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Abstract
This paper describes a numerical method based on the boundary integral equation and

dual reciprocity method for solving the one−dimensional Cahn−Hilliard (C−H) equation.
A time−stepping method and a predictor−corrector scheme are employed to deal with the
time derivative and the nonlinearity respectively. Numerical results are presented for some
problems to demonstrate the usefulness and accuracy of this approach. For these test prob-
lems the energy functional dissipation and the mass conservation properties are investigated.

Keywords: Boundary integral equation, Dual reciprocity method, Cahn−Hilliard equation,
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1 Introduction

The Cahn−Hilliard (C−H) equation [7, 8]

∂u

∂t
+ γ∆2u−∆ψ′(u) = 0, γ > 0, (1.1)
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was originally introduced as a phenomenological model of phase separation in a binary
systems, such as alloys, glass and polymer mixtures. This equation is very important
in materials science (see [7, 8, 25] and the references therein). It is a conservation law,
in the sense that the average of the order parameter, which corresponds to a density
of atoms, is conserved [33]. Since the pioneering work of Cahn and Hilliard [8], the
C−H equation has been extensively applied to the inter-diffusion in binary polymer
mixtures by Wang and Shi [41], in interfaces of polymers with dissimilar properties by
Jabbari and Peppas [28] and in the formation of interfaces via the inter-diffusion of
layers by Puri and Binder [40]. The viscous C−H equation, which arises as a singular
limit of the phase field model of phase transition, has been studied by Bai et al [3].
The C−H equation with a logarithmic free energy (ψ contains logarithmic terms) has
been considered by Copetti and Elliott [13] and Barrett and Blowery [5], where they
also studied finite element approximation of the model equation. Global existence and
uniqueness of the solution for (1.1) have been shown by Elliott and Zheng [16] and Yin
[48]. Long time behaviour of the solution has been studied by Cart et al [9], Novick-
Cohen and Segel [37], and Novick-Cohen [38] using the free energy method. Finite
Galerkin approximate solutions have been obtained by Elliott and French [17] and
French and Jensen [21] for one−dimensional problems. For multidimensional prob-
lems, Elliott and French [18] considered nonconforming finite element method. Elliott
and Larsson [19] have obtained error estimates of finite Galerkin solutions for smooth
data as well as nonsmooth initial data. Elliott et al [20] have obtained optimal order
error bounds using a second order splitting method. Mixed finite element method has
been applied to obtain approximate solutions for (1.1) by Dean et al [15]. Furihata
et al [22] have examined the boundedness of the solution of a finite difference scheme
using discretized Lyapunov functional. Furihata [23] has depicted the dissipation of
energy and conservation of mass for this problem. Also this author [24] has proposed
a stable and conservative finite difference scheme to solve numerically the C−H equa-
tion. Alikakos et al [2] have established rigorously the existence of some extremely
slowly evolving solutions. Numerical solutions for the Eq. (1.1) have been considered
by Choo and Chung [11] using the Crank−Nicolson type finite difference method for
one−dimensional problem and by Choo et al [12] using a nonlinear conservative differ-
ence scheme for two−dimensional problem. Another Crank−Nicolson type method has
been developed by Khiari et al [31] for (1.1) in one dimension. Ye [45] has employed the
Fourier collocation method and Ye and Cheng [47] have developed the Fourier spectral
method to solve numerically the C−H equation with periodic boundary conditions. Ye
[46] has also used the Legendre collocation method to study this problem with Neu-
mann boundary conditions. Hongjun and Changchun [27] have studied the instability
of the traveling waves of the convective−diffusive C−H equation. Mello et al [35] have
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presented a stable and fast conservative finite difference scheme to solve (1.1) with two
improvements. Danumjaya and Nandakumaran [14] have employed the orthogonal
cubic spline collocation method for this equation. Two applications of µ−transform
to the C−H equation have been presented by Mitlin [36]. Miranville and Piétrus [33]
have obtained a new formulation of the generalizations of the C−H equation based on
constitutive equations proposed by Gurtin. A multigrid finite element solver has been
presented by Kay and Welford [30], a discontinuous Galerkin finite element method
has been developed by Wells et al [43] and adaptive finite element methods in two and
three dimensions were considered by Baňas and Nürnberg [4] for this problem. He et
al [26] have analyzed a class of large time-stepping methods for this equation. Kim
[32] has considered a conservative nonlinear multigrid method for the C−H equation
with a variable mobility. The Adomian decomposition method has been applied for
the solution of viscous C−H equation by Momani and Erturk [34]. Xia et al [44] have
developed the local discontinuous Galerkin (LDG) methods for (1.1) and Abels and
Wilke [1] have investigated the asymptotic behavior of the nonlinear C−H equation
with a logarithmic free energy and similar singular free energies, etc.
In this research we propose an alternative approach based on the boundary integral
equation and dual reciprocity method (DRM) for solving the one−dimensional C−H
equation (1.1). The idea behind this approach comes from the DRM introduced by
Brebbia and Nardini [6] and Partridge and Brebbia [39] for higher order dimensional
problems and it is to expand the inhomogeneous and nonlinear terms in terms of their
values at the nodes which lie in the domain of problem. The inhomogeneous and non-
linear terms are approximated by interpolation in terms of some well−known functions
φ(r), called radial basis functions (RBFs), where r is the distance between a source
point and the field point. There exist a large class of interpolating RBFs that can be
used [29]. These include the linear 1 + r, the polynomial Pj(r), the thin plate spline
(TPS) r2n log(r), the Gaussian exp(−r2/c2), and the multiquadrics (c2 + r2)1/2, where
c is the constant parameter, etc. In this paper we shall use the linear RBF.
Some authors employed a similar approach for one−dimensional problems. For an ex-
ample of them see reference [10, 42]. The interested reader can see the Ang’s book [49]
for the boundary element method.
This paper is organized as follows: In Section 2, brief discussions for C−H equa-
tion are presented. In Section 3 the discretized version of equation is obtained and a
predictor−corrector scheme is described to deal with the nonlinearity. In Section 4,
numerical results are considered for two test problems and the known properties of
equation are tested. Section 5 ends this report with a brief conclusion.
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2 Cahn Hilliard equation

Let us consider the following classical Cahn−Hilliard equation (1.1) in one−dimensional

∂u

∂t
+ γ

∂4u

∂x4
− ∂2ψ′(u)

∂x2
= 0, x ∈ Ω, t ≥ 0, (2.1)

with Neumann boundary conditions

∂u

∂x
=

∂3u

∂x3
= 0, x ∈ ∂Ω, (2.2)

and initial condition
u(x, 0) = u0(x), x ∈ Ω, (2.3)

where
ψ′(u) = φ(u) = r2u

3 + r1u
2 + r0u, (2.4)

and γ is a prescribed positive constant, Ω = [a, b] and r0, r1, r2 are given constants.
It is known if the initial data u0 ∈ H2

E(Ω) =
{
f ∈ H2(Ω) : ∂f/∂x = 0 on ∂Ω

}
then

the problem (2.1)−(2.3) has a unique solution for all times [16].
Let us introduce w, the chemical potential, defined by

w = φ(u)− γuxx, (2.5)

then (2.1) may be rewritten as




ut − wxx = 0,

w − φ(u) + γuxx = 0.
(2.6)

We have, in view of (2.2) and (2.5), the following boundary condition on w:

∂w

∂x
= 0, x ∈ ∂Ω,

therefore the boundary conditions

∂u

∂x
=

∂w

∂x
= 0, x ∈ ∂Ω, (2.7)

are equivalent to (2.2).
The initial conditions for u and w are

u(x, 0) = u0(x), w(x, 0) = φ(u0)− γ
∂2u0

∂x2
, x ∈ Ω. (2.8)

The important features of C−H equations are as follows:
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(i) For the extended Ginzberg-Landau free energy functional

F(u) =

∫

Ω

[γ

2
u2

x + ψ(u)
]
dx, (2.9)

where ψ(u) is a Lyapunov functional (see [16, 17, 19, 45]), d
dt
F(u) ≤ 0: i.e., the

energy is dissipative as time passes.

(ii) The total mass remains constant, i.e:

1

|Ω|
∫

Ω

u(x, t)dx =
1

|Ω|
∫

Ω

u(x, 0)dx = M, t > 0. (2.10)

These properties play an important role in analyzing the solution of C−H equation.

3 Mathematical formulation

We use mixed boundary integral equation and dual reciprocity method for the
system (2.6)−(2.8) to compute the approximate solutions. In order to derive the
integral equation formulations for the problem, we start with the following integral
identities of Eq. (2.6): ∫ b

a

[
∂2w

∂x2
− ∂u

∂t

]
G dx = 0, (3.1)

and ∫ b

a

[
γ
∂2u

∂x2
+ w − φ(u)

]
G dx = 0, (3.2)

where the function G is the fundamental solution for the one−dimensional Laplace
operator defined by the equation:

∂2G

∂x2
(x, ξ) = δ(x, ξ), (3.3)

where x and ξ are a field point and a source point, respectively and δ is the Dirac delta
function. The fundamental solution and its derivative are given as follows:

G(x, ξ) =
1

2
|x− ξ|, (3.4)

G,x(x, ξ) = G′(x, ξ) =
1

2
sgn(x− ξ), (3.5)
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in which the symbol ”sgn” denotes the signum function.
For applying the method, N source points xj, j = 1, 2, . . . , N are chosen in [a, b] where
a = x1 < x2 < . . . < xN−1 < xN = b and the following approximations are made:

∂u

∂t
= g(x, t) =

N∑

k=1

µk(x)αk(t), (3.6)

1

γ

[
φ(u)− w

]
= h(x, t) =

N∑

k=1

µk(x)βk(t), (3.7)

where µk(x) = 1 + rk is a linear RBF and rk = |x− xk| for k = 1, 2, ..., N . From (3.1)
and (3.6), we have

∫ b

a

∂2w

∂x2
Gdx =

N∑

k=1

[∫ b

a

µk(x)Gdx

]
αk(t), (3.8)

and from (3.2) and (3.7), we have

∫ b

a

∂2u

∂x2
Gdx =

N∑

k=1

[∫ b

a

µk(x)Gdx

]
βk(t). (3.9)

If we represent the value of the function µk at source point xi by µik for i = 1, 2, ..., N ,
and set F as a N ×N matrix that F (i, k) = µik and E = F−1, then we have

αk(t) =
N∑

j=1

Ekjgj(t), (3.10)

and

βk(t) =
N∑

j=1

Ekjhj(t), (3.11)

where gj(t) = g(xj, t) and hj(t) = h(xj, t). Now consider a set of functions fk such
that

∂2fk

∂x2
= µk, (3.12)

the function fk is easily determined as:

fk =
1

2
r2
k +

1

6
r3
k. (3.13)
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Substituting (3.12) into (3.8), (3.12) into (3.9) and applying the integration by parts,
we can get the following expressions:

[Gi(x)p(x, t)]ba − [w(x, t)G′
i(x)]

b
a + wi(t) =

N∑

k=1

[
[Gif

′
k]

b
a − [fkG

′
i]

b
a + fik

]
αk(t), (3.14)

and

[Gi(x)q(x, t)]ba − [u(x, t)G′
i(x)]

b
a + ui(t) =

N∑

k=1

[
[Gif

′
k]

b
a − [fkG

′
i]

b
a + fik

]
βk(t), (3.15)

for i = 1, 2, ..., N , where p(x, t) = ∂w(x, t)/∂x, q(x, t) = ∂u(x, t)/∂x and Gi(x) =
G(x, ξ)|ξ=xi

are the weight functions at the points i = 1, 2, . . . , N which satisfy in Eq.
(3.3). ui(t) = u(ξ, t)|ξ=xi

, wi(t) = w(ξ, t)|ξ=xi
, fik = fk(xi) and f ′k is the derivative of

fk and can be expressed as:

f ′k =
∂fk

∂x
= rk +

1

2
r2
k. (3.16)

If we set:
Sik = [Gif

′
k]

b
a − [fkG

′
i]

b
a + fik, (3.17)

then Eqs. (3.14) and (3.15) take the following forms:

[Gi(x)p(x, t)]ba − [w(x, t)G′
i(x)]

b
a + wi(t) =

N∑

k=1

Sikαk(t), (3.18)

[Gi(x)q(x, t)]ba − [u(x, t)G′
i(x)]

b
a + ui(t) =

N∑

k=1

Sikβk(t). (3.19)

From (3.10), the right hand side of Eq. (3.18) can be written as:

N∑

k=1

Sikαk(t) =
N∑

k=1

Sik

N∑
j=1

Ekjgj(t) =
N∑

j=1

Mijgj(t), (3.20)

and from (3.11), the right hand side of Eq. (3.19) is:

N∑

k=1

Sikβk(t) =
N∑

k=1

Sik

N∑
j=1

Ekjhj(t) =
N∑

j=1

Mijhj(t), (3.21)
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where

Mij =
N∑

k=1

SikEkj. (3.22)

In other hand if:

L =




−G1(a) G1(b)
−G2(a) G2(b)

...
...

−GN(a) GN(b)


 , H =




−G′
1(a) G′

1(b)
−G′

2(a) G′
2(b)

...
...

−G′
N(a) G′

N(b)


 , (3.23)

then Eqs. (3.18), (3.20) and (3.22) yield:

[L]

[
p1(t)
pN(t)

]
− [H]

[
w1(t)
wN(t)

]
+ [I]




w1(t)
w2(t)

...
wN(t)


 = [M ]




g1(t)
g2(t)

...
gN(t)


 , (3.24)

and Eqs. (3.19), (3.21) and (3.22) give:

[L]

[
q1(t)
qN(t)

]
− [H]

[
u1(t)
uN(t)

]
+ [I]




u1(t)
u2(t)

...
uN(t)


 = [M ]




h1(t)
h2(t)

...
hN(t)


 , (3.25)

where I is the N by N identity matrix, p1(t) = p(a, t), pN(t) = p(b, t), wj(t) = w(xj, t),
q1(t) = q(a, t), qN(t) = q(b, t) and uj(t) = u(xj, t). We note that

gj(t) =
∂u

∂t
(xj, t), (3.26)

and
hj(t) = φ(u(xj, t))− w(xj, t). (3.27)

Now, (3.24) and (3.25) constitute a system of 2N equations in 2N unknown functions
of t. Since the Neumann boundary conditions are applied, the unknown variables are
given by uj(t) and wj(t), for j = 1, 2, ..., N . This system is solved approximately using
the iterative scheme which is described in the following.
We make the following approximations:

∂u

∂t

∣∣
j
' u

(n+1)
j − u

(n)
j

∆t
, j = 1, 2, . . . , N,
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wj(t) ' 1

2

[
w

(n+1)
j + w

(n)
j

]
, j = 1, 2, . . . , N, (3.28)

uj(t) ' 1

2

[
u

(n+1)
j + u

(n)
j

]
, j = 1, 2, . . . , N,

where u
(n)
j = u(xj, n∆t) and w

(n)
j = w(xj, n∆t). By assuming λ = 1/∆t, u =

[u1, u2, . . . , uN ]T and w = [w1, w2, . . . , wN ]T , (3.24)−(3.28) yield:

−1

2
[H]

([
w1

wN

](n+1)

+

[
w1

wN

](n)
)

+
1

2
[I]

(
[w](n+1) + [w](n)

)

= λ [M ]
(
[u](n+1) − [u](n)

)
, (3.29)

−1

2
[H]

([
u1

uN

](n+1)

+

[
u1

uN

](n)
)

+
1

2
[I]

(
[u](n+1) + [u](n)

)

= −1

2
[M ]

(
[w](n+1) + [w](n)

)
+[M ] [Φ] , (3.30)

where Φ = [φ(ũ1), φ(ũ2), . . . , φ(ũN)]T , ũj is given by the known approximation of
u(xj, t), as described earlier. We note that, due to the zero boundary conditions (2.7)
the first terms of left hand sides of Eqs. (3.24) and (3.25) do not appear in (3.29) and
(3.30) respectively. At the first time level (when n = 0), the initial conditions (2.8)

give u
(0)
j = u(xj, 0) and w

(0)
j = w(xj, 0).

In each time level (for example time level n + 1) at first we set φ(ũj) = φ(u
(n)
j ).

Having this, Eqs. (3.29) and (3.30) are solved as a system of linear algebraic equations

for unknowns u
(n+1)
j and w

(n+1)
j for j = 1, 2, ..., N , assuming that u

(n)
j and w

(n)
j , are

known from the previous time level. Recompute φ(ũj) = φ(1/2u
(n+1)
j +1/2u

(n)
j ), where

u
(n+1)
j is obtained recently from solving Eqs. (3.29) and (3.30). We iterate between

calculating φ(ũj) and computing the approximate values of the unknowns, until all
the unknown quantities converge to within a prescribed number of significant figures,
i.e. a predictor−corrector approach is adopted in each time level. Once the prescribed
convergence is achieved, we can move on to the following time level. The resulting
solutions from the current time level, provide the known values for the next iteration.
This process is repeated, until reaching to the desirable time t.
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4 Numerical results

To show the efficiency and accuracy of this method, it was applied to various prob-
lems. We need to iterate between finding an estimation for ũ to recompute Φ and
solving the system (3.29)−(3.30) for a new u that described in previous section. In
all the cases considered, the iteration was stopped when the absolute values of all the
unknowns from two consecutive iterations differ by less than 10−8. In all cases tested,
convergence was achieved after less than 4 iteration.

4.1 Problem 1

In this example, we consider the C−H equation (2.1) in [0, 2π] with the initial
condition u0(x) = 0.5 cos x, γ = 0.03 and ψ(u) = 0.25u4 − 0.5u2. For numerical
solution we set ∆t = 0.01 and N = 64 where

{
xi

}N

i=1
=

{
0, 0.1, 0.2, . . . , 6.1, 6.2, 2π

}
.

In Fig. 1 the evolution from t = 0 to t = 5 is drawn. In numerical experiments, we
observed that the solution u(x, t) for long times remains at patterns that are nearly
piecewise constant, and the steady−state solution is very close to a piecewise con-
stant function. In [17] and [45], also the same results were given. In this example,
the patterns hardly changed after t = 3. Fig. 2 shows the time dependency of en-
ergy functional (2.9) of numerical solutions. Due to the energy functional dissipation
property, the energy functional of numerical solutions theoretically decreases as time
passes. Ye [45] also obtained the same graph for the energy. As described in Section 2
for the C−H equation, the total mass remains constant as time increases. In Table 1
the values of M are shown for different time levels up to t = 5 where the initial mass
is zero. Here the evaluation of energy and mass were performed using the composite
trapezoidal rule for integration.

Table 1
The values of M at different time levels
Time t t=1.0 t=2.0 t=3.0 t=4.0 t=5.0
Mass 1.6777× 10−6 1.6777× 10−6 1.6777× 10−6 1.6777× 10−6 1.6777× 10−6
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Figure 1: The evolution from t = 0 to t = 5.
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Figure 2: The energy from t = 0 to t = 5.
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4.2 Problem 2

Consider the Cahn−Hilliard equation

∂u

∂t
=

∂u

∂x

{
(−0.31 + 2.31u2)

∂u

∂x
− ∂3u

∂x3

}
, (4.1)

in [0,1] with initial condition

u(x, 0) = x4(1− x)4. (4.2)

For numerical solution ∆t = 0.01 and N = 51 are chosen. Fig. 3 shows the numerical
solution up to t = 10. We observed that the solution u(x, t) for long times remains at
patterns that are nearly constant, and the steady−state solution is very close to the
constant function u = 0.00158730158730 that is the value of initial mass. As before the
energy is plotted in Fig. 4 and the values of M are presented in Table 2 for different
time levels to show the energy dissipation and mass conservation respectively. Table 2
depicts that the mass remains constant with absolute error 2.029999866121068e− 012
at each time level t, .

Table 2
The values of M at different time levels

Time t Mass
t= 0.00 0.00158730158730
t= 0.05 0.00158730158933
t= 0.10 0.00158730158933
t= 0.20 0.00158730158933
t= 1.00 0.00158730158933
t= 5.00 0.00158730158933
t= 10.00 0.00158730158933

5 Conclusion

In this paper a numerical method based on the boundary integral equation and dual
reciprocity method outlined for the one−dimensional Cahn−Hilliard equation. The
DRM was applied to eliminate the domain integrals appearing in the boundary integral
equation. Linear RBF was used for DRM and an iterative scheme was employed for the
time derivative. A predictor−corrector scheme was used to deal with the nonlinearity.
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Figure 3: The evolution from t = 0 to t = 10.
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Figure 4: The energy from t = 0 to t = 1.
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Some numerical experiments depicted to demonstrate the efficiency and accuracy of
this method. For all examples the energy dissipation and the mass conservation were
investigated and the corresponding tables and graphs were presented. These are the
known properties of C−H equation.
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