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Abstract

A new boundary integral equation (BIE) of plane elasticity is suggested with the use of a novel kernel. The relevant homogenous

equation is also suggested. The equation is studied in a discrete form, or it is reduced to an algebraic equation. From the condition that

the value of a determinant vanishes, the degenerate scale (or the eigenvalue) and the non-trivial solution (or the eigenfunction) are

obtained approximately. Except for the notch with symmetric configuration for two axes, computed results prove that there are two

degenerate scales in general. The dependence of the eigenvalue and eigenfunction with respect to the translation or the rotation of

notch is investigated. It is found that the eigenvalues are invariant with respect to the translation and the rotation of notch.

However, the eigenfunctions are changed when the notch has a rotation. Several numerical examples that include a rectangular

notch, a half-ring-shaped notch and a complicated notch configuration are presented with the computed eigenvalues and

eigenfunctions.

r 2007 Published by Elsevier Ltd.
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1. Introduction

The boundary integral equation (abbreviated as BIE)
was widely used in elasticity, and the fundamental for BIE
could be found [1–3]. Heritage and early history of the
boundary element method was summarized more recently
[4]. However, some difficult points for the BIE in plane
elasticity remain. For example, engineers may not be aware
of the risk in BIE computation when a degenerate scale
occurs.

It is well known that the special geometry size may result
in a non-unique solution for potential problem (Laplace
equation), and the size is called the degenerate scale.
Alternatively speaking, for relevant homogenous BIE,
there is a non-trivial solution. Below, the degenerate scale
is called the eigenvalue, and the non-trival solution is called
the eigenfunction. The degenerate scale problem for
potential problem (Laplace equation) was studied for a
e front matter r 2007 Published by Elsevier Ltd.
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circular region [5,6]. The same problem for a circular
bending plate was investigated [7].
In the case of plane elasticity, the degenerate scale

problem in BIE still exists. For example, if the conven-
tional boundary integral equation (abbreviated as CBIE) is
used for a ring region with the vanishing displacements
along the boundary, in some particular geometry condi-
tions the corresponding homogenous equation has non-
trivial solution for the boundary tractions [8–10]. In fact, if
the displacements are vanishing at the boundary of ring
region, the stresses must be equal to zero. Therefore, the
obtained result seriously violates the basic property of
elasticity.
For the degenerate scale problems, investigators paid

attention to some regular boundaries, for example, the
boundary of the circular region or the ring region. It is felt
that less attention was paid to the numerical method for
the problems with arbitrary boundary configuration.
The merit of the degenerate scale problem is compactly

introduced below. Without losing generality, the elliptic
notch in an infinite plate can be taken as an example (Fig. 1).
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Fig. 1. (a) A concentrated force applied at the point z ¼ t, or the loading

condition for the fundamental stress field, (b) some loadings having

resultant forces applied on the elliptic contour, or the loading condition

for a stress field.
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The ellipse has two half-axes ‘‘a’’ and ‘‘b’’. Assume that the
ratio b/a is given beforehand. Therefore, the size ‘‘a’’ will
fully determine the configuration of ellipse. Let the
boundary displacement to be equal to zero, a homogeneous
BIE is obtained [3]

Z
G

U�ijðx; x; aÞpjðxÞdsðxÞ ¼ 0; ði ¼ 1; 2; x 2 GÞ, (1)

where G is the boundary of the notch, xAG is the source
point, and xAG is the field point, and pj(x) (j ¼ 1, 2) denote
the applied tractions along the boundary. Meantime,
the kernel U�ijðx;x; aÞ can be found in textbook. It is
preferable to write the kernel U�ij in the form U�ijðx;x; aÞ,
where the size a is involved. The kernel U�ijðx; x; aÞ may
depend on the Poisson’s ratio n. However, this is not an
essential point in analysis.

Clearly, Eq. (1) has a trivial solution pj(x) ¼ 0 (j ¼ 1, 2),
and this solution is not interesting. In the degenerate scale
problem, it is desirable to find some particular values of
‘‘a’’ such that Eq. (1) has non-trivial solution. For the
elliptic notch case, it is pointed out later that there are two
particular values a ¼ l1 and l2 such that Eq. (1) has two
non-trivial solutions: (a) p1ðxÞa0, p2ðxÞ ¼ 0 for a ¼ l1 case
and (b) p1ðxÞ ¼ 0, p2ðxÞa0 for a ¼ l2 case, respectively.

Except for the circular hole case, it is seen that the
degenerate scale problem cannot be solved in a closed
form. Therefore, the degenerate scale problem should
generally be solved by using a numerical technique.
In this paper, a new kernel U�1ij ðx;xÞ in BIE of plane
elasticity (a displacement representation in the fundamen-
tal field) is introduced, which satisfies the regularity
condition at infinity for exterior problem in BIE [3].
A new BIE is suggested with the use of the introduced
kernel U�1ij ðx; xÞ. After substituting the vanishing displace-
ment in the BIE, the relevant homogenous equation is
obtained. The equation is studied in a discrete form, or it is
reduced to an algebraic equation. From the condition that
the value of a determinant vanishes, the degenerate scale
(or the eigenvalue) and the non-trivial solution (or the
eigenfunction) are obtained approximately.
Except for the notch with symmetric property in two

directions, computed results prove that there are two
degenerate scales in general. The dependence of the
eigenvalue and eigenfunction with respect to the transla-
tion or the rotation of notch configuration is investigated.
It is found that the eigenvalue is an invariant with respect
to the translation and the rotation. However, the eigen-
function is changed when the notch configuration has a
rotation. Several numerical examples that include a
rectangular notch, a half-ring-shaped notch and a compli-
cated notch configuration are presented with the computed
eigenvalues and eigenfunctions.
2. General analysis

The eigenvalue and eigenfunction analysis arising from
degenerate scale problem of BIE in plane elasticity is
studied below. Two kinds of formulation, one in the form
of BIE, the other in the discrete form, are introduced. For
clarity, the elliptic notch is chosen as an example in the
following derivation, and relevant computed results are
presented.
2.1. Formulation of the eigenvalue and eigenfunction

problem in the form of a BIE

Without losing generality, we can introduce the BIE
for the region between the elliptic contour G and a large
circle ‘‘CR’’ (Fig. 1). The observation point x is assumed on
the elliptic contour xAG. For the plane strain case, the
suggested BIE can be written as follows [3]:

1

2
uiðxÞ þ

Z
G

P�ijðx;xÞujðxÞdsðxÞ

¼

Z
G

U�1ij ðx;xÞpjðxÞdsðxÞ þD1ðCRÞ,

ði ¼ 1; 2; x 2 GÞ, ð2Þ

where uj(x), uj(x) are the displacements, and pj(x) (j ¼ 1, 2)
denotes the applied tractions along the boundary.
In Eq. (2), D1(CR) is a mutual work difference integral
(abbreviated as MWDI) on a large circle CR and is
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Fig. 2. (a) An elliptic notch in an infinite plate. (b) An elliptic notch with a

translation from the origin of coordinates. (c) An elliptic notch with a

rotation.
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defined by

D1ðCRÞ ¼ �

Z
CR

P�ijðx; xÞujðxÞdsðxÞ

þ

Z
CR

U�1ij ðx;xÞpjðxÞdsðxÞ, ð3Þ

and the kernel P�ijðx;xÞ is defined by [3]

P�ijðx;xÞ ¼ �
1

4pð1� vÞ

1

r
fðr;1n1 þ r;2n2Þðð1� 2nÞdij þ 2r;ir; jÞ

þ ð1� 2vÞðnir; j � njr;iÞg, ð4Þ

where n is the Poisson’s ratio. In Eq. (4), the Kronecker
deltas dij is defined as dij ¼ 1 for i ¼ j, dij ¼ 0 for i 6¼j, and

r2 ¼ ðx1 � x1Þ
2
þ ðx2 � x2Þ

2; r;1 ¼
x1 � x1

r
¼ cos a,

r;2 ¼
x2 � x2

r
¼ sin a; n1 ¼ � sin b; n2 ¼ cos b, ð5Þ

where the angles a and b are indicated in Fig. 1(a).
The kernel P�ijðx; xÞ can be obtained in a usual way [3].

The kernel U�1ij ðx; xÞ may be obtained from a fundamental
stress field (Fig. 1(a)). It is known that the kernel U�1ij ðx;xÞ
is a displacement field caused by concentrated forces
applied at some point in the infinite medium. Therefore,
the adopted kernels for U�1ij ðx; xÞ can be differed each other
by a constant. It is proved that if a particular displacement
from fundamental stress field is used, we can obtain
D1(CR) ¼ 0 and the relevant kernel U�1ij ðx;xÞ takes the
following form (see Appendix A)

U�1ij ðx;xÞ ¼ Hfð3� 4nÞ lnðrÞdij � r;ir; j þ 0:5dijg,

with H ¼ �
1

8pð1� nÞG
, ð6Þ

where G denotes the shear modulus of elasticity. The
condition D1(CR) ¼ 0 was named the regularity condition
in literature [3]. Since this condition (D1(CR) ¼ 0) is
satisfied for the suggested fundamental solution, Eq. (2)
can be reduced to the following BIE

1

2
uiðxÞ þ

Z
G

P�ijðx;xÞujðxÞdsðxÞ ¼

Z
G

U�1ij ðx;xÞpjðxÞdsðxÞ,

ði ¼ 1; 2; x 2 GÞ. ð7Þ

From the above it is seen that only if U�1ij ðx;xÞ takes the
form of Eq. (6), Eq. (2) can be reduced to Eq. (7).
Otherwise, a term D1(CR) in Eq. (2) will make the BIE
more complicated.

It is preferable to write the kernel U�1ij ðx;xÞ in the form
U�ijðx;x; aÞ, where a size a is involved. We take an elliptic
notch with two half-axes a and b as an example. In
addition, for example, b/a ¼ 0.5 is assumed. In this case,
the value of a will solely determine the size of the elliptic
notch; it in turn will be a parameter in the kernel
U�1ij ðx;x; aÞ.

If we assume ujðxÞ ¼ 0 (j ¼ 1, 2, xAG) in the left side
of Eq. (7), the following homogenous integral equation
is obtained:Z
G

U�1ij ðx;x; aÞpjðxÞdsðxÞ ¼ 0 ði ¼ 1; 2; x 2 GÞ. (8)

Clearly, the homogenous BIE (8) has a trivial solution
pjðxÞ ¼ 0 (j ¼ 1, 2, xAG), which is of no interest. In the case
of a circular hole notch, it was proved that there is a
particular value for the size a, for which a non-trivial
solution exists, or pjðxÞa0 (j ¼ 1, 2, xAG). This particular
value a is an eigenvalue for the homogenous equation, and
pjðxÞa0 (j ¼ 1, 2, xAG) are the eigenfunctions. However, it
is not easy to study the problem for an arbitrary notch
configuration. Therefore, the following numerical proce-
dure is introduced.

2.2. Formulation of the eigenvalue and eigenfunction

problem in a discrete form

Without losing generality, the elliptic notch in infinite
plate is taken as an example (Fig. 2(a)). From a real
computation, it is found that there are two eigenvalues
a ¼ l1,exact and l2,exact. In the numerical technique, the
ellipse is divided into 120 intervals, and n ¼ 0.3 is assumed.
The constant traction is assumed for each interval. After
making discretization, Eq. (8) may be written in the
following form:

XM
n¼1

Umn ~pn ¼ 0; ðm ¼ 1; 2; . . . ;MÞ, (9)

where the matrix Umn (m, n ¼ 1,y,M) is derived from the
kernel function U�1ij ðx; x; aÞ, and ~pn denotes the loading
vector that is assumed on the intervals. The vector ~pn is
composed of p1(i), p2(i) (i ¼ 1, 2,y), which are tractions on
intervals. Eq. (9) may be written in a matrix form as
follows:

U ~p ¼ 0. (10)
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Table 1

Computed values of two degenerate scales for an elliptic notch: (1) a ¼ l1 ¼ f1(b/a) and a ¼ l2 ¼ f2(b/a) in the case of using the kernel U�1ij ðx; x; aÞ (see Eq.

(12)), (2) a ¼ l1 ¼ g1(b/a) and a ¼ l1 ¼ g2(b/a) in the case of using the kernel U�2ij ðx;x; aÞ (see Eq. (19)), within the range 0.1pb/ap1.0 (see Fig. 2(a))

b/a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f1 2.282780 2.006306 1.787181 1.609634 1.463102 1.340271 1.235928 1.146265 1.068437 1.000284

f2 1.448964 1.385311 1.325109 1.268597 1.215765 1.166471 1.120510 1.077648 1.037649 1.000284

g1 3.013710 2.648710 2.359424 2.125027 1.931576 1.769417 1.631664 1.513290 1.410544 1.320568

g2 1.912902 1.828878 1.749399 1.674793 1.605044 1.539967 1.479289 1.422702 1.369897 1.320568
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Fig. 3. Eigenfuctions p1(b, y), p2(b, y) for an elliptic notch with b/a ¼ 0.5

in the case of eigenvalue a ¼ l1 ¼ 1.463102 (b the rotation angle of the

notch, see Fig. 2(c) and Eq. (17)).
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The degenerate scale a (or the eigenvalue) is evaluated
from the following equation:

detðUÞ ¼ 0. (11)

In a real computation, the degenerate scale a is evaluated
by the following technique. A sufficient small value d is
assumed in advance (d ¼ 1� 10�6 is used in this paper).
Once we find a value for l such that detðUÞja¼l�d40 and
detðUÞja¼lþdo0 (or detðUÞja¼l�do0 and detðUÞja¼lþd40),
the degenerate scale a ¼ l is obtained approximately.

For the ratio b/a within the range 0.1ob/ao1, two
degenerate scales a ¼ l1 and l2 were found from the
computation. In the case of using the kernel U�1ij ðx;x; aÞ,
the obtained degenerate scales are expressed as

l1 ¼ f 1ðb=aÞ; l2 ¼ f 2ðb=aÞ. (12)

The computed results for f1(b/a), f2(b/a) are listed in
Table 1. It can be seen from the tabulated results that,
when b/a ¼ 1 the two degenerate scales are merged into one
value a ¼ l1 ¼ l2 ¼ 1.000284, or this is the case of double
roots. Meantime, the exact one takes the value a ¼

l1,exact ¼ l2,exact ¼ 1.
The b/a ¼ 0.5 case is taken as an example to find the

non-trivial solution for ~pn. Using the mentioned technique,
two degenerate scales, a ¼ l1 ¼ 1.463102 and a ¼

l2 ¼ 1.215765 (for b/a ¼ 0.5 case), have been achieved
approximately. The non-trivial solution for ~pn can be found
in the following way. After taking a ¼ l1 ¼ 1.463102, we
can formulate the matrix U with the elements Umn

(m, n ¼ 1,y,M). Substituting ~p1 ¼ 1 in Eq. (9) yields

XM
n¼2

Umn ~pn ¼ �Um1 ðm ¼ 1; 2; . . . ;MÞ. (13)

We may truncate M�1 equations from Eq. (13), and
obtain

XM
n¼2

Umn ~pn ¼ �Um1 ðm ¼ 2; . . . ;MÞ. (14)

From Eq. (14), we can obtain a solution for ~pn

(n ¼ 2, 3,y,M). Obviously, the obtained values ~pn
(n ¼ 1, 2, 3,y,M) are composed from values of two
functions p1(y) and p2(y) at the discrete points. In the case
of assuming p2

1ðyÞ þ p2
2ðyÞjy¼0� ¼ 1, two functions p1(y) and

p2(y) can be obtained immediately. The computed results
for tractions are expressed as follows:

p1 ¼ p1ðyÞ; p2 ¼ p2ðyÞ

ðtractions at the boundary points; x ¼ a cos y,

y ¼ b cos yÞ. ð15Þ

Both functions p1(y) and p2(y) are plotted in Fig. 3
(the b ¼ 01 case). From computed results, it is found that
p2(y) ¼ 0.000. That is to say, the degenerate scale
a ¼ l1 ¼ 1.463102 only gives the component p1 the non-
trivial solution.
One important point in this study is about the

dependence of eigenvalues and eigenfunctions with respect
to the location of the ellipse. In the first condition, the
elliptic notch has a translation (Fig. 2(b)). In this case, from
the structure of the kernel U�1ij ðx;x; aÞ, it is seen that the
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eigenvalues and the eigenfunctions are invariants with
respect to the translation of ellipse.

In the second condition, the elliptic notch has a
rotation (Fig. 2(c)). In this case, we have to consider three
cases:
(a)
E
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Fig.

in th

notc
Evaluation of eigenfunctions in ox1x2 coordinates with
no rotation of the ellipse notch (Fig. 2(a)).
(b)
 Evaluation of eigenfunctions in o ~x1 ~x2 coordinates with
a rotation b of the ellipse notch (Fig. 2(c)).
(c)
 Evaluation of eigenfunctions in ox1x2 coordinates with
a rotation b of the ellipse notch (Fig. 2(c)).
In the three cases, same numbering for the discretization
was used. Clearly, the eigenvalues and eigenfunctions must
be the same for the cases (a) and (b).

Numerical evaluation proves that the eigenvalues in the
case (c) are same as in the case (a). However, this
conclusion is not easy to prove theoretically. Two ways
can be used to evaluate the eigenfunctions in the case (c). In
the first way, the eigenfunctions are directly obtained from
the computation as mentioned above. In the second way,
we first obtain the eigenfunctions for case (b), and denote
them as p1r and p2r.

Further, the eigenfuctions for the case (c) can be
evaluated by

p1 ¼ p1r cos b� p2r sin b; p2 ¼ p1r sin bþ p2r cos b.
(16)

It is found that the results obtained from two ways
coincide. Similar to Eq. (15), the eigenfunctions for the
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e case of eigenvalue a ¼ l2 ¼ 1.215765 (b the rotation angle of the

h, see Fig. 2(c) and Eq. (17)).
case (c) are expressed as

p1 ¼ p1ðb; yÞ; p2 ¼ p2ðb; yÞ

ðtractions at the boundary points; x ¼ a cos y,

y ¼ b cos yÞ. ð17Þ

Under the following conditions: (a) n ¼ 0.3, (b) b/a ¼
0.5, (c) for the eigenvalue a ¼ l1 ¼ 1.463102, (d) for the
rotations b ¼ 01, 151, 301 and 451, the computed results are
plotted in Fig. 3.
Similarly, under the following conditions: (a) n ¼ 0.3, (b)

b/a ¼ 0.5, (c) for the second eigenvalue a ¼ l2 ¼ 1.215765,
(d) for the rotations b ¼ 01, 151, 301 and 451, the computed
results are expressed in the form of Eq. (17), and they
are plotted in Fig. 4. On contrary to the case of
a ¼ l1 ¼ 1.463102 and b ¼ 01, it is found that
p1(y, b)|b ¼ 01 ¼ 0.000, p2(y, b)|b ¼ 016¼0 in the present case.
The other important problem is the dependence of the

eigenvalue to the used kernel U�ijðx;xÞ. In literature, a
kernel was introduced [3]

U�2ij ðx;xÞ ¼ Hfð3� 4nÞ lnðrÞdij � rirjg,

with H ¼ �
1

8pð1� nÞG
. ð18Þ

For the ratio b/a within the range 0.1ob/ao1 and the
usage of the kernel U�2ij ðx;xÞ, the computed degenerate
scales are expressed as

l1 ¼ g1ðb=aÞ; l2 ¼ g2ðb=aÞ. (19)

The computed results for g1(b/a), g2(b/a) are also listed in
Table 1. It can be seen from the tabulated results that,
when b/a ¼ 1, the two degenerate scales are merged into
one value a ¼ l1 ¼ l2 ¼ 1.320568, or this is the case of
double roots. Meantime, the exact one takes the value
a ¼ l1,exact ¼ ¼ l2,exact ¼ exp(1/(2(3�4n)) ¼ 1.320193 (for
n ¼ 0.3) [8,9].
It is noted that the notations l1 ¼ f 1ðb=aÞ and l2 ¼

f 2ðb=aÞ are some eigenvalues using the kernel U�1ij ðx;x; aÞ,
and l1 ¼ g1ðb=aÞ and l2 ¼ g2ðb=aÞ are some eigenvalues
using the kernel U�2ij ðx;x; aÞ. Meantime, p1 ¼ p1ðb; yÞ,
p2 ¼ p2ðb; yÞ, p1r and p2r denote the eigenfunctions. Those
notations are also used in the following numerical
examples.

3. Some numerical examples

Some numerical examples with the calculated results are
presented below.

Example 3.1. The first example is devoted to a rectangle
notch with width ‘‘2a’’ and height ‘‘2b’’ (Fig. 5(a)). Similar
to the elliptic notch case, in the case of using the kernel
U�1ij ðx;xÞ (or U�1ij ðx;x; aÞ), the obtained degenerate scales
are expressed as

l1 ¼ f 1ðb=aÞ; l2 ¼ f 2ðb=aÞ. (12a)
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Table 2

Computed values of two degenerate scales for a rectangular notch: (1) a ¼ l1 ¼

Eq. (12)), (2) a ¼ l1 ¼ g1(b/a) and a ¼ l1 ¼ g2(b/a) in the case of using the kern

b/a

0.1 0.2 0.3 0.4 0.5

f1 2.071950 1.748806 1.526554 1.360652 1.230895

f2 1.379713 1.275461 1.191292 1.120656 1.060276

g1 2.735373 2.308761 2.015345 1.796323 1.625019

g2 1.821448 1.682714 1.572734 1.479482 1.399768

y

y
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x x
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y

G

Fig. 5. (a) A rectangular notch in an infinite plate, (b) a half-ring-shaped

notch in an infinite plate, (c) a notch with a complicated configuration.

Table 3

Computed values of two degenerate scales for a half-ring-shaped notch: (1) a ¼

(see Eq. (12)), (2) a ¼ l1 ¼ g1(b/a) and a ¼ l1 ¼ g2(b/a) in the case of using th

5(b))

b/a

0.1 0.2 0.3 0.4 0.

f1 1.406855 1.408991 1.412357 1.417432 1.

f2 1.193183 1.195108 1.198271 1.202954 1.

g1 1.857320 1.860139 1.864584 1.871165 1.

g2 1.572232 1.577773 1.581948 1.588132 1.
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Meantime, in the case of using the kernel U�2ij ðx; xÞ, the
obtained degenerate scales are expressed as

l1 ¼ g1ðb=aÞ; l2 ¼ g2ðb=aÞ. (19a)

The computed results for l1 ¼ f 1ðb=aÞ, l2 ¼ f 2ðb=aÞ,
l1 ¼ g1ðb=aÞ and l2 ¼ g2ðb=aÞ are listed in Table 2. From
the tabulated results, we see the following characters for
the eigenvalues. Generally, the eigenvalues g1(b/a) and
g2(b/a) (using the kernel U�2ij ðx; xÞ) are higher than f1(b/a)
and f2(b/a) (using the kernel U�1ij ðx;xÞ). Secondly, if the b/a
ratio is smaller, the relevant eigenvalue is higher. When
b/a-1, two eigenvalues are merged into one value
a ¼ l1 ¼ l2 ¼ 0.845705 (using the kernel U�1ij ðx; xÞ), or
into a ¼ l1 ¼ l2 ¼ 1.116417 (using the kernel U�2ij ðx;xÞ).
The eigenfunctions can also be evaluated, and they are not
reported here for compactness of paper.

Example 3.2. The second example is devoted to a half-ring-
shaped notch with inner radius b and outer radius a

(Fig. 5(b)). Similar to the elliptic notch case, the degenerate
scales are expressed as

l1 ¼ f 1ðb=aÞ; l2 ¼ f 2ðb=aÞ ðusing the kernel U�1ij ðx;xÞÞ,

(12b)

l1 ¼ g1ðb=aÞ; l2 ¼ g2ðb=aÞ ðusing the kernel U�2ij ðx; xÞÞ.

(19b)
f1(b/a) and a ¼ l1 ¼ f2(b/a) in the case of using the kernel U�1ij ðx; x; aÞ (see

el U�2ij ðx; x; aÞ (see Eq. (19)), within the range 0.1pb/ap1.0 (see Fig. 5(a))

0.6 0.7 0.8 0.9 1.0

1.125541 1.038214 1.964331 0.900892 0.845705

1.007059 0.960136 0.918092 0.880126 0.845705

1.485932 1.370643 1.273103 1.189351 1.116417

1.329512 1.267565 1.212059 1.161936 1.116417

l1 ¼ f1(b/a) and a ¼ l1 ¼ f2(b/a) in the case of using the kernel U�1ij ðx; x; aÞ

e kernel U�2ij ðx; x; aÞ (see Eq. (19)), within the range 0.1pb/ap1.0 (see Fig.

5 0.6 0.7 0.8 0.9

423731 1.431901 1.442429 1.457500 1.480938

209070 1.216944 1.227236 1.241525 1.262509

879600 1.890385 1.904284 1.924181 1.955124

596206 1.606600 1.620188 1.639052 1.666755
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Table 4

Computed values of two degenerate scales for a complicated notch: (1) a ¼ l1 ¼ f1(b/a) and a ¼ l1 ¼ f2(b/a) in the case of using the kernel U�1ij ðx; x; aÞ (see

Eq. (12)), (2) a ¼ l1 ¼ g1(b/a) and a ¼ l1 ¼ g2(b/a) in the case of using the kernel U�2ij ðx;x; aÞ (see Eq. (19)), within the range 0.1pb/ap1.0 (see Eq. (20)

and Fig. 5(c))

b/a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f1 2.229295 1.937519 1.713762 1.536263 1.392297 1.273760 1.175415 1.094149 1.028311 0.975819

f2 1.431581 1.356720 1.288478 1.225788 1.167814 1.113735 1.062551 1.012859 0.962929 0.912261

g1 2.943099 2.557899 2.262496 2.028163 1.838102 1.681609 1.551775 1.444488 1.357569 1.288269

g2 1.889962 1.791131 1.701039 1.618276 1.541740 1.470345 1.402774 1.337169 1.271252 1.204360
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Fig. 6. Eigenfuctions p1(b/a, y), p2(b/a, y) for a complicated notch for

three cases: (a) a ¼ l1 ¼ 1.392297 (with b/a ¼ 0.5), (b) a ¼ l1 ¼ 1.175415

(with b/a ¼ 0.7) and (c) a ¼ l1 ¼ 1.028311 (with b/a ¼ 0.9) (see Fig. 5(c)

and Eq. (21)).
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Fig. 7. Eigenfuctions p1(b/a, y), p2(b/a, y) for a complicated notch for

three cases (a) a ¼ l2 ¼ 1.167814 (b/a ¼ 0.5), (b) a ¼ l2 ¼ 1.062551 (b/a

¼ 0.7) and (c) a ¼ l2 ¼ 0.962929 (b/a ¼ 0.9) (see Fig. 5(c) and Eq. (21)).
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The computed results for l1 ¼ f 1ðb=aÞ, l2 ¼ f 2ðb=aÞ,
l1 ¼ g1ðb=aÞ and l2 ¼ g2ðb=aÞ are listed in Table 3. A
particular character can be found in the present example.
In this example, we see that the dependence of the
eigenvalues to the ratio b/a is minor. For example,
we have f 1ðb=aÞjb=a¼0:1 ¼ 1:406855 and f 1ðb=aÞjb=a¼0:9 ¼

1:480938.

Example 3.3. The third example is devoted to a notch with
a complicated configuration, which is defined by

x ¼ a cos yð1þ 0:5 cos yÞ; y ¼ b sin yð1þ 0:8 sin yÞ.

(20)

In the case of b/a ¼ 0.5, the configuration is shown in
Fig. 5(c).

Similar to the elliptic notch case, the degenerate scales
are expressed as

l1 ¼ f 1ðb=aÞ; l2 ¼ f 2ðb=aÞ ðusing the kernel U�1ij ðx;xÞÞ,

(12c)

l1 ¼ g1ðb=aÞ; l2 ¼ g2ðb=aÞ ðusing the kernel U�2ij ðx; xÞÞ.

(19c)

The computed results for l1 ¼ f 1ðb=aÞ, l2 ¼ f 2ðb=aÞ,
l1 ¼ g1ðb=aÞ and l2 ¼ g2ðb=aÞ are listed in Table 4. Similar
characters as mentioned in the Example 3.1 can be found
from the tabulated results.

Similar to Eq. (17), the eigenfunctions are expressed as

p1 ¼ p1ðb=a; yÞ; p2 ¼ p2ðb=a; yÞ. (21)

Under the following conditions: (a) n ¼ 0.3, (b) for three
particular cases: b/a ¼ 0.5 (with a ¼ l1 ¼ 1.392297),
b/a ¼ 0.7 (with a ¼ l1 ¼ 1.175415) and b/a ¼ 0.9 (with
a ¼ l1 ¼ 1.028311), the computed results are plotted in
Fig. 6. From plotted results, it is see that in the case of the
first eigenvalue a ¼ l1, generally, |p1|4|p2|. Some peak
stresses have been found from Fig. 6, for example,
p1jb=a¼0:5 ¼ 2:101, p1jb=a¼0:7 ¼ 2:883, and p1jb=a¼0:9 ¼

3:229, at near y ¼ 2161. These peak stresses may be caused
by a higher curvature at some point on the contour
(indicated by point G in Fig. 5(c)).

The merit of the obtained solution p1 ¼ p1ðb=a; yÞ and
p2 ¼ p2ðb=a; yÞ is as follows. For b/a ¼ 0.5 case, if one



ARTICLE IN PRESS
Y.Z. Chen et al. / Engineering Analysis with Boundary Elements 31 (2007) 994–1002 1001
substitutes the relevant eigenvalue a ¼ l1 ¼ 1.392297 and
the solution p1 ¼ p1ðb=a; yÞ and p2 ¼ p2ðb=a; yÞ (shown in
Fig. 6 for the case of b/a ¼ 0.5) into the left-hand side of
homogenous equation (8) (or into its discrete form shown
by Eq. (10)), the Eq. (8) is satisfied. Alternatively speaking,
the homogenious equation has a non-trivial solution p1 ¼

p1ðb=a; yÞ and p2 ¼ p2ðb=a; yÞ when the degenerate size
(a ¼ l1 ¼ 1.392297) is reached. Naturally, a non-trivial
solution for the homogeneous equation will cause an
improper solution for the non-homogenous equation.

Meantime, under the following conditions: (a) n ¼ 0.3,
(b) for three cases: b/a ¼ 0.5 (with a ¼ l2 ¼ 1.167814),
b/a ¼ 0.7 (with a ¼ l2 ¼ 1.062551) and b/a ¼ 0.9 (with
a ¼ l2 ¼ 0.962929), the computed results are plotted in
Fig. 7. From plotted results, it is seen that in the case of the
second eigenvalue a ¼ l2, generally, |p1|o|p2|. The merit
for the obtained results in Fig. 7 is similar to the previously
mentioned case.

4. Conclusions

It is well known that the natural vibration of a bar can
be reduced to a problem for finding eigenvalues and
eigenfunctions. The eigenvalue in the problem is the
natural vibration frequency, and the eigenfunction is the
vibration mode. Similar idea is developed in the present
study. However, if the problem is formulated in the form of
integral equation shown by Eq. (8), we cannot obtain
useful results from the formulation since the equation is
too complicated. The discretization of the integral equation
in the form of Eqs. (9) and (10) is an essential step in the
present study. From the dependence of det (U) with respect
to the size a, the eigenvalues and the eigenfunctions in the
problem can be evaluated immediately.

The merit of the present study is emphasized here once
more. For a real displacement boundary value problem,
from Eq. (7) the governing equation can be written as
follows:Z
G

U�1ij ðx; xÞpjðxÞdsðxÞ ¼ qiðxÞ; ði ¼ 1; 2; x 2 GÞ. (22)

The functions qi(x) (i ¼ 1, 2) are simply obtained from a
substitution of the given displacements into the left-hand
side of Eq. (7). Alternatively, Eq. (22) can be rewritten in a
discrete form

U ~p ¼ q, (22a)

where U is a matrix after discritization of the kernel
U�1ij ðx; xÞ, and ~p and q are two vectors from the functions
pj(x) and qi(x).

In addition, the relevant homogenous equations can be
written as follows:Z
G

U�1ij ðx; xÞpjðxÞdsðxÞ ¼ 0; ði ¼ 1; 2; x 2 GÞ, (23)

U ~p ¼ 0. (23a)
As mentioned previously, for the elliptic notch with
b/a ¼ 0.5, there are two eigenvalues, a ¼ l1 ¼ 1.463102
and a ¼ l2 ¼ 1.215765, and relevant eigenfunctions p1, p2
(shown in Figs. 3 and 4 for the case of b ¼ 01). Naturally, a
non-trivial solution for the homogeneous equations (23) or
(23a) will cause an improper solution for the non-
homogenous equations (22) and (22a). That is to say, in
order to avoid obtaining an improper solution for Eq. (22),
one cannot adopt a ¼ l1 ¼ 1.463102 or a ¼ l2 ¼ 1.215765
in a real computation.
Obviously, the mentioned analysis can find its practical

usage in engineering. For example, let us perform a stress
analysis for an elliptic notch with size a ¼ 1.463m and
b ¼ 0.5a. From Table 1 we know that for the ratio b/
a ¼ 0.5 there are two eigenvalues a ¼ l1 ¼ 1.463102 and
a ¼ l2 ¼ 1.215765. Clearly, in order to avoid obtaining an
improper solution, we cannot use the value a ¼ 1.463
(means a ¼ 1.463m) and b ¼ 0.5a. Instead, we have to use,
for example, the value a ¼ 146.3 (means a ¼

146.3 cm ¼ 1.463m) and b ¼ 0.5a. Computed results prove
that if one assumes aX1.1l1 or ap0.9l2 in computation,
the improper solution can be avoided properly.
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Appendix A

The following analysis depends on the complex variable
function method in plane elasticity [11]. In the method, the
stresses ðsx; sy; sxyÞ, the resultant forces (X,Y) and the
displacements (u, v) are expressed in terms of two complex
potentials f(z) and c(z) such that

sx þ sy ¼ 4 Ref0ðzÞ,

sy � sx þ 2isxy ¼ 2½z̄f00ðzÞ þ c0ðzÞ�, (A.1)

f ¼ �Y þ iX ¼ fðzÞ þ zf0ðzÞ þ cðzÞ, (A.2)

2Gðuþ ivÞ ¼ kfðzÞ � zf0ðzÞ � cðzÞ, (A.3)

where z ¼ xþ iy denotes complex variable, G is the shear
modulus of elasticity, k ¼ ð3� nÞ=ð1þ nÞ is for the plane
stress problems, k ¼ 3� 4n is for the plane strain
problems, and n is the Poisson’s ratio. In the present
study, the plane strain condition is assumed thoroughly.
The fundamental stress field is defined by a concentrated

force (Px,Py) applied at the point z ¼ t of an infinite plate
(Fig. 1(a)). The relevant complex potentials are defined by [11]

fðzÞ ¼ F lnðz� tÞ; cðzÞ ¼ �kF̄ lnðz� tÞ �
Ft̄

z� t
, (A.4)

where

F ¼ �
Px þ iPy

2pðkþ 1Þ
. (A.5)
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Let ff gin ¼ f�Y þ iX gin denotes the increase of the
function f ¼ �Y þ iX in Eq. (A.2) when a moving point is
going forward in the anticlockwise direction around the point
z ¼ t. From this definition, we have

ff gin ¼ f�Y þ iX gin ¼ Py � iPx; or fY gin ¼ �Py

and fX gin ¼ �Px. ðA:6Þ

The loading condition is indicated in Fig. 1(a). From the
suggested complex potentials shown by Eq. (A.4), the kernel
U�1ij ðx;xÞ shown by Eq. (6) can be obtained immediately.

By using an equation for evaluating a MWDI [12,13], we
can prove the following equality

D1ðCRÞ ¼ �

Z
CR

P�ijðx; xÞujðxÞdsðxÞ

þ

Z
CR

U�1ij ðx;xÞpjðxÞdsðxÞ ¼ 0. ðA:7Þ
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