmentdl factor has two zeros whxch comaug,t_ 0 lhe same
value as the number of elements is increased. The curves given in Figures 4 and 5 display
H tuldenr,y to bccome dsymptoltc to lh(.. value oFJ}_a =2 éﬂ:lhwlm.h 1§ & more accurate

4. DISCUSSION AND CONCLUSIONS

The present analysis has shown that the approximating equations may have a non- -unique
numerical solution at the incidence of singularity, provided that they are derived by using
constant planar elements of equal area and linear Gaussian quadmtnrg for numerical
mtcbml 1. Howéver, it'is important to note that this result holds only for a finite number
of boundary elements. If the number of elements_used is infinitely large, then the
approximating equations shall become an exact repres sentation of the extenor surface‘
Helmholtz integral equation irrespectively of the type of boundary elements used in its

'd1sc;ctual:0n Now, it is well known [8] that the exterior surface Helmholtz integral
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equation possesses a non- unique_exact solution when frequency equals a characterisfic
frequency. associated with the interior of the body. Therelore, as the number of elements
tends to infinity, the approximating equations, like the parent integral equation, should

u[tim.m.ly possess a non- unique numericq} soiution at ihe incidence of singularity,

smgular for afinite number of boundary clcments ? Oi course, this qmsnon is 'J.Lr{uul.l rt;«
relevant if the approximating equations are known to possess & solution at the incidence
of singularity, as is the case when they are derived by using constant planar elements of
equal area and linear Gaussian quadrature. Implementation of this type of boundary
element discretization to the problem of two-dimensional sound radiation from a radially
vibrating infinite cylinder has shown that the coefficient malrix does not become singular
for g finite_number of elements. Nevertheless, as the number of elements is mcrulced
the coefiicient matrix g,ggg_we.fge;:_,jq__ singularity, as depicted in Figure 4, confirming the
non-uniqueness feature of the parent integral equation.

This conclusion has been confirmed by further computations carried out by using
isoparametric elements in place of the constant lineal elements in the solution of the
infinite cylinder problem, as described in the Appendix. As an example, Figure 6 is a
counterpart of Figure 4 for the quadratic isoparametric element [6] with two integration
points. These results were computed by making use of the properties of biock-circulant
matricss given in the Appendix dnci are, therefore, free from the efteuts ol ill-conditioning,
il any, of the actual coefficient matrm As can be seen {rom Figure 6, with isoparametric
quadratic elements, convergence to singularity is faster than that with constant planar
elements. BTa

1 H‘é- }«'\%

L{()\_‘}H J 4
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24049 /I"" 4
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]
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Number of elements, N

Figure 6. Variation of the zeros of the real and imaginary parts of circulant [E - K(f)| with number of elements
in the close vicinity of ka = 2-4 (quadratic isoparametric elements with two Gauss poiats).

The emgnatramml.nf th:_fdguhaiklh&t.gg_fﬁgep‘g”mgg is always non-singular for a,
finite number of elements is_believed to be a_contribution of the pggs_gp_t paper. An
mteresung implication of this is that the characteristic frequencies associated with the,
interior of the body cannot be determined, when using constant planar elements, as
_non -trivial solutions of equation (6) because these solutions correspond to the states of
singularity of the coefficient matrix. However, the gharacteristic {requencies can be
estimated by following the convergence of the zeros of the real and imaginary parts of
the coeflicient matrix determinant, as has been noted above with reference to Figure 4.
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Another contribution of the present analysis has been Nie demonstration of the fact
that the failure experienced in the neighbourhood of the characteristic frequencies is
basically not an ill-conditioning pron!em Boundary element solutions for the infinite
cylinder problem computed accurately for all frequencies by using equation (29), were
found to be grossly in error in the vicinity of the characteristic frequencies. Increasing
the number of elements narrows down the range of troublesome frequencies but does
not, in general, improve the solution errors in the clase vicinity of the characteristic
frequencies. Further computations, which were carried out by using isoparametric ele-
ments in place of constant planar elements in the infinite cylinder problem have shown
that, for a given number of elgments, the solution errors in the close vicinity of the
characteristic frequencies can be improved by using gu improved integration rule: Some
representative results, which were computed by using linear isoparametric elements and
the block-circulant properties described in the Appcndl\ are presented in Figures 7 and-
8. As can be seen, in the close vicinity of ka =2-405, the accuracy of both the real and
the imaginary parts of the approximate surface pressure is_improved .as the orderwof
Gaussian quadrature increases, For this reason, it is believed that the numerical problem
ewenemed in the" nelchbourheod of the characteristic frequencies is basically more a
problem of P&QLE’QE.YEEEEE““EH?.'_.‘}P.”I‘f,l lﬁ‘ll...‘_l_?__[ "_f‘“?{“ than a problem of jl].',?@”d![.m_“"_“gv
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APPENDIX: SOLUTION OF THE INFINITE CYLINDER PROBLEM BY
USING ISOPARAMETRIC BOUNDARY ELEMENTS

In two-dimensional acoustic radiation prob!ems an isoparametric element having M
(> 1) nodes is obtained by approximation of both the element boundary and the acoustic
pressure and the normal velocity distribution over the element boundary by Lagrange
interpolation by means of a complete polynomial of order M ~ 1. Then, the approximating
equations will come out essentially in the form of equation (11) where the free- -space
Green function is given by equation (20). However, since two of the element nodes have
to be located at the ends of the element, it will be necessary to modify equation (11)
whenever a collocation point ¢ lies at the junction of two elements, as described in section
2.1. Thus, with an isoparametric element, matrix E will not normally be a unit matrix.

If the infinite eylinder problem considered in section 3 is discretized by dividing the
two-dimensional representation of the boundary into N identical isoparametric elements
each having M nodes, matrices E~K(/) and H(/) will come out in the following

P4
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block-circulant matrix form:

7 El SRR
A A oo A

A ! gl (A1)
D IR

Here the sub-matrices A; are all of size (M —1)x(M —1). Let [A]" denote the sum of
the sub-maftrices in any one row or column of a block-circulant matrix A.

For a uniformly radially vibrating infinite cylinder, let u={u_ u, -+ u,}, where u, =
ugfl 1 -+ 1} is a vector of size M —1. For this case, the solution of equation (3} can
be shown to be of the form p={p. p. - = p.}, where the vector p, is given by

[E-K(D] pe=[HUS NIt (A2)

The elements of the vector p, give the acoustic pressure amplimdes at the internal nodes,

“if there is any, and at one of the end nodes of the element.

The foregoing equation enables the solution to the approximating equations to be
obtained by inverting a matrix of size M — 1. For example, with the well known quadratic
isoparametric elements, for which M =3, it is necessary only to invert a 2 x 2 matrix. This
N-fold reduction in matrix size enables the computation of the solution 10 equation (3)

accurately for all frequencies.
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