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| In the numerical implementation of the boundary element method to exterior acoustic
problems, the approximating equations give incorrect results for the surface pressure when
the frequency is in the neighbourhood of some critical values. In previous papers, this
failure has been attributed to ill-conditioning problems which prevail as the singularity is
| approached, but issues such as whether the coefficient matrix will become singular or
g ' whether one will obtain good results when the effects of ill-conditioning can be annihilated

have not been discussed. This paper presents a discussion of these questions. Numerical
results for two-dimensional sound radiation from a radially vibrating infinite cylinder
show that the problem encountered in the vicinity of the critical frequencies is not basically
an ill-conditioning problem, and that the coeflicient matrix does not become singular for
a finite number of boundary elements.

1. INTRODUCTION

The boundary element method has been used extensively in recent years in the numerical

- solution of acoustic radiation problems. This method essentially consists of discretization
of the exterior surface Helmholtz integral equation and solution of the resulting
approximating equations, a set of non-homogeneous linear algebraic equations, for the
surface pressures at the collocation points. The field pressures are then computed by
using the exterior Helmholtz integral formula. A well known drawback of this approach
is that the approximating equations give incorrect results for the surface pressures when
the forcing frequency is near to a characteristic frequency associated with the interior of
the body. ;

Seybert and Rengarajan [1] have pointed out that this numerical failure experienced
in the neighbourhood of the characteristic frequencies is due to the coefficient matrix of
the approximating equations becoming nearly singular and ill-conditioned, and have used
the matrix condition number to recognize the presence of ill-conditioning. Similar remarks
regarding the incidence of singularity and ill-conditioning at or near the characteristic

- frequencies have been made also by other authors [2-4].
. These remarks raise certain questions which have not been discussed in the previous

papers.

- (1) The coefficient matrix is stated to become nearly singular in the vicinity of the
. characteristic frequencies, implying that it will become singular for certain frequencies.
~ For these frequencies, as is well known from linear algebra, the approximating equations
~ may have either a non-unique numerical solution or no solution at all. Previous papers
. imply that the coefficient matrix may be singular but make no comments on the question
~ of existence of a numerical solution when singularity prevails. In the present paper the
_conditions that are necessary for the approximating equations to possess a non-unique
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solution at the incidence of singularity are derived, and are shown to be satisfied when
one uses constant planar boundary elements of equal area and linear Gaussian quadrature
for numerical integration. The problem of two-dimensional sound radiation from a radially
vibrating infinite cylinder is solved numerically by using boundary elements of this type.
Numerical results indicate that the coefficient matrix will not be singular for a finite
number of elements. : '

(2) The failure of numerical solutions in the neighbourhood of the characteristic
frequencies is explained by the effects of ill-conditioning; that is, the round-off errors in
the calculation of the solution; but no comment has been made on whether or not one
will obtain good solutions if the effects of ill-conditioning are annihilated so that solutions
can be computed accurately for all frequencies. It should be noted that here the presence
and effects of ill-conditioning are not questioned. The coeflicient matrix may become
severely ill-conditioned for certain frequencies and round-off errors may take over the
computations, producing incorrect results, as reported by the authors cited above. What
is questioned is whether or not one will obtain good results when solutions can be
computed accurately for all frequencies. In this paper this question is studied numerically,
again with reference to the problem of two-dimensional sound radiation from a radially
vibrating infinite cylinder. For a uniformly vibrating infinite cylinder, the coefficient matrix
comes out in the form of a circulant matrix which can be reduced to a single eqliation
which can be solved accurately for all frequencies: that is, in this case one need not be
concerned about the effects of ill-conditioning, if any, of the actual coefficient matrix.,
However, failure of the numerical solutions in the neighbourhood of the characteristic
frequencies still takes place, indicating that this problem is basically not an ill-conditioning
problem but is probably induced by slow convergence of numerical integration at these
frequencies.

2. CONDITIONS FOR THE EXISTENCE OF A NON-UNIQUE
NUMERICAL SOLUTION
In this section an analytical study is presented of the question of existence of a numerical
solution to the approximating equations when the coefficient matrix becomes singular.
First, the conditions that are necessary for the existence of a solution when the coefficient
matrix is singular are derived, and then the problem of numerical implementation of
these conditions is considered.

2.1. GENERAL CONSIDERATIONS

Let a vibrating body occupy a bounded connected domain with a smooth boundary S
and unit outward normal n. The normal velocity amplitude v and the sound pressure
amplitude p are related by the classical surface Helmholtz integral equation

(£)p(x)— L [0G(R, f)/an(y)]p(y) ds(y) =— i27fp J G(R, f)v(y) ds(y), (1)
5 WS

where x and y denote points on S, R=|x—y|, i=v/(— 1), f denotes the frequency and
exp (—i2#ft) time dependence is assumed. ds denotes a differential boundary element,
G(R,f) is the free-space Green function, ie., G= exp (i2mfR/c)/2wR in three
dimensions, p is the density of the medium at rest and c is the speed of sound; the plus
sign applies for the exterior problems and the minus sign for the interior problems. If
the normal velocity v is prescribed on S (the Neumann boundary condition) then equation
(1) takes the form of an inhomogeneous Fredholm integral equation of the second type
in p. On the other hand, if the sound pressure p is prescribed on S (the Dirichlet boundary
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condition), equation (1) takes the form of an inhomogeneous Fredholm integral equation
of the first type in v. Alternatively, for the Dirichlet boundary condition, the surface
Helmholtz integral equation can be expressed also in the form of a Fredholm integral
equation of the second type in v, which is needed here in its homogeneous form: namely,

(ﬂ:)v(X)JrL [6G(R, f)/an(x)]v(y) ds(y) =0. (2)

For the exterior problem with the Neumann boundary condition, say v=u on §,
discretization of equation (1) by using boundary elements, as shown in section 2.2, yields
a set of linear algebraic equations which may be written as

[E-K(f)]p=H(f)u, _ (3)

where p and u are, respectively, the nodal sound pressure and the prescribed nodal normal
velocity vectors. Matrices E, K(f) and H(f) are of size N x N, where N is the total
number of collocation points (nodes). K(f) corresponds to the integral operator on the
left side of equation (1) and H(f) to that on its right side. As to the definition of matrix
E, a brief digression is in order. Even though the actual boundary is assumed to be
smooth, numerical implementation of the boundary element method in general involves
some kind of geometric discretization which can introduce edges and corners on the
working (approximating) boundary. Then, equation (1) does not apply for a collocation
point, if any, that lies on such an edge or corner. The correct equation to use then is the
general form of equation (1), where the coefficient of p(x) is given by the outer solid
angle divided by 24 at point x [1]. For this reason, matrix E in equation (4) in general
denotes a diagonal matrix which reduces to a unit matrix if the edges and corners on the
working boundary contain no collocation points.

Now, obviously, if matrix E— K(f) becomes singular for certain f, say, fp, then equation
(3) may not possess a solution. From linear algebra, a necessary and sufficient condition
for equation (3) to have a solution when matrix E—K(f) is singular is

uTHT(fD)w = 0: (4)

where the superscript T denotes matrix transpose and w is the non-trivial solution of the
homogeneous equation

[E-K'(fp)lw=0. (5)

If equation (4) is satisfied, then equation (3) for f = f;, will be a consistent (or, compatible)
system of equations, and can be solved to obtain a non-unique solution by assigning n
of the unknowns arbitrarily, where n is the nullity of matrix E—K(fp) [5]. To examine
the conditions under which equation (3) can possess a non-unique solution for f = fp, it
is convenient to consider the interior problem for the same boundary with the
homogeneous Dirichlet boundary condition, p =0 on S, and proceed by expressing these

~ conditions in the form of assumptions, as follows.

Assumption 1. Numerical implementation of the boundary element method does not
involve any surface approximation which introduces edges and/or corners that contain
collocation points.

Under this assumption, the normal derivative of G will be uniquely defined at all
collocation points and, therefore, equation (2) for the interior problem can be discretized

_by making exactly the same approximations that have been made in the derivation of
- tquation (3). Hence, equation (2) will yield N equations, which may be written as

[E-L(f)]v=0, - (6)
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where v is the unknown nodal normal velocity vector. Note that, with assumption 1,
matrix E reduces to a unit matrix.
Assumption 2. This assumption is

L(f)=K'(f). (7)

With this assumption, equation (6) takes the form of equation (5). Similarly, discretiz-
ation of equation (1) for the interior problem with the homogeneous Dirichlet boundary
condition gives the following set of N equations:

H(f)v=0. - (8)
Assumption 3. This is
H(f)=H'(f). 9)

Under assumption 2, it is clear that the characteristic values of equation (6) are given
by f = fp and, therefore, a non-trivial solution of equation (6) is also a solution of equation
(5). Then, with assumption 3, this solution will satisfy equation (4) if the final assumption
is made.

Assumption 4. Equations (6) and (8) have identical characteristic values.

This should be true approximately if the boundary element mesh is sufficiently fine.

In summary, assumptions 1-4 express the conditions required for matrix E—K(f) to
have a non-unique solution when it becomes singular. The question of how to discretize
equation (1) so that these conditions will hold true is considered in the next section.

It should be noted that in the foregoing analysis, it is tacitly assumed that equation
(4) is satisfied by virtue of the condition H™(f;,)w=0. However, equation (4) may also
be satisfied if u happens to be such that H(f,)u=0, or if w H(fp)u=0 but H'(f,,)w 0
or H(fp)u# 0. In both cases, equation (3) will have a non-unique solution for f=f, with
no additional conditions and assumptions 1-4 are not required. These possibilities,
however, are concerned with some very special forms of u and are noted here only for
the sake of completeness. - :

2.2. RESTRICTIONS ON NUMERICAL IMPLEMENTATION OF THE BOUNDARY ELEMENT
METHOD

Assumptions 1-3 place some severe restrictions on the numerical implementation of
the boundary element method. For example, assumption 1 will not be satisfied with
isoparametric elements which have nodes on their boundaries unless a special technique
is employed for smooth surface approximation. However, as will be shown in this section,
the more critical restrictions are imposed by assumptions 2 and 3. :

To begin with, assume that assumption 1 is valid and express equation (1) for the
exterior problem with the Neumann boundary condition, v=u, on S, in the following
form which is more convenient for the discussion of its discretization: namely,

_p(X)—L (= 9G/aR) cos y(y, x)p(y) ds(y) = = i2fp J G(R, f)u(y) ds(y). = (10)

Here y(y, x) denotes the angle between the unit normal vector n(y) and the vector x —y.
In the numerical implementation of the boundary element method [6], the boundary is
divided into a number of elements and the parametric equations of an element are written
exactly or, as is more usual, for a working (approximating) boundary which is formulated
by a polynomial interpolation. Sound pressure and normal velocity are collocated at a
number of points. The collocation points which belong to an element are called the nodes
of that element. The distributions of p and u over a boundary element are interpolated
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in terms of their values at the element nodes by using a polynomial expansion which, in
the case of isoparametric elements, is of the same order as that used for geometric
discretization. Finally, integration of equation (10) numerically, always by Gaussian
quadrature in this paper, gives

P~ 3 [- G'(Rig, N cos [(ys, v IweJ (yDaze*
L iy S OIR WG (11)
e g

where e, g=1,2,...and ¢=1,2,..., N; superscript e refers to the elements, subscript g
to the integration points (the Gauss points) and the subscript ¢ to the collocation points
(the nodes); y denotes a point on the boundary, R, =l|y.—y,|, J is the Jacobian of the
parametric representation of the boundary, g is a row matrix, the elements of which are
the shape functions [6], p* and u® denote the element nodal pressure and nodal normal
velocity vectors, respectively, w denotes the numerical integration weights and G'=
dG/aR. In matrix notation, equations (11) for ¢=1,2,..., N can be expressed in the
form of equation (3).
Similarly, equation (2) for the interior problem can be expressed as

B v(X)—J (= 9G/9R) cos y(x, y)v(y) ds(y) =0, (12)

where y(x,y) denotes the angle between the vectors n(x)} and y—x. Since assumption 1
is supposed to be valid, equation (12) can be discretized by using the same element mesh
and the same integration rule to obtain

| v.—L X[~ G'(R, )] cos [v(ye, yo) Iwg I (yg)agv =0. (13)

For ¢=1,2,..., N this equation can be expressed in matrix notation as equation (6).

First, consider matrix H(f), the elements of which are given by the expression on the
right side of equation (11). By assumption 3, this matrix is required to be symmetric.
Since for an arbitrarily shaped body, the distances R, may all be distinct and non-related,
a necessary condition for matrix H(f) to be symmetric is the following: restriction 1; the
collocation points must all be coincident with the integration points.

Now, assume that restriction 1 is valid and let e;, e,, ... be the collocation points for
element e, and ¢, ¢,, ... those for element c. For simplicity, one may assume, without
loss of generality, that elements have no nodes on their boundaries. As can be shown by
writing the right side of equation (11) explicitly, an element of matrix H(f) which is
located on the ¢;th row and eth column, say H,,, is given by a linear combination of
A1 GRS, f), G(RC.,, f), ... and the transposal element, H,, , by a linear combination of

Ciey
G(Rjj(.:,f), G(Ree,» ), -- .- H(f) will be asymmetric if these two linelar combinations
are equal. For an arbitrarily shaped body, this can be true if, and only if, restriction 2
holds: restriction 2; boundary elements must have only one collocation point(node).

An element with a single node, generally known as a constant element, is characterized
by a constant shape function giving a constant distribution of pressure and normal velocity,
defined by their values at the element node which, because of restriction 1, shall at the
same time be the integration point.

Under restrictions 1 and 2, one can use only a linear integration rule such as linear
Gaussian quadrature for numerical integration over the elements. For this reason, assump-
tion 1 shall always be valid if restrictions 1 and 2 are valid because for linear Gaussian
quadrature the integration point is located in the “middle” of an element.

e
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With these implications of restrictions 1 and 2, that is, constant boundary elements
and linear Gaussian quadrature, equation (11) may be written as

Pe _>_ [ G’(Rcesf)] Ccos [’Y(ye, YC}]j(YG)we e IZTTfP Z G(Rceaf]-;(ye)weue‘ (14)

In writing this equation, subscript g is replaced by e and-the superscript e is dropped
when superflous. Comparing equations (3) and (14) shows that the elements of matrices
K(f) and H(f), say K. and H,,, respectively, may be written as

K‘l‘.’(‘ TRy Gr( R(‘(_"}f) COS [Y(YCH y(‘)]j(YG)wC‘7 H&'e e izwpr(R('fJf)J(ye)w{’! (15’ 16)
where ¢, e=1,2,..., N. Therefore, since R, = R,,, matrix H(f) will be symmetric if
J(y.)w, = constant. (17)

The product J(y.)w, gives the area of an element exactly if the element is planar and
approximately if it is non-planar. For this reason, equation (17) will be satisfied if
restriction 3 holds: restriction 3; boundary elements must be planar and all have equal area.
Under restrictions 1-3, matrix H(f) will be symmetric.
Now, consider assumption 2 which requires that L(f) = K"(f). With restrictions 1 and
2 assumed to be satisfied, equation (13), after simplification of the indices as described
for equation (14), can be expressed as

ve=2[— G'(Ree, f)] cos [y(y., y.) 1T (y.) w.v, = 0. (18)

By comparing this with equation (6), an element which is located on the cth row and
eth column of matrix L(f), say L., can be seen to be

Lce i G?(Rce:.f) cos [?(YK’ ylf')]‘](yf:)we' (19}

From equations (15) and (19) it follows that if restriction 3 is valid, too, then L. = K,
as required by assumption 2. _

In summary, it has been shown that assumptions 1-3 shall be valid if one employs
constant planar elements of equal area and linear Gaussian quadrature for numerical
integration. Here it is important to note that, under restrictions 2 and 3, restriction 1 is
not required when integrating over the source element; that is, the element that contains
point y. in equations (11) or (14). This follows ‘because, with constant elements, the
- source element contributes only to the diagonal terms of ‘matrices K(f), H(f) and L(f)
and, with planar elements, the angle y for any two points on the same element is 90
degrees. Therefore, the transposal relationships L(f) = K"(f) and H(f) = H'(f) will not
be violated if one uses a higher order Gaussian quadrature when integrating over the
source element. This is an extremely useful feature because linear Gaussian quadrature
gives rise to singular kernels when integrating over the source element. This problem can
thus be handled simply by switching over to a suitable higher order Gaussian quadrature.

3. ANALYSIS OF NUMERICAL SOLUTIONS FOR ACOUSTIC RADIATION FROM
A RADIALLY VIBRATING INFINITE CYLINDER

The purpose of this section is two fold. First is the examination of the incidence of
singularity in the coefficient matrix. In the previous section it has been tacitly assumed
that the coefficient matrix will be singular for certain frequencies. In this section an
attempt is made to determine these frequencies numerically. '

The second purpose of the section is to study the behaviour of the numerical solutions
in the vicinity of the characteristic frequencies.
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A prerequisite for these studies is the ability to compute the solution to the approximat-
ing equation accurately for all frequencies. If the answers are accurate then it is not
necessary to be concerned about ill-conditioning. However, it is difficult to tell if a solution
is accurate by looking at it. Knowledge of the presence of ill-conditioning can put one
on guard against the possible effects of ill-conditioning. The presence of ill-conditioning
can be recognized by computing the matrix condition number, but this is not an error-proof
test because the matrix condition number may falsely indicate an inaccurate solution.
For this reason, in this section, an approach is adopted whereby the effects of ill-
conditioning, if any, can be completely annihilated by simplification of the approximating
equations. Such an approach is possible in two-dimensional sound radiation from a
uniformly radially vibrating infinite cylinder. This problem is solved in this section by
using constant planar boundary elements of equal area and linear Gaussian quadrature
for numerical integration, so that the conditions derived in the previous section for the
existence of a solution to the approximating equation at the incidence of singularity are
satisfied.

%

3.1. DISCRETIZATION IN TWO-DIMENSIONAL PROBLEMS
In two dimensions, the free-space Green function is given by [7]

G(R, f) = (i/2)H§"(kR), (20)

where k=2af/c is the wavenumber and H'" denotes the Hankel function of the first
kind of order n. The boundary can be conceived as a closed curve in a plane and, therefore,
planar elements can be represented by two-dimensional lineal elements. The parametric
equations of a lineal element e may be written y, = q(£)y} and y, = q(£)y3, where £ denotes
the local element co-ordinate (—1<¢=1), q(§)=[1—-¢& 1 + £]/2, the subscripts 1 and 2
refer to the rectangular co-ordinates of any point on the lineal element; yi={y} ¥i}
j=1,2, where the superscripts 1 and 2 refer to the ends of the element. Thus, the
co-ordinates of any point on element e may be written as y=[y; y,]1=q(&)y", where
y¢ =[y{ y3]. Then, the co-ordinates of the collocation point on element e willbe y, = q(0)y©
and the angle y associated with elements e and ¢ can be shown to be given by

cos [y(ye, Ye) 1 =Y.Py L/ Ree T (¥e)s (21)

where .. =¥, —Ye, the prime (') denotes differentiation with respect to &, and

o [0 - 1}
=19 0J
For linear Gaussian quadrature J(y.) = b/2, where b denotes the length of a lineal element.

Hence, the elements of matrices K(f) and H(f), equations (15) and (16), respectively,
may be written as
K. =ikH{"(kR.)Y.Py~/Reey  Hee=(2mfpb/2)HG (KRe)- (22,23)
As discussed at the end of section 2.2, in order to circumvent the appearance of singular
kernels, equations (22) and (23) should be used for ¢# e and the diagonal elements
should be computed by using a higher order Gaussian quadrature. By starting with
equation (11) and assuming constant planar elements but a non-linear Gaussian quad-
rature, the diagonal elements of matrices K(f) and H(f) can be shown to be

K..=0,  He=(2mfob/4)% Hy (kRo)Wg, (24, 25)
k4

where the subscript g refers to the integration points. These expressions are derived by
assuming that the integration points g = 1,2,... do not coincide with the collocation
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point on the source element. This condition can be satisfied by using a Gaussian quadrature
formula that requires an even number of integration points.

3.2, NUMERICAL RESULTS FOR A RADIALLY VIBRATING INFINITE CYLINDER

Consider the problem of two-dimensional sound radiation from a radially vibrating
infinite cylinder. In two dimensions, the boundary will be in the form of a circle and
equations (22)-(25) can be applied by approximating the circle by a regular polygon of
N equal sides, inscribed inside the circle. Then, as can be deduced from the rotational
symmetry of distances R, and angles v(y.,¥.), matrices K(f) and H(f) will come out
as symmetrical circulant matrices. ;

A circulant square matrix A of size N is of the form

7S ¢ e
' ay a; " Ay
A=l i ; - (26)
. e : x
S R R

The determinant of a circulant matrix, called a circulant, can be computed without
recourse to the standard co-factor expansion procedures. Circulant |A| can be shown to
be given by the product |AlL|AL - - - |A]n, where [5]

A= et U Ha, U+ +anU} @)

Here, U; denotes an Nth root of unity. Note that one of the circulant factors will be
equal to the sum of the elements in any row or column of the circulant. For ease of
reference, this factor will be referred to as the fundamental factor and denoted by [A]"
for a circulant |Al. X ' :

If the cylinder is vibrating with a uniform radial velocity of amplitude u,, then

‘u=up{l 1 --- 1} and the right side of equation (3) becomes
H(NHu=[H(f)]"u{1 1 --- 1}, (28)
where { } denotes a column vector of N elements. Since matrix E—K(f) is also a circulant
matrix, it follows that the solution to equation (3) can be expressed asp=po{l 1 --- 1},
where
po=u[H(NT"/(1-[XK(NH]). (29)

Thus, the solution to equation (3) can be computed accurately for all frequencies by
using this single simple equation.

The real and imaginary parts of the normalized surface pressure, Po/ Pex>, computed by
using equation (29) with 100 and 800 elements are shown in Figures 1 and 2, respectively,
as functions of the non-dimensional wavenumber ka, where a denotes the radius of the
cylinder. The exact surface pressure, p.., which can be derived from the fundamental
equations given in reference [7], can be shown to be

Pex = — ipcuoHY (ka)/H{ (ka). (30)

The accuracy of the surface pressures computed by using equation (29) can be assessed
from the real and imaginary parts of po/pe.: the closer is the real part to unity and the
imaginary part to zero, the more accurate is the computed surface pressure.

As can be seen from Figures 1 and 2, equation (29) gives accurate results in the
frequency range considered except in the neighbourhood of ka =24 and ka =552, which
are approximately the first two zeros of the Bessel function of order zero, which are in
turn the first two characteristic wavenumbers for the associated interior problem [7]. As
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Figure 1. Variation of the real part of the normalized surface pressure, computed by using equation (29),
with the dimensionless wavenumber fea; , 100 elements; - - -, 800 elements (constant lineal elements with
one Gauss point).
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Figure 2. Variation of the imaginary part of the normalized surface pressure, computed by using equation
(29), with the dimensionless wavenumber ka. Key as Figure 1.

the number of elements is increased, accurate solutions are obtained in a larger frequency
range but the error peaks continue to persist and become sharper. The effect of the number
of elements can be seen more clearly in Figure 3, which gives a zoomed view of the first
critical region around ka =2-4 for the real part of the normalized surface pressure. In
this figure, in. addition to the results computed by using 100 and 800 elements, some
intermediate results for 200 and 400 elements are also shown. A similar behaviour is
observed, but not shown here, at the second critical region around ka =5-52. Similar
numerical phenomena which may be occurring at greater values of ka are not investigated
in this paper.
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Re (Pg/Pex)

-1-8 ! | ! i :
2:38 2:39 2:40 2-41 2:42 2:43 2:44
ka
Figure 3. A zoomed view of Figure 1 in the close vicinity of ka=2-405; ——, 100 elements; — - —, 200
elements; — —, 400 elements; - - -, 800 elements (constant lineal elements with one Gauss point).

In Figure 4 the zeros of the real and imaginary parts of circulant [E—K(f)| that lie in
the vicinity of ka =2-4 are given as functions of the number of elements. In this range
of wavenumbers the real and imaginary parts of this circulant vanish by virtue of the
vanishing of its fundamental factor, and the zeros given in Figure 4 were calculated by
linear interpolation as the fundamental factor changed sign in a sufficiently narrow
frequency interval. When matrix E—K(f) becomes singular, both the real and imaginary
parts of its fundamental factor must vanish simultaneously. In Figure 4 it is shown that
the real and imaginary parts of the fundamental factor have distinct zeros for a finite

2:432 T T T T T

2-428 B

2-424 .

2:420 1 ¥

T

2:416 =

Zero of [E-K(7)]

2412 x|

2-408}- Re -

Im
2404 - =

2-400 ! il | | L |
0 200 400 600 800 1000 1200 1400

Number of elements, M

Figure 4. Variation of the zeros of the real and imaginary parts of circulant |E — K( )] with number of elements
in the close vicinity of ka =2-4 (constant lineal elements with one Gauss point).
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2-414

2412

2:410

Zero of [H (f)]

2:408|-

2:406

2.404 |- =

2-402

2-400 | | | I | I
(0] 200 400 600 800 1000 1200 1400

Mumber of elements, &

Figure 5. Variation of the zeros of the real and imaginary parts of circulant |H{ f)| with number of elements
in the close vicinity of ka =2-4 (constant lineal elements with one Gauss point).

number of elements. However, they tend to have a common zero ultimately as the number
of elements increases to infinity.

So far, assumption 4 of section 2.1 has been tacitly assumed to be valid throughout
the analysis. This assumption requires that when matrix E—K(f) is singular, so should
be matrix H(f). The circulant |[H(f)| vanishes also by virtue of the vanishing of its
fundamental factor. The zeros of the real and imaginary parts of [H(f)]" are shown in
Figure 5 as functions of the number of elements, for ka close to 2-4. As can be seen, like
matrix E — K(f), matrix H( f), too, tends to be singular ultimately. Note that, near ka = 2-4,
the imaginary part of the fundamental factor has two zeros which converge to the same
value as the number of elements is increased. The curves given in Figures 4 and 5 display
a tendency to become asymptotic to the value of ka =2-405, which is a more accurate
value for the smallest exact zero of the Bessel function of zero order than the value of 2-4.

4. DISCUSSION AND CONCLUSIONS

The present analysis has shown that the approximating equations may have a non-unique
numerical solution at the incidence of singularity, provided that they are derived by using
constant planar elements of equal area and linear Gaussian quadrature for numerical
integration. However, it is important to note that this result holds only for a finite number
of boundary elements. If the number of elements used is infinitely large, then the
approximating equations shall become an exact representation of the exterior surface
Helmholtz integral equation irrespectively of the type of boundary elements used in its
discretization. Now, it is well known [8] that the exterior surface Helmholtz integral
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equation possesses a non-unique exact solution when frequency equals a characteristic
frequency associated with the interior of the body. Therefore, as the number of elements
tends to infinity, the approximating equations, like the parent integral equation, should
ultimately possess a non-unique numerical solution at the incidence of singularity,
irrespectively of the type of boundary elements used in the discretization.

Then, the following question arises: is it possible that the coefficient matrix may become
singular for a finite number of boundary elements? Of course, this question is particularly
relevant if the approximating equations are known to possess a solution at the incidence
of singularity, as is the case when they are derived by using constant planar elements of
equal area and linear Gaussian quadrature. Implementation of this type of boundary
element discretization to the problem of two-dimensional sound radiation from a radially
vibrating infinite cylinder has shown that the coefficient matrix does not become singular
for a finite number of elements. Nevertheless, as the number of elements is increased,
the coefficient matrix converges to singularity, as depicted in Figure 4, confirming the
non-uniqueness feature of the parent integral equation.

This conclusion has been confirmed by further computations camed out by using
isoparametric elements in place of the constant lineal elements in the solution of the
infinite cylinder problem, as described in the Appendix. As an example, Figure 6 is a
counterpart of Figure 4 for the quadratic isoparametric element [6] with two integration
points. These results were computed by making use of the properties of block-circulant
matrices given in the Appendix and are, therefore, free from the effects of ill-conditioning,
if any, of the actual coeflicient matrix. As can be seen from Figure 6, with isoparametric
quadratic elements, convergence to singularity is faster than that with constant planar
elements,
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Figure 6. Variation of the zeros of the real and imaginary parts of circulant |E — K( f)| with number of elements
in the close vicinity of ka =2-4 (quadratic isoparametric elements with two Gauss points).

The demonstration of the fact that the coefficient matrix is always non-singular for a

finite number of elements is believed to be a contribution of the present paper. An
interesting implication of this is that the characteristic frequencies associated with the
interior of the body cannot be determined, when using constant planar elements, as
non-trivial solutions of equation (6) because these solutions correspond to the states of
singularity of the coefficient matrix. However, the characteristic frequencies can be
estimated by following the convergence of the zeros of the real and imaginary parts of
the coefficient matrix determinant, as has been noted above with reference to Figure 4.
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Another contribution of the present analysis has been the demonstration of the ‘fact
that the failure experienced in the neighbourhood of the characteristic frequencies is
basically not an ill-conditioning problem. Boundary element solutions for the infinite
cylinder problem, computed accurately for all frequencies by using equation (29), were
found to be grossly in error in the vicinity of the characteristic frequencies. Increasing

the number of elements narrows down the range of troublesome frequencies but does

not, in general, improve the solution errors in the close vicinity of the characteristic

frequencies. Further computations, which were carried out by using isoparametric ele-

ments in place of constant planar elements in the infinite cylinder problem have shown
that, for a given number of elements, the solution errors in the close vicinity of the
characteristic frequencies can be improved by using an improved integration rule. Some
representative results, which were computed by using linear isoparametric elements and

the block-circulant properties described in the Appendix, are presented in Figures 7 and

8. As can be seen, in the close vicinity of ka =2:405, the accuracy of both the real and

the imaginary parts of the approximate surface pressure is improved as the order of :

Gaussian quadrature increases. For this reason, it is believed that the numerical problem
experienced in the neighbourhood of the characteristic frequencies is basically more a
problem of poor convergence of numerical integration than a problem of ill-conditioning.
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APPENDIX: SOLUTION OF THE INFINITE CYLINDER PROBLEM BY
USING ISOPARAMETRIC BOUNDARY ELEMENTS

In two-dimensional acoustic radiation problems, an isoparametric element having M
(> 1) nodes is obtained by approximation of both the element boundary and the acoustic
pressure and the normal velocity distribution over the element boundary by Lagrange
interpolation by means of a complete polynomial of order M — 1. Then, the approximating
equations will come out essentially in the form of equation (11) where the free-space
Green function is given by equation (20). However, since two of the element nodes have
to be located at the ends of the element, it will be necessary to modify equation (11)
whenever a collocation point ¢ lies at the junction of two elements, as described in section
2.1. Thus, with an isoparametric element, matrix E will not normally be a unit matrix.

If the infinite cylinder problem considered in section 3 is discretized by dividing the
two-dimensional representation of the boundary into N identical isoparametric elements
each having M nodes, matrices E—K(f) and H(f) will come out in the following
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block-circulant matrix form:

AL A D A
A NS

Al o S (A1)
A, Ar o Al

Here the sub-matrices A; are all of size (M —1)x (M —1). Let [A]" denote the sum of
the sub-matrices in any one row or column of a block-circulant matrix A.

For a uniformly radially vibrating infinite cylinder, let u={u, u, - -- u.}, where u, =
usfl 1 --- 1} is a vector of size M —1. For this case, the solution of equation (3) can
be shown to be of the form p={p. p. - - * p.}, where the vector p, is given by

[E-K()]"p.=[H()]" v.. (A2)

The elements of the vector p, give the acoustic pressure amplitudes at the internal nodes,
if there is any, and at one of the end nodes of the element,

The foregoing equation enables the solution to the approximating equations to be
obtained by inverting a matrix of size M —1. For example, with the well known quadratic
isoparametric elements, for which M =3, it is necessary only to invert a 2 % 2 matrix. This
N-fold reduction in matrix size enables the computation of the solution to equation (3)
accurately for all frequencies.
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