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S U M M A R Y
A series solution of the plane SH-waves incident on a partially filled semi-circular alluvial valley
imbedded in a half-space is presented. Based on the region-matching method, the analysed
region is decomposed into two subregions by the interface between two media. The antiplane
displacement field of each subregion is expressed in terms of an infinite series of cylindrical
wavefunctions with unknown expansion coefficients. After imposing the traction-free condition
on the curved valley surface and the matching conditions on the interface with the aid of Graf’s
addition theorem, the unknown coefficients are obtained. Both the frequency- and time-domain
responses are evaluated. In the theoretical derivation of this work, two classical exact series
solutions are also included, so the present series solution is more general than those given before.
Visible effects of different physical parameters on ground surface motions are illustrated in
graphical form.
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1 I N T RO D U C T I O N

Analysis of local site effects is an important component of earth-

quake hazard assessment and microzonation. The geological and

surface soil conditions of a region contribute in the determination of

how much the ground will shake. For a long time, field observations

following large earthquakes or records of the same events have shed

substantial light on the seismological, geological and structural as-

pects of these effects. From various works, it is well established that

alluvial valleys and sedimentary basins are prone to much stronger

ground shaking than bedrock, and these site amplifications can vary

rapidly from place to place. Furthermore, signal records on such

sites are longer and more complex than those on well-cemented

sandstones or crystalline rocks. Consequently, better understanding

of the mechanism of these amplification phenomena provides cru-

cial information for earthquake disaster mitigation and the design

of earthquake resistant structures.

As to the partially filled alluvial valley, it is a kind of ‘more

realistic’ alluvial valley. Its cross-section shape is very similar to

those of Chusal and Runo valleys in Garm region (former USSR).

Chusal Valley is, about 700 m long, 400 m wide and 60 m deep,

located in the Tien Shan Mountains, while Runo Valley is, about

5 km long, 700 m wide and 100 m deep, seated in the Pamir Moun-

tains (Tucker & King 1984). In 1984 King and Tucker performed

an instrumental study of the response to earthquake motion of these

two valleys. Indeed, this type of cross-section shape has caught our

eyes. Although it seems to be very simple, the separation of variables

still cannot be applied directly due to its nature of shape involving

both circular-arc and straight boundaries. So far, its exact solution

is extremely difficult to obtain.

Over the past three decades, the two-dimensional (2-D) half-plane

scattering problems of local geological structures or topography

have been pursued. Nowadays, it is believed that the effects of local

alluvium thickness on seismic motions exist and can be signifi-

cant (e.g. Hudson 1972; Bard & Bouchon 1980). Referring to the

complex models (e.g. irregular valleys with heterogeneous mate-

rials), numerical approximation methods are, no doubt, the most

convenient and powerful tools to tackle these subjects. The most

widely used include the finite difference method (FDM) (e.g. Boore

1972), the finite element method (FEM) (e.g. Lysmer & Drake 1972;

Smith 1975; Bielak et al. 1999), and the boundary element method

(BEM) (e.g. Papageorgiou & Kim 1991; Sánchez-Sesma et al. 1993;

Fishman & Ahmad 1995; Luzón et al. 2004). Also, the BEM can

be coupled with the FEM (e.g. Bielak et al. 1991) or the discrete

wavenumber method (e.g. Bouchon et al. 1989; Kawase & Aki 1989;

Gil-Zepeda et al. 2003).

Among the above-mentioned approaches, each one has its limi-

tation. The FDM and FEM have the disadvantage that they need to

fill the entire domain with mesh grids. So, it is not uncommon for

these domain methods to require considerable computational time

and large memory supercomputers. Moreover, another drawback of

them is on the introduction of an artificial boundary, on which one

must specify an approximate radiation condition to eliminate spuri-

ous wave reflections. As a result, using them is not feasible for large

dimension problems. By contrast, the BEM has gained increasing

popularity. Its main attributes are: (1) it maps the domain equa-

tion on the boundary and thus reduces the problem dimension by

one, (2) there is no need to choose a fictitious boundary because of

the relatively easy fulfilment of radiation conditions at infinity and

(3) qualities of interest can be calculated at any field point through
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an integral representation. Nevertheless, if the material fillings are

highly heterogeneous, the application of BEM becomes cumber-

some. In conclusion, despite the sophisticated numerical methods

are very suitable to complicated geological configurations, the the-

oretical schemes are still needed and expected because they provide

a quantitative check on the accuracy of numerical approximation

methods. Confidence in accuracy is important for developing better

approximate techniques.

Generally speaking, theoretical solutions to the scalar wave equa-

tion require the scatterer’s surface to coincide with the coordinate

system. In other words, only geometries that allow separation of

variables (also known as the wavefunction expansion) yield com-

plete expressions for the associated eigenfunctions. Unfortunately,

in reviewing the theoretical analysis methods (e.g. series approach)

in this field, such solutions (in particular exact solutions) are re-

stricted to a few simple geometric shapes (like a circle or ellipse).

Take the full-space elastodynamic inclusion problem for instance;

Pao & Mow (1973) gives a comprehensive coverage of exact solu-

tions in their monograph. As to the half-space problem involving the

contrasting material properties, the representative cases are a semi-

circular (Trifunac 1971) and semi-elliptical alluvial valley (Wong

& Trifunac 1974).

To the authors’ knowledge, the series solution to the scattering

problem of plane SH waves from a partially filled semi-circular

alluvial valley is not found yet. Therefore, in this paper, the authors

intend to handle this issue theoretically by means of the region-

matching method. The present series solution can provide not only

adequate validation for other numerical solutions but also better

physical insights into the problem. It may replace regret for the lack

of exact solution as well.

The major contributions of this work are twofold. On one hand,

the region-matching technique is successfully applied to a partially

filled semi-circular alluvial valley. On the other hand, the boundary-

value problem solved herein has led to the development of new series

solutions for several types of partially filled semi-circular alluvial

valley.

2 T H E O R E T I C A L F O R M U L AT I O N

The 2-D model depicted in Fig. 1 consists of an infinitely long, par-

tially filled, alluvial valley embedded into a semi-infinite medium.

The valley cross-section is basically semi-circular in shape (with

radius a), but the sediment is horizontally deposited at the bottom.

Figure 2. Displacement amplitudes versus x/a for different values of N at

η = 2.0 and α = 90◦.

Figure 1. Geometry of the problem.
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The thickness and central angle of the alluvium are h and 2β, respec-

tively. The vertical distance from top surface of the deposit to flat

ground surface is d . The contact interface between the half-space

and the alluvium is supposed to be perfectly bonded. All material

properties involved are assumed to be isotropic, homogeneous and

linearly elastic. The shear modulus, mass density and shear wave

velocity are given by μ, ρ and c = √
μ/ρ, respectively. The sub-

scripts, 1 and 2, designate these constants in the half-space and the

deposit, respectively. The definitions of two Cartesian and two cylin-

drical coordinate systems are taken as shown in Fig. 1. The origin

of global coordinate systems (x 1, y1) and (r1, θ1) is set at the centre

of curvature of the valley, and the origin of local coordinate systems

(x 2, y2) and (r2, θ2) is located at the centre of the top surface of the

alluvium. In both Cartesian coordinate systems, the horizontal axes

are defined as positive going to the right direction, while the verti-

cal axes are defined as positive going downward. In two cylindrical

coordinate systems, θ1 and θ2 are measured counter-clockwise from

the positive vertical axes. An infinite train of plane SH waves of

unit amplitude, which impinges on the valley at an angle α to the

negative y-axis, is considered.

Concerning the mass density ratio and shear wave velocity ratio, if

they are greater than one, it means that the alluvial filling is relatively

softer than the surrounding half-space (e.g. clay, silty or sandy layers

lying directly on crystalline rock). On the contrary, if these two ratios

are smaller than one, it implies that the filling material in the valley

is relatively harder than that outside the valley.

As seen in Fig. 1, the interface divided the half-space into two

subregions, a semi-unbounded outer region (1) and a bounded inner

region (2). In both regions the steady-state out-of-plane motions, by

exciting the valley with an incident plane SH wave, are required to

satisfy the governing wave equations, namely

∇2U j = 1

c2
j

∂2U j

∂t2
, j = 1, 2, (1)

where ∇2 is the 2-D cylindrical Laplacian, U j = u j exp(iωt) rep-

resents the displacement field, uj is the spatial function, i is
√−1,

ω is the angular frequency, and t is the time variable. Substituting

u j exp(iωt) into eq. (1), the wave equations turn out to be Helmholtz

equations as follows

∇2u j + k2
j u j = 0, j = 1, 2, (2)

where k j = ω/c j is shear wavenumber. The time-harmonic factor

exp(iωt) is suppressed henceforth in all the expressions throughout

this paper.

The zero-stress boundary conditions on the ground surface, the

curved surface of the valley and on the top surface of the deposit

are

τ
(1)
θ1z = μ1

r1

∂u1

∂θ1

= 0, θ1 = ±π/2, r1 > a (3)

τ (1)
r1z = μ1

∂u1

∂r1

= 0, β ≤ |θ1| ≤ π/2, r1 = a (4)

τ
(2)
θ2z = μ2

r2

∂u2

∂θ2

= 0, θ2 = ±π/2, r2 ≤ a sin β. (5)

In addition, two matching conditions along the interface between

region (1) and (2), which assure the continuity of displacement and

stress fields, requires

u1(a, θ1) = u2(a, θ1), |θ1| ≤ β (6)

Figure 3. Displacement amplitudes versus x/a for different h/a at η = 0.5, ρ1/ρ2 = 1.5 and c1/c2 = 2.0.
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τ (1)
r1z(a, θ1) = τ (2)

r1z(a, θ1), |θ1| ≤ β. (7)

In semi-unbounded region (1), the incident wavefield uI (r1, θ1)

and the reflected wavefield u R(r1, θ1) can be expressed as

uI (r1, θ1) = exp[ik1r1 cos(θ1 + α)] (8)

u R(r1, θ1) = exp[−ik1r1 cos(θ1 − α)]. (9)

Employing a distinguished formula (see Abramowitz & Stegun

1972), an expansion for the exponential in terms of Bessel functions

is as follows

exp(±ik1r1 cos θ1) =
∞∑

n=0

δ̄0n(±i)n Jn(k1r1) cos nθ1, (10)

where δ̄0n = 2 − δ0n, δ0n is the Kronecker delta function, and Jn(·)
denotes the Bessel function of the first kind of order n.

Substituting eq. (10) into eqs (8) and (9), respectively, and then

adding them together, the free field displacement uF (r1, θ1) can be

written as

uF (r1, θ1) = 2
∞∑

n=0

δ̄0n(−1)n J2n(k1r1) cos(2n)α cos(2n)θ1

− 4i
∞∑

n=0

(−1)n J2n+1(k1r1) sin(2n + 1)α sin(2n + 1)θ1. (11)

Note that this expression automatically satisfies the boundary

condition (eq. 3) on the ground surface, that is, the shear stress

perpendicular to θ1 vanishes.

Considering the scattered wavefield in region (1), it can be

expended into series of cylindrical wavefunctions satisfying the

Helmholtz equation (eq. 2), the stress-free boundary condition

(eq. 3) and the Sommerfeld radiation condition at infinity. So, the

wavefunction expansion for the scattered wavefield uS(r1, θ1) is as

follows

uS(r1, θ1) =
∞∑

n=0

An H (2)
2n (k1r1) cos(2n)θ1

+
∞∑

n=0

Bn H (2)
2n+1(k1r1) sin(2n + 1)θ1, (12)

where H (2)
n (·) is Hankel function of the second kind of order n,

and the complex expansion coefficients An and Bn are unknown.

The physical meaning of eq. (12) is easily understood, that is, the

outgoing waves radiating outward to infinity due to the presence of

an alluvial valley.

The displacement of the resultant wavefield u1(r1, θ1) in region

(1), which is the combination of the free wavefield uF(r1, θ1) and

the scattered wavefield uS(r1, θ1), can be expressed as

u1(r1, θ1) = uF(r1, θ1) + uS(r1, θ1). (13)

Accordingly, in bounded region (2), the displacement of wavefield

u2(r2, θ2) satisfying the Helmholtz equation (eq. 2) and the traction-

free boundary condition on the top surface of the deposit (eq. 5) is

given by

u2(r2, θ2) =
∞∑

n=0

Cn J2n(k2r2) cos(2n)θ2

+
∞∑

n=0

Dn J2n+1(k2r2) sin(2n + 1)θ2 (14)

in which the complex expansion coefficients Cn and Dn are to be

determined.

Figure 4. Displacement amplitudes versus x/a for different h/a at η = 1.0, ρ1/ρ2 = 1.5 and c1/c2 = 2.0.
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Next, the core of the solution technique lies in the use of Graf’s

addition theorem for Bessel functions to shift the cylindrical co-

ordinate system from (r2, θ2) to (r1, θ1). This theorem given by

Watson (1958) is rewritten in a suitable form for our purposes, that

is,

Jn(k2r2)

{
cos nθ2

sin nθ2

}

= (−1)n
∞∑

m=0

Jm(k2r1)

{
J +

m,n(k2d) cos mθ1

J −
m,n(k2d) sin mθ1

}
, (15)

where m and n are integers, and

J ±
m,n(k2d) = δ̄0m

2
[(−1)n Jm−n(k2d) ± Jm+n(k2d)]. (16)

Substituting eq. (15) into (14), the displacement of wavefield in

region (2) can be re-expressed as

u2(r1, θ1) =
∞∑

n=0

Cn

∞∑
m=0

Jm(k2r1)J +
m,2n(k2d) cos mθ1

−
∞∑

n=0

Dn

∞∑
m=1

Jm(k2r1)J −
m,2n+1(k2d) sin mθ1. (17)

Applying the orthogonal properties of sine and cosine functions

to the matching condition (eq. 7) and stress boundary condition

(eq. 4), and integrating over the range [−π/2, π/2], the following

relationships for the unknown coefficients between region (1) and

(2) are obtained

An = −2δ̄0n(−1)n cos(2n)α
J ′

2n(k1a)

H (2)′
2n (k1a)

+ δ̄0nμ2

π H (2)′
2n (k1a)μ1

∞∑
p=0

Cp

∞∑
m=0

J ′
m(k2a)J +

m,2p(k2d)I C
m,2n(β) (18)

Bn = 4i(−1)n sin(2n + 1)α
J ′

2n+1(k1a)

H (2)′
2n+1(k1a)

− 2μ2

π H (2)′
2n+1(k1a)μ1

∞∑
p=0

Dp

∞∑
m=1

J ′
m(k2a)J −

m,2p+1(k2d)I S
m,2n+1(β),

(19)

where the prime notation means differentiation with respect to the

argument, and the functions I C
m,n(β) and I S

m,n(β) are given by

I C
m,n(β) =

∫ β

−β

cos mθ1 cos nθ1dθ1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2β, m = n = 0

β + sin(2n)β

2n
, m = n 	= 0

sin(m − n)β

m − n
+ sin(m + n)β

m + n
, m 	= n

(20)

I S
m,n(β) =

∫ β

−β

sin mθ1 sin nθ1dθ1

=

⎧⎪⎨⎪⎩
β − sin(2n)β

2n
, m = n

sin(m − n)β

m − n
− sin(m + n)β

m + n
, m 	= n.

(21)

Figure 5. Displacement amplitudes versus x/a for different h/a at η = 2.0, ρ1/ρ2 = 1.5 and c1/c2 = 2.0.
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Notice that the above eqs (18) and (19) are composed of two

terms: the first term is related to the contribution of the empty semi-

circular canyon and is consistent with the one derived by Trifunac

in the early 1970s; the second term is the additional contribution of

the alluvial deposit.

Similarly, utilizing the orthogonality again to the matching con-

dition (eq. 6), and integrating over the range [−β, β] results in the

following infinite systems of equations,

2
∞∑

n=0

δ̄0n(−1)n J2n(k1a) cos(2n)α I C
2n,2q (β)

+
∞∑

n=0

An H (2)
2n (k1a)I C

2n,2q (β)

=
∞∑

n=0

Cn

∞∑
m=0

Jm(k2a)J +
m,2n(k2d)I C

m,2q (β),q = 0, 1, . . . (22)

−4i
∞∑

n=0

(−1)n J2n+1(k1a) sin(2n + 1)α I S
2n+1,2q+1(β)

+
∞∑

n=0

Bn H (2)
2n+1(k1a)I S

2n+1,2q+1(β)

= −
∞∑

n=0

Dn

∞∑
m=1

Jm(k2a)J −
m,2n+1(k2d)I S

m,2q+1(β), q = 0, 1, . . . .

(23)

Taking eq. (18) into (22) and (19) into (23) to eliminate the ex-

pansion coefficients An and Bn, respectively, using the Wronskian

relationship for the Bessel and Hankel functions (Abramowitz &

Stegun 1972), and rearranging yields the following infinite systems

of equations,

∞∑
n=0

Cn

∞∑
m=0

J +
m,2n(k2d)

∞∑
p=0

[
J ′

m(k2a)I C
m,2p(β)I C

2p,2q (β)·

δ̄0p H (2)
2p (k1a)μ2

π H (2)′
2p (k1a)μ1

− δpq Jm(k2a)I C
m,2q (β)

]

= 4i

πa

∞∑
n=0

δ̄0n(−1)n cos(2n)α I C
2n,2q (β)

H (2)′
2n (k1a)

, q = 0, 1, . . . (24)

∞∑
n=0

Dn

∞∑
m=1

J −
m,2n+1(k2d)

∞∑
p=0

[
J ′

m(k2a)I S
m,2p+1(β)I S

2p+1,2q+1(β)·

2H (2)
2p+1(k1a)μ2

π H (2)′
2p+1(k1a)μ1

− δpq Jm(k2a)I S
m,2q+1(β)

]

= − 8

πa

∞∑
n=0

(−1)n sin(2n + 1)α I S
2n+1,2q+1(β)

H (2)′
2n+1(k1a)

, q = 0, 1, . . . .

(25)

When one is dealing with numerical procedures, it is necessary

to truncate the series in eqs (24) and (25) to a finite number (i.e.

the summation indexes n and p are truncated to N terms, while the

index m is truncated to M terms). The number of truncated terms,

which will be taken into consideration, depends only on the accu-

racy requirement. After truncating the infinite series properly, the

unknown coefficients Cn and Dn may be solved, respectively by stan-

dard matrix techniques. Once the unknown constants Cn and Dn are

Figure 6. Displacement amplitudes versus x/a for different c1/c2 at η = 1.0, ρ1/ρ2 = 1.5 and h/a = 0.25.
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obtained, it is possible to evaluate the scattering coefficients An and

Bn by means of the truncated eqs (18) and (19) in a straightforward

way.

The exact series solutions of two limiting cases may be obtained.

One is the empty case when the alluvial deposit no longer exists (i.e.

d = a and β = 0), the problem reduces to a vacant semi-circular

canyon, and the expansion coefficients An, Bn, Cn and Dn are derived

separately as

An = −2δ̄0n(−1)n cos 2nα
J ′

2n(k1a)

H (2)′
2n (k1a)

(26)

Bn = 4i(−1)n sin(2n + 1)α
J ′

2n+1(k1a)

H (2)′
2n+1(k1a)

(27)

Cn = 0, Dn = 0. (28)

At a glance, one can notice that, after properly rewriting the ex-

pressions for the differentiation of Bessel and Hankel functions,

eqs (26) and (27) will recover the world-renowned results of Tri-

funac (1973) (see his eqs 10 and 11 in page 269) except different

notations are used. For this limiting case, the wavefield in region

(2) must disappear as intuitively expected. In this manner, it is very

clear that letting β go to zero implies that I C
m,n(0) and I S

m,n(0) go to

zero also. Consequently, Cn and Dn vanish directly.

Another limiting case is when the semi-circular valley is fully

filled with the alluvium (which corresponds to d = 0 and β = π/2),

the unknown coefficients are obtained as

An = −2δ̄0n(−1)n cos 2nα
G2n

F2n
(29)

Bn = 4i(−1)n sin(2n + 1)α
G2n+1

F2n+1

(30)

Cn = −4i δ̄0n(−1)n cos 2nα

πaF2n
(31)

Dn = −8(−1)n sin(2n + 1)α

πaF2n+1

(32)

Fn = μ1 Jn(k2a)H (2)′
n (k1a) − μ2 J ′

n(k2a)H (2)
n (k1a) (33)

Gn = μ1 Jn(k2a)J ′
n(k1a) − μ2 J ′

n(k2a)Jn(k1a). (34)

Once again, one can note that, after solving the famous simul-

taneous equations of Trifunac (1971) (see his eqs 14 and 15 in

pages 1757 and 1758) and appropriately rearranging, solutions to

Trifunac’s equations are equivalent to eqs (29)–(32) except different

symbols. Moreover, if the medium in region (2) is identical to that

in region (1) (i.e. μ2 = μ1 and k 2 = k 1), Gn will go to zero and the

scattering coefficients An and Bn will vanish immediately also. At

this moment, one can obviously find that the wavefield in region (2)

degenerates to be the same as the free wavefield after substituting

eqs (31) and (32) back into eq. (14). In fact, the scattered waves do

Figure 7. 3-D plots of surface displacement amplitudes for different α at ρ1/ρ2 = 1.5, c1/c2 = 2.0 and h/a = 0.25.
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not exist any more due to the absence of the valley; in other words,

only the free waves may exist in the half-space.

Returning to the partially filled case of a semi-circular alluvial

valley, the displacement amplitudes is given in terms of the wave-

fields by eqs (13) and (14), that is

|u| =
⎧⎨⎩ |u1| =

√
[Re(u1)]2 + [Im(u1)]2

|u2| =
√

[Re(u2)]2 + [Im(u2)]2
, (35)

where Re(·) and Im(·) are the real and image part of a complex

expression, respectively.

It is convenient to define the dimensionless frequency (or dimen-

sionless wavenumber) η as the ratio of the maximum width of the

valley to the incident wavelength λ1, that is,

η = ωa

πc1

= k1a

π
= 2a

λ1

. (36)

All computer codes for this paper have been implemented entirely

in the Mathematica 5.2 programming environment (Wolfram 2003),

which offers direct support for arbitrary precision arithmetic.

3 N U M E R I C A L R E S U LT S

A N D D I S C U S S I O N S

3.1 Frequency-domain responses

In this subsection, the authors focus on a ‘soft’ alluvial valley. The

physical parameters corresponding to the material properties are set

as follows: the mass density ratio ρ1/ρ2 was fixed at 1.5, and the

shear wave velocity ratio c1/c2 was chosen as 2.0, 2.5 or 3.0. These

values were based on the works of Trifunac (1971) and Kawase &

Aki (1989) for the Mexico City valley.

A convergence test was done to specify the truncation limit for

the infinite series in eqs (24) and (25). It was worth emphasizing

that the M terms of summation should be accurately computed by

numerically testing for their convergence, thereby leaving only one

parameter to eliminate the phenomenon of relative convergence in

the numerical procedure, that is, the N terms of summation.

In order to verify that the infinite series involved in the solution

is convergent, two examples of dimensionless alluvium thickness

h/a = 0.25 and 0.75 at horizontal incidence (α = 90◦) for the

dimensionless frequency η = 2.0 are considered in Fig. 2. The shear

wave velocity ratio c1/c2 is 2.0. The primary reason for choosing

the horizontal incidence case is that it needs more terms than any

other case of incidence. These two examples show the variation of

surface displacement amplitudes with the truncated number N of

the infinite series. The plotted range of the dimensionless distance

x/a is from −4 to 4, and the range of x/a from −1 to 1 corresponds

to the horizontal position of the valley surface.

As seen in Fig. 2, the convergence is achieved after N = 8.

This is relatively a small number of terms required to achieve

convergence. Numerical tests also showed that more terms were

required as the dimensionless frequency η increased. Besides,

to guarantee a given computational precision, M = 50 terms in

eqs (24) and (25) were chosen to produce the graphs in all following

cases.

Figure 8. 3-D plots of surface displacement amplitudes for different α at ρ1/ρ2 = 1.5, c1/c2 = 2.0 and h/a = 0.75.
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To demonstrate the effects of the dimensionless alluvium thick-

ness h/a on the displacement amplitude |u|, three groups of results

for h/a = 0.25, 0.5, 0.75 and 1.0 are calculated at different incident

angles (α = 0◦, 30◦, 60◦ and 90◦) with shear wave velocity ratio

c1/c2 = 2.0. The first group corresponding to the dimensionless

frequency η = 0.5 is illustrated in Fig. 3, while the second one

corresponding to the dimensionless frequency η = 1.0 is shown in

Fig. 4. For the third group in Fig. 5, the dimensionless frequency η

is considered to be 2.0.

From a low frequency (η = 0.5) case in Fig. 3, it shows that,

for the partially filled case (h/a < 1.0), the value of the maximum

response amplitude tends to increase with increasing the alluvium

thickness h/a. However, this increased trend does not include the

completely filled alluvial valley (h/a = 1.0). That is to say, the peak

amplitude for a partially filled case may be larger than that for a

completely filled one. Such a difference is contrary to our original

expectation. As to a fully filled alluvial valley, it was commonly

known in the past that an increase of valley depth causes the peak

Figure 9. Synthetic seismograms for different h/a at c1/c2 = 1.5 and α =
0◦.

amplitude to be greater (see, e.g. Bard & Bouchon 1980). Now, if

considering the depth of the alluvial valley as the thickness of the

deposit, the above concept may no longer be fitting for the case of a

partially filled alluvial valley.

As shown in Figs 4(a) and (b), one can observe that, at nearly verti-

cal incidences (α = 0◦ and 30◦) with moderate frequency (η = 1.0),

the maximum amplitudes of motions for a fully filled valley are much

smaller than those for a lowly filled (h/a = 0.25) one. However, un-

like the response at low or moderate frequency, Fig. 5 shows that

at high frequency (η = 2.0) the variability of ground motions is

very chaotic. The distribution of local peaks and depressions on the

diagrams becomes denser with larger values of frequency. This may

be explained by the fact that disturbance between the transmitted

and rereflected wave inside the alluvial deposit is obviously getting

stronger. On the other hand, the surface displacement appears to be

sensitive upon the change of the alluvium thickness. This effect is

very similar to the results of Dravinski (1982) who studied the in-

fluence of different interface depths of the alluvial valley on surface

Figure 10. Synthetic seismograms for different h/a at c1/c2 = 1.5 and

α = 60◦.
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motion. In addition, there is one thing to point out: at most incident

angles the maximum value of displacement amplitudes for the fully

filled valley (h/a = 1.0) are smaller than those for the highly filled

ones (h/a = 0.5 and 0.75). For the reason of simplicity in Fig. 5,

the curves for a fully filled case are not contained.

In comparing Figs 3–5, one can see that the patterns of displace-

ment amplitudes for normal incidence (α = 0◦) are symmetrical

about the vertical axis. This is due to the symmetry of the valley

about this axis. Overall, the displacement amplitudes in the illumi-

nation zone (x/a < 1) are more oscillatory and complicated than

those in the shadow zone (x/a > 1) since the incident wave comes

from the left side of the valley.

Subsequently, in order to obtain a clearer idea of effects of the

velocity contrast on the response of a lowly filled (h/a = 0.25)

valley, the changes in the displacement amplitudes with respect to

the shear wave velocity ratio c1/c2 are plotted in Fig. 6. The di-

Figure 11. Synthetic seismograms for different h/a at c1/c2 = 3.0 and

α = 0◦.

mensionless frequency η is 1.0. It can be seen that the value of the

maximum response amplitude increases with increasing value of

the shear wave velocity ratio c1/c2 except the vertical incidence

case (α = 0◦).

Figs 7 and 8 illustrate the displacement amplitudes as a function

of the dimensionless distance x/a and the dimensionless frequency

η at various angles of incidence (α = 0◦, 30◦, 60◦ and 90◦). The

former corresponds to the dimensionless alluvium thickness h/a =
0.25, while the latter corresponds to the case of h/a = 0.75. The

shear wave velocity ratio c1/c2 is 2.0. As seen in Figs 7 and 8,

they give a good portrait of the frequency behaviour of the ground

surface motion. The resonant behaviour is sometimes clear when

several peaks are distributed in space for a given frequency. It is

apparent that the displacement amplitude patterns on the range of

−1 ≤ x/a ≤ 1 for a highly filled alluvial valley are more complex

than those for a lowly filled one.

Figure 12. Synthetic seismograms for different h/a at c1/c2 = 3.0 and

α = 60◦.
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3.2 Time-domain responses

Here, the model response in the time-domain is obtained from

the frequency domain solution using Fast Fourier Transform tech-

nique. The incident signal, a symmetric Ricker wavelet (e.g. pre-

viously used by Bard & Bouchon 1980) is taken and defined

as

f (t) =
√

π

2

[
π 2(t − ts)2

t2
p

− 1

2

]
exp

[
−π 2(t − ts)2

t2
p

]
, (37)

where ts corresponds to the arrival time of the peak amplitude of

the wavelet and tp corresponds to the characteristic period. In the

following cases, most parameter settings are referred to the work

of Luzón et al. (2004). The Ricker parameters are selected at tp =
1.6 s and ts = 5 s. The calculated frequencies are 128 in total, ranging

from 0.0 to 2.0 Hz. 51 equally spaced stations are located along the

ground and valley surface (from x = −2 km up to x = 2 km). The

radius of the valley is equal to 1 km. The mass density ratio ρ1/ρ2 is

fixed at 1.5. The shear wave velocity of the half-space c1 is chosen

as 3 km s–1.

The time-series of the fully filled (h/a = 1.0) and partially filled

(h/a = 0.5) alluvial valley with the shear wave velocity ratio c1/c2 =
1.5 at vertical (α = 0◦) and nearly horizontal (α = 60◦) incidence

are plotted in Figs 9 and 10. In Figs 11 and 12, the shear wave

velocity ratio c1/c2 is changed to 3.0, and other parameters are kept

the same.

As expected, larger impedance contrast produces longer duration

of the response. This is due to the fact that, for the lower impedance

contrast cases, most of wave energy is transmitted back into the

half-space. Oppositely, for the higher impedance contrast cases, a

sizable part of the energy is trapped inside the valley.

From Figs 11 and 12, one can obviously found that the amplifi-

cation zone for a fully filled valley is broader than that for a par-

tially filled one. The same feature can be slightly found in Figs 9

and 10.

4 C O N C L U S I O N

A novel application of the region-matching technique in connection

with Graf’s addition theorem to the half-space scattering problem

of plane SH waves has been proposed. A series solution for the

case of a partially filled semi-circular alluvial valley has been com-

pletely derived. Numerical results based on these series solutions

have been calculated and discussed. These new solutions are intrin-

sically important because they not only enrich the list of geometries

of alluvial valleys, but also provide challenging criteria for the val-

idation of numerical frequency- and time-domain codes. Besides,

other more general types of the partially filled semi-circular allu-

vial valleys will constitute the topics of investigations, and their

series solutions may be developed in the future through the present

theoretical treatment.
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